JPH0225900B2 - - Google Patents

Info

Publication number
JPH0225900B2
JPH0225900B2 JP14975282A JP14975282A JPH0225900B2 JP H0225900 B2 JPH0225900 B2 JP H0225900B2 JP 14975282 A JP14975282 A JP 14975282A JP 14975282 A JP14975282 A JP 14975282A JP H0225900 B2 JPH0225900 B2 JP H0225900B2
Authority
JP
Japan
Prior art keywords
crystallization
crystals
neutralization
stock solution
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14975282A
Other languages
Japanese (ja)
Other versions
JPS5939857A (en
Inventor
Yoshihiro Koga
Toshio Kitahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP14975282A priority Critical patent/JPS5939857A/en
Publication of JPS5939857A publication Critical patent/JPS5939857A/en
Publication of JPH0225900B2 publication Critical patent/JPH0225900B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

トリプトフアン(以下、Trpと略記することが
ある。)、フエニルアラニン(以下、Pheと略記す
ることがある。)などのアミノ酸をその発酵液等
の溶液から晶析する方法として、従来、濃縮晶析
法、冷却晶析法、中和晶析法等があるが、これら
の通常の晶析法においては、得られる結晶が微細
晶である為、固液分離性が悪く、色素や他の不純
物の淘汰性が悪いという問題点があつた。 そこで、本発明者は、各種晶析原液からTrpあ
るいはPheの結晶を、このような問題を伴わず
に、純度よく簡便に製造取得することを目的とし
て鋭意研究の結果、本発明を完成するに至つた。 さて、従来公知の通常の晶析法に於いては、過
飽和溶解度の解消が遅く、二次起晶が発生する。
そのため、前述のように、この結晶は微細晶であ
る為、分離性も悪く、色素その他の不純物の淘汰
が難しい。本発明者は、これらの問題点を解決す
るべく中和晶析法に就いて種々の検討を重ね、次
のことを見いだした。すなわち、中和晶析に於い
ては通常、酸性側からNH4OH,NaOHなどのア
ルカリを用いて中和晶析する方法とアルカリ側か
らH2SO4,HCl等の酸で中和晶析する方法が考え
られるが、このアルカリ側からの中和晶析方式に
於いて、予め低級アルコール又はケトン類を晶析
原液に添加する事により、転移点以上の晶析温度
条件下で析出する結晶が固液分離性が良く、色素
や他の不純物の淘汰性の良い、厚みのある大きな
結晶を得る事が出来ることを見だしたものであ
る。酸性側からの中和晶析方式では、このような
効果はみられなかつた。 一般に低級アルコールやケトン類は溶解度を下
げ、晶析率を高める為に晶析原液に添加すること
が行なわれている。本発明では、これらをTrpま
たはPheを中和晶析する前に晶析原液に添加する
ことにより、これらアミノ酸の純度の高い結晶を
得ることを可能ならしめたものである。 以下、本発明を詳しく説明する。 本発明で、トリプトフアンまたはフエニルアラ
ニンのアルカリ溶液とは、これらアミノ酸の発酵
液、発酵除菌液、樹脂溶離液、これらの溶液から
得られた粗結晶の溶解液などであつて、そのPHが
当該アミノ酸の等電点よりも高いものである。こ
れらのアミノ酸発酵液などのPHは7前後であるの
で、そのままでも本発明のアルカリ溶液といえる
けれども、これらに一旦NaOH等を加えて当該
アミノ酸の溶解度を高めたのち濃縮して得られる
アルカリ溶液の方がアミノ酸の回収率の点で好ま
しい。アミノ酸はL体のみならず、D体でもよい
ことはもちろんである。 予じめ晶析原液に添加すべき低級アルコールと
しては炭素数が1から4のものであつて例えばi
−プロパノール、n−プロパノール、エタノー
ル、n−ブタノール、メタノールの如きものであ
る。ケトン類としてはアセトン等があげられる。
これら低級アルコールやケトン類の添加量として
は5v/v%以上の添加であれば顕著な効果が得
られる事が判明したが、好ましくは、製造設備の
防爆対策等考慮すると5〜30v/v%の範囲が妥
当な領域と考えられる。 光学活性Trp,Pheは、通常α,βのいずれか
の結晶形であり、α晶が板状または鱗片状である
のに対し、β晶は微細晶の針状晶である。従つて
晶析はα晶で行なつた方が分離性がよく付着母液
も少なく高品質の結晶が得られる。これらはある
温度(転移点)以上でα晶、それ以下ではβ晶を
示す。Trpの転移点は60℃前後、Pheのそれは37
℃前後である(以上、水系)が、晶析系によつて
異なつてくる。当該系における正確な転移点は各
晶析液を通常の晶析法に付して得られた結晶を顕
微鏡観察等により調べることにより容易に測定出
来る。一般に、有機溶剤を添加すると転移点は低
下する。かくして、水系の場合と比べてより低い
温度で安定にα晶を得ることができ、結晶の純度
および回収率を高めることができる。 本発明では、H2SO4,HClなどの酸でTrpまた
はPheの前記溶液をアルカリ側から中和して当該
アミノ酸を晶出せしめるが、ここに中和とは晶析
原液のPHを当該アミノ酸の等電点またはその近傍
にもつてくることであり、これにより溶解度を低
下せしめられたアミノ酸が晶出する。 晶析温度は、前述のように、転移点以上である
が、転移点以上の温度範囲内であれば、晶析率を
上げるために中和晶析処理後濃縮処理および/ま
たは冷却処理を行なつてもよく、また種晶を使用
してもよいことはもちろんである。さらに、α晶
の析出後はこれを含む晶析原液を若干転移点以下
に冷却してもβ晶が直ちに生ずるとは限らないの
で、β晶が生ずる前に冷却を打切り、固液分離に
付すれば、やはり晶析率を上げ得ることがある
が、このような実施態様も本発明の範囲内であ
る。 晶出結晶を母液から分離するには特別の条件は
なく、公知の方法によつてよい。 以下、実施例により、本発明をさらに詳細に説
明する。 実施例 1 フエニルアラニン発酵液を過助剤としてセラ
イトを使用して過後、この液(Pheの濃度3
g/dl)にNaOHを添加してPH12にし、濃縮し
て濃度16g/dlの晶析原液(PH12)とした。 この晶析原液5dlに所定量のi−プロパノール
又はアセトンを60v/v%以下の範囲で添加し、
60℃に於いて硫酸(濃度36.7N)を用いてアルカ
リ側からの中和晶析を行なつた。また、これらの
有機溶剤のいずれをも添加しない中和晶析も行な
つた(対照)。PH5.5迄中和後温度40℃迄冷却して
得られたスラリー中の結晶を遠心脱水器で分離し
て少量の水で洗浄した。 各場合における分離結晶の性状を表1に示す。
Concentration crystallization has conventionally been used as a method for crystallizing amino acids such as tryptophan (hereinafter sometimes abbreviated as Trp) and phenylalanine (hereinafter sometimes abbreviated as Phe) from solutions such as fermentation broth. crystallization method, cooling crystallization method, neutralization crystallization method, etc. However, in these ordinary crystallization methods, the crystals obtained are fine crystals, so solid-liquid separation is poor, and pigments and other impurities are There was a problem that selection was poor. Therefore, the present inventor has completed the present invention as a result of intensive research aimed at easily producing and obtaining crystals of Trp or Phe from various crystallization stock solutions with high purity without such problems. I've reached it. Now, in conventionally known normal crystallization methods, the resolution of supersaturated solubility is slow and secondary crystallization occurs.
Therefore, as described above, since this crystal is a fine crystal, its separation property is poor, and it is difficult to remove pigments and other impurities. In order to solve these problems, the present inventor conducted various studies on the neutralization crystallization method and found the following. In other words, in neutralization crystallization, there are usually two methods: neutralization crystallization using an alkali such as NH 4 OH or NaOH from the acidic side, and neutralization crystallization using an acid such as H 2 SO 4 or HCl from the alkaline side. However, in this neutralization crystallization method from the alkali side, by adding lower alcohols or ketones to the crystallization stock solution in advance, crystals that precipitate under crystallization temperature