JPH02258663A - Calcium phosphate-based substance and production thereof - Google Patents

Calcium phosphate-based substance and production thereof

Info

Publication number
JPH02258663A
JPH02258663A JP1080057A JP8005789A JPH02258663A JP H02258663 A JPH02258663 A JP H02258663A JP 1080057 A JP1080057 A JP 1080057A JP 8005789 A JP8005789 A JP 8005789A JP H02258663 A JPH02258663 A JP H02258663A
Authority
JP
Japan
Prior art keywords
rare earth
calcium phosphate
based substance
oxide
tcp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1080057A
Other languages
Japanese (ja)
Inventor
Yoshihiro Abe
良弘 阿部
Yasuo Hikichi
康夫 引地
Kazuhiro Yasuda
一浩 安田
Kimiji Yamamoto
君二 山本
Norihito Fujiwara
徳仁 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP1080057A priority Critical patent/JPH02258663A/en
Publication of JPH02258663A publication Critical patent/JPH02258663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To readily improve density and mechanical strength, etc., of product by mixing fixed amount of specific transition-suppresser and oxide or salt of rare earth in production of calcium phosphate-based substance containing beta-Ca3(PO4)2 as principal crystalline phase. CONSTITUTION:(A) Calcium carbonate is mixed with (B) phosphoric acid, (C) transition-suppresser selected from oxide or salt of Mg, Si or Al, kaolin and mullite and (D) oxide of rare earth (e.g., Y2O3) or salt of rare earth in a fixed ratio. Next, the mixture is calcined and crushed to obtain a dense calcium phosphate-based substance containing beta-Ca3(PO4)2 as principal crystalline phase, 1-40 pts.wt. component C and 1-40 pts.wt. component D. The resultant calcium phosphate-based substance is suitably used for organism material such as bone, root of tooth or arthrosis, and further, suitably used for various structural materials as light weight and readily processable.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、リン酸カルシウム系物質に関し。[Detailed description of the invention] (Industrial application field) TECHNICAL FIELD This invention relates to calcium phosphate-based substances.

さらに詳しくはCa3 (P 04) z (以下TC
Pと略する)の一般式で示されるβ−TCPを主成分と
する緻密でかつ強度特性を改良したリン酸カルシウム系
物質およびその製法に関するものである。
For more details, see Ca3 (P 04) z (hereinafter referred to as TC
The present invention relates to a calcium phosphate-based material which is dense and has improved strength properties and whose main component is β-TCP represented by the general formula (abbreviated as P), and a method for producing the same.

(従来の技術) 従来、生体用材料としては、金属材料、有機材料が用い
られてきたが、金属材料の耐化学性、耐食性が悪く、且
つ生体との親和性のない点や有機材料の機械的性質、耐
熱性の悪い点から、近年、無機材料を生体に用いる研究
が急速に広まり、その応用においても人工歯根1人工骨
2人工関節。
(Prior art) Conventionally, metal materials and organic materials have been used as biomaterials, but metal materials have poor chemical resistance and corrosion resistance, and are not compatible with living organisms, and organic materials have poor mechanical resistance. In recent years, research on the use of inorganic materials in living organisms has rapidly spread due to their poor thermal properties and heat resistance, and their applications include artificial tooth roots, artificial bones, and artificial joints.

むし歯充てん剤と、急速な広まりをみせ、実績をあげて
きている。こうした無機材料のなかでも、特にCa−o
 (P 04) * (OH) 2 (以後アパタイト
と呼ぶ)やTCPは生体中の骨や歯と成分が近似であり
、又その結晶構造も近似であることから、他の無機材料
に比べ生体との親和性が格段に優れており、その研究も
広く行なわれ、且つ生体その他への応用も急速に拡大し
てきている。アパタイトを空気中で加熱すると、100
0℃付近から少しずつ水酸基が離脱し、1300℃前後
から分解しはじめ、1300℃以上の温度で長時間焼成
するとH2Oが離脱し、TCPとCaOになる0以上の
ことから、アパタイト焼結体を得るためには空気中13
00℃以下での焼成が必要になる。 1300℃以下の
温度で焼成するためには易焼結性の微細な粒子からなる
粉末が必要である。たとえば、湿式沈殿法で合成した微
細な沈殿を乾燥させずにケーキ状のものをそのまま10
00〜1250℃の温度範囲で焼成し、緻密化させる方
法もあるが、焼成後の収縮率が大きく、かつ亀裂が入り
やすいので、均質でかつ強度のある材質を得にくいとい
う欠点がある。また、湿式沈殿法で合成した微細な粉末
を乾燥し、成形し、1300℃以下で焼成する方法は焼
成後の収縮率が小さく、均質な材質を得ることが可能で
あるが、原料粉末の合成、乾燥2粒度配合、成形、焼結
の全工程にわたって高度の技術が必要である。高度の技
術を持たない場合にはアパタイト焼結体の機械的強度な
ども大幅に低下する。
It has rapidly become popular as a cavity filling agent, and has achieved success. Among these inorganic materials, especially Ca-o
(P 04) * (OH) 2 (hereinafter referred to as apatite) and TCP are similar in composition to bones and teeth in living organisms, and their crystal structures are also similar, so they are more similar to living organisms than other inorganic materials. It has an extremely high affinity for , and its research is being widely conducted, and its applications to living organisms and other areas are rapidly expanding. When apatite is heated in air, 100
Hydroxyl groups are gradually released from around 0°C, and decomposition begins at around 1300°C, and when fired at temperatures above 1300°C for a long time, H2O is released and becomes TCP and CaO. 13 in the air to get
Firing at temperatures below 00°C is required. In order to perform firing at a temperature of 1300° C. or lower, powder consisting of fine particles that are easily sinterable is required. For example, a fine precipitate synthesized by the wet precipitation method can be made into a cake-like form without drying for 10 minutes.
There is also a method of densification by firing at a temperature range of 00 to 1250°C, but this has the disadvantage that it is difficult to obtain a homogeneous and strong material because the shrinkage rate after firing is large and cracks are likely to occur. In addition, a method in which fine powder synthesized by wet precipitation is dried, molded, and fired at 1300°C or less has a small shrinkage rate after firing, and it is possible to obtain a homogeneous material, but it is difficult to synthesize the raw material powder. , dry two-grain size blending, molding, and sintering, all processes require advanced technology. If advanced technology is not available, the mechanical strength of the apatite sintered body will be significantly reduced.