conditions above the transition point can be used. It was discovered that thick, large crystals with good solid-liquid separation properties and good removal of pigments and other impurities can be obtained. Such an effect was not observed in the neutralization crystallization method from the acidic side. Generally, lower alcohols and ketones are added to the crystallization stock solution in order to lower the solubility and increase the crystallization rate. In the present invention, by adding these to the crystallization stock solution before neutralizing and crystallizing Trp or Phe, it is possible to obtain highly pure crystals of these amino acids. The present invention will be explained in detail below. In the present invention, the alkaline solution of tryptophan or phenylalanine is a fermentation solution of these amino acids, a fermentation sterilizing solution, a resin eluate, a solution of crude crystals obtained from these solutions, etc., and the pH thereof is It is higher than the isoelectric point of the amino acid. Since the pH of these amino acid fermentation liquids is around 7, they can be said to be the alkaline solution of the present invention as is, but the alkaline solution obtained by adding NaOH etc. to these to increase the solubility of the amino acids and then concentrating them. is more preferable in terms of recovery rate of amino acids. Of course, the amino acid may be not only in the L form but also in the D form. The lower alcohol to be added to the crystallization stock solution in advance is one with a carbon number of 1 to 4, such as i
-propanol, n-propanol, ethanol, n-butanol, methanol, etc. Examples of ketones include acetone.
It has been found that significant effects can be obtained if the amount of these lower alcohols and ketones added is 5v/v% or more, but preferably 5 to 30v/v%, taking into account explosion-proof measures for manufacturing equipment, etc. is considered to be a reasonable range. Optically active Trp and Phe are usually in either α or β crystal form; α crystals are plate-like or scale-like, whereas β crystals are fine needle-like crystals. Therefore, if the crystallization is carried out using the α-crystal, the separation will be better, less mother liquor will be deposited, and high-quality crystals will be obtained. These exhibit α crystals above a certain temperature (transition point) and β crystals below. The transition point of Trp is around 60℃, that of Phe is 37
It is around ℃ (aqueous system), but it varies depending on the crystallization system. The exact transition point in the system can be easily determined by subjecting each crystallization solution to a conventional crystallization method and examining the obtained crystals by microscopic observation or the like. Generally, adding an organic solvent lowers the transition point. In this way, α-crystals can be stably obtained at lower temperatures than in the case of aqueous systems, and the purity and recovery rate of the crystals can be increased. In the present invention, the solution of Trp or Phe is neutralized from the alkaline side with an acid such as H 2 SO 4 or HCl to crystallize the amino acid. This means that the amino acid has a lower solubility and crystallizes out at or near its isoelectric point. As mentioned above, the crystallization temperature is above the transition point, but if it is within the temperature range above the transition point, concentration treatment and/or cooling treatment may be performed after neutralization crystallization treatment to increase the crystallization rate. Needless to say, it may be grown as a seed crystal, or a seed crystal may be used. Furthermore, after precipitation of α-crystals, β-crystals do not necessarily form immediately even if the crystallization stock solution containing them is cooled slightly below the transition point. However, such an embodiment is also within the scope of the present invention. There are no special conditions for separating the crystallized crystals from the mother liquor, and any known method may be used. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 After filtering the phenylalanine fermentation liquid using Celite as a superimposing agent, this liquid (Phe concentration 3
g/dl) was adjusted to pH 12 by adding NaOH, and concentrated to obtain a crystallization stock solution (PH 12) with a concentration of 16 g/dl. A predetermined amount of i-propanol or acetone is added to 5 dl of this crystallization stock solution in a range of 60 v/v% or less,
Neutralization crystallization from the alkaline side was performed at 60°C using sulfuric acid (concentration 36.7N). Neutralized crystallization was also conducted without adding any of these organic solvents (control). After neutralization to pH 5.5 and cooling to a temperature of 40°C, crystals in the resulting slurry were separated using a centrifugal dehydrator and washed with a small amount of water. Table 1 shows the properties of the separated crystals in each case.

【表】 実施例 2 トリプトフアン発酵液を過助剤としてセライ
トを使用して過後、この液(Trp濃度1.5
g/dl)を60℃の減圧条件で濃縮晶析した。得ら
れたスラリーを40℃迄徐冷し結晶を分離して粗結
晶(α晶)を得た。この粗結晶に水及びNaOH
を加えて溶解し晶析原液とし、これを各種態様の
中和晶析法に付した。晶析原液のTrp濃度は10
g/dl、PHは12であつた。 まず、晶析原液5dlをとり、これを60℃に於い
て36.7N硫酸を用いてアルカリ側からの中和晶析
を試みた。PH6迄中和した後、温度30℃まで冷却
を行なつた。また、晶析原液に硫酸中和まえにi
−プロパノールまたはメタノールを単独でそれぞ
れ20v/v%添加した以外は上と同様の実験を行
なつた。さらに粗結晶に水及び36.7N硫酸を加え
て溶解し、晶析原液(Trp濃度10g/dl,PH1)
とし60℃に於いてNaOHを用いて酸性側からの
中和晶析を試みた。PH6迄中和した後、温度30℃
迄冷却を行なつた。 得られたスラリー中の結晶を遠心脱水器で分離
して少量の水で洗浄した。 各実験で得られた結晶の性状を表2に示す。
[Table] Example 2 After filtering the tryptophan fermentation liquid using Celite as a super-aiding agent, this liquid (Trp concentration 1.5
g/dl) was concentrated and crystallized under reduced pressure conditions at 60°C. The obtained slurry was slowly cooled to 40°C and the crystals were separated to obtain crude crystals (α crystals). Water and NaOH are added to this crude crystal.
was added and dissolved to obtain a crystallization stock solution, which was subjected to various types of neutralization crystallization methods. The Trp concentration of the crystallization stock solution is 10
g/dl and pH were 12. First, 5 dl of the crystallization stock solution was taken, and neutralization crystallization from the alkaline side was attempted using 36.7N sulfuric acid at 60°C. After neutralization to pH 6, cooling was performed to a temperature of 30°C. Also, add i to the crystallization stock solution before neutralizing with sulfuric acid.
The same experiment as above was carried out except that propanol or methanol was added alone at 20% v/v. Furthermore, water and 36.7N sulfuric acid were added to the crude crystals to dissolve them, and the crystallization stock solution (Trp concentration 10g/dl, PH1)
Neutralization crystallization from the acidic side was attempted using NaOH at 60°C. After neutralizing to pH 6, temperature 30℃
It was cooled until then. The crystals in the obtained slurry were separated using a centrifugal dehydrator and washed with a small amount of water. Table 2 shows the properties of the crystals obtained in each experiment.

【表】 実施例 3 フエニルアラニン発酵液を強酸性陽イオン交換
樹脂に通液してフエニルアラニンを吸着させ、ア
ンモニア水で溶離した。溶離液を脱安濃縮して濃
縮液を得、晶析原液とした。Phe濃度は15g/
dl、PHは11であつた。 この晶析原液を5dlとり、これを60℃に於いて
36.7N硫酸を用いてアルカリ側からの中和晶析を
試みた。PH5.5迄中和した後、温度40℃迄冷却を
行なつた。また、晶析原液に硫酸中和前に種々の
低級アルコールまたはケトンを単独でそれぞれ
20v/v%添加した以外は上と同様の実験を行な
つた。 得られたスラリー中の結晶を遠心脱水器で分離
し、粗結晶を得た。この結晶を遠心脱水器でスプ
レーを用いて充分水洗(水洗量は対湿潤結晶当り
10wt%)して、洗浄結晶の分析を行なつた。 各実験の結果を表3に示す。
[Table] Example 3 Phenylalanine fermentation liquid was passed through a strongly acidic cation exchange resin to adsorb phenylalanine, and eluted with aqueous ammonia. The eluate was delaminated and concentrated to obtain a concentrated solution, which was used as a crystallization stock solution. Phe concentration is 15g/
DL and PH were 11. Take 5 dl of this crystallization stock solution and heat it at 60℃.
Neutralization crystallization from the alkaline side was attempted using 36.7N sulfuric acid. After neutralizing the pH to 5.5, the mixture was cooled to a temperature of 40°C. In addition, various lower alcohols or ketones were added individually to the crystallization stock solution before neutralization with sulfuric acid.
The same experiment as above was conducted except that 20v/v% was added. The crystals in the obtained slurry were separated using a centrifugal dehydrator to obtain crude crystals. The crystals are thoroughly washed with water using a spray in a centrifugal dehydrator (the amount of washing is per wet crystal).
(10 wt%) and analyzed the washed crystals. The results of each experiment are shown in Table 3.

【表】 ** 表1に同じ
実施例 4 トリプトフアン発酵液を強酸性陽イオン交換樹
脂に通液してトリプトフアンを吸着させ、アンモ
ニア水で溶離した。溶離液を脱安濃縮して濃縮液
を得、晶析原液(Trp濃度10g/dl,PH11)とし
た。この晶析原液を5dlとり、これを60℃に於い
て36.7N H2SO4を用いてアルカリ側からの中和
晶析を試みた。PH6迄中和した後温度20℃迄冷却
し24時間撹拌晶析を行なつた。また、晶析原液に
H2SO4中和前にi−プロパノールを20v/v%添
加した以外は上と同様の実験を行なつた。 得られたスラリー中の結晶を遠心脱水器で分離
して少量の水で洗浄した。 各実験で得られた結晶の性状を表4に示す。
[Table] ** Same as Table 1 Example 4 Tryptophan fermentation liquid was passed through a strongly acidic cation exchange resin to adsorb tryptophan, and eluted with aqueous ammonia. The eluate was delaminated and concentrated to obtain a concentrated solution, which was used as a crystallization stock solution (Trp concentration 10 g/dl, pH 11). 5 dl of this crystallization stock solution was taken, and neutralization crystallization from the alkali side was attempted using 36.7NH 2 SO 4 at 60°C. After neutralization to pH 6, the mixture was cooled to 20°C and crystallized with stirring for 24 hours. In addition, the crystallization stock solution
The same experiment as above was carried out except that 20% v/v of i-propanol was added before H 2 SO 4 neutralization. The crystals in the obtained slurry were separated using a centrifugal dehydrator and washed with a small amount of water. Table 4 shows the properties of the crystals obtained in each experiment.

【表】 * 表2に同じ。
** 表2に同じ。
[Table] * Same as Table 2.
** Same as Table 2.

Claims (1)

【特許請求の範囲】[Claims] 1 トリプトフアンおよびフエニルアラニンから
選ばれたアミノ酸をそのアルカリ溶液から中和晶
析するに当り、予め低級アルコールまたはケトン
類を当該溶液に添加したのち当該アミノ酸の転移
点以上の晶析温度でアルカリ側から中和晶析し、
分離することを特徴とするアミノ酸の晶析方法。
1. When neutralizing and crystallizing an amino acid selected from tryptophan and phenylalanine from its alkaline solution, lower alcohols or ketones are added to the solution in advance, and then the alkaline side is heated at a crystallization temperature higher than the transition point of the amino acid concerned. Neutralized and crystallized from
A method for crystallizing amino acids characterized by separation.
JP14975282A 1982-08-28 1982-08-28 Crystallization of amino acid Granted JPS5939857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14975282A JPS5939857A (en) 1982-08-28 1982-08-28 Crystallization of amino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14975282A JPS5939857A (en) 1982-08-28 1982-08-28 Crystallization of amino acid

Publications (2)

Publication Number Publication Date
JPS5939857A JPS5939857A (en) 1984-03-05
JPH0225900B2 true JPH0225900B2 (en) 1990-06-06

Family

ID=15481974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14975282A Granted JPS5939857A (en) 1982-08-28 1982-08-28 Crystallization of amino acid

Country Status (1)

Country Link
JP (1) JPS5939857A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237054A (en) * 1984-05-10 1985-11-25 Nippon Kayaku Co Ltd Method for crystallizing amino acid
US4621153A (en) * 1985-02-27 1986-11-04 Biotechnica International, Inc. Purification and recovery of amino acids
US4731469A (en) * 1986-08-06 1988-03-15 Synthetech, Inc. Process for recovery and purification of L-phenylalanine
JPH0648990B2 (en) * 1987-01-14 1994-06-29 味の素株式会社 Method for purifying tryptophan
US5118815A (en) * 1989-02-13 1992-06-02 Ajinomoto Co., Inc. Method for crystallization of amino acids
JP2001199957A (en) * 2000-01-13 2001-07-24 Ajinomoto Co Inc Method for crystallizing tryptophan
US20150165340A1 (en) 2012-09-03 2015-06-18 Laminar Co., Ltd. Purification System Comprising Continuous Reactor and Purification Method Using Continuous Reactor
DE102018100810A1 (en) * 2018-01-16 2019-07-18 Technische Universität Dortmund Process for the processing of L-tryptophan

Also Published As

Publication number Publication date
JPS5939857A (en) 1984-03-05

Similar Documents

Publication Publication Date Title
US7365227B2 (en) Process for the preparation of gabapentin
JPH0225900B2 (en)
HU202282B (en) Process for separating 2-keto-l-gulonic acid from fermentation juice
US4399304A (en) L-phenylalanine 1/2 sulfate and its use
US5070208A (en) Method for crystallization of optically active tryptophan
EP0611369B1 (en) Process for preparing (s) (+)-4,4'-(1-methyl-1,2-ethanediyl)-bis(2,6-piperazinedione)
US4667054A (en) Process for producing optically active valine
US5210288A (en) Process for the preparation of d-(-)-4-hydroxyphenylglycine and l-(+)-4-hydroxyphenylglycine, starting from d.l.-4-hydroxyphenylglycine
US7071356B1 (en) Process for the preparation of 1-(aminomethyl) cyclohexaneacetic acid
US4551548A (en) Process for the recovery of S-(carboxymethyl)-(R)-cysteine and S-(carboxymethyl)-(S)-cysteine
JP3612747B2 (en) Crystallization method of phenylalanine anhydride crystals
US4582928A (en) Process for producing optically active phenylalanine
US2435125A (en) Purification of tryptophane
US3158648A (en) Direct resolution of alpha-methyl-3, 4-dihydroxyphenylalanine
US4588818A (en) Method for recovery of optically active tryptophane
CN112574131B (en) DOTA purification method
US2331948A (en) Method for the purification of lactic acid
JPH02196796A (en) Purification of macrolide-based antibiotic substance
JPS604168A (en) Crystallization of tryptophan
JPH0812632A (en) Purification of glycine
US3932491A (en) Process for optical resolution of racemic lysine sulphanilate
JPS6258345B2 (en)
JPH0665657B2 (en) Production of optically active mandelic acid
JP3541440B2 (en) Crystallization method of L-cystine and novel crystal
JPH0153867B2 (en)