たとえば、高度の技術管理のもとで得られたアパタイト
焼結体の曲げ強度は2000kg/cd程度になると報
告されているが、実際には11000)c/aJ以下の
場合が多い。また、アパタイト焼結体は機械的衝撃に弱
いという欠点がある。これらの欠点から、アパタイト系
物質の実用化が遅れている。
For example, it is reported that the bending strength of an apatite sintered body obtained under advanced technical control is about 2000 kg/cd, but in reality it is often less than 11000) c/aJ. Furthermore, the apatite sintered body has the disadvantage of being weak against mechanical shock. These drawbacks have delayed the practical application of apatite-based materials.

天然の骨の曲げ強度は700kg/J程度とされている
が、人工骨が天然骨の置換材料となるためには、天然骨
の3倍以上の曲げ強度が必要である。
The bending strength of natural bone is said to be about 700 kg/J, but in order for artificial bone to serve as a replacement material for natural bone, it needs to have a bending strength three times or more that of natural bone.

TCP系物質物質パタイトと同様の生体親和性があり、
かつアパタイト系物質よりも機械的強度があるといわれ
ている。TCPには高温型のα相と低温型のβ相がある
。α相は耐水性が悪く、かつβ相からα相に転移すると
きに膨張しIIk密化を阻害する。したがTCP系物質
物質いる場合にはβ−TCPであることが重要である。
It has the same biocompatibility as the TCP-based substance Patite,
It is also said to have greater mechanical strength than apatite-based materials. TCP has a high-temperature α phase and a low-temperature β phase. The α phase has poor water resistance and expands when transitioning from the β phase to the α phase, inhibiting IIk densification. However, if a TCP-based substance is used, it is important that it be β-TCP.

しかし、β−TCPを空気中で加熱すると1120℃か
ら1180℃付近でα−TCPに転移する。そのために
緻密なβ−TCPを得るためには1120℃以下で焼結
可能な超微粉末を調整する必要がある。たとえばCaイ
オンを含むアルカリ性水溶液にリン酸を徐々に滴下しG
A/Pのモル比が1.5のゼラチン状の非晶質リン酸カ
ルシウムを合成し、これに微量の硫酸アンモニウムを添
加し、1100℃で焼成する方法で理論密度(3,07
g/cd)に近いβ−TCP焼結体が得られる。しかし
、この方法では焼成後の収縮が大きく、かつ曲げ強度も
小さい。もっと高温で焼ける材質を得るためにはβ相→
α相への転移を抑制する必要がある。そのために様々な
転移抑制剤が開発されている。その1例がMgO。
However, when β-TCP is heated in air, it transforms into α-TCP at around 1120°C to 1180°C. Therefore, in order to obtain dense β-TCP, it is necessary to prepare ultrafine powder that can be sintered at 1120° C. or lower. For example, phosphoric acid is gradually added dropwise to an alkaline aqueous solution containing Ca ions.
The theoretical density (3,07
g/cd) is obtained. However, with this method, the shrinkage after firing is large and the bending strength is also low. In order to obtain a material that can be baked at higher temperatures, β phase →
It is necessary to suppress the transition to the α phase. For this purpose, various metastasis inhibitors have been developed. One example is MgO.

5i02.A1zOi+カオリン、ムライトなどである
5i02. A1zOi+kaolin, mullite, etc.

これらの転移抑制剤を用いると、転移温度以上でもβ−
TCPである。β−TCP粉末はピロリン酸カルシウム
と炭酸カルシウムとを混ぜて空気中1100℃で固相反
応させることによって容易に合成できるが、合成粉末の
粒子径が大きいので、α化抑制剤を添加し、高温で焼成
しても緻密にならない、そこで湿式沈殿法により超微分
を作成し、転移抑制剤を添加し、1200℃、1300
℃。
When these transition inhibitors are used, β-
It is TCP. β-TCP powder can be easily synthesized by mixing calcium pyrophosphate and calcium carbonate and performing a solid phase reaction in air at 1100°C, but since the particle size of the synthesized powder is large, a pregelatinization inhibitor is added and the mixture is heated at high temperatures. It did not become dense even after firing, so we created a superdifferential by wet precipitation method, added a transition inhibitor, and heated it to 1200℃ and 1300℃.
℃.

1400℃などの高温で焼成し、密度及び機械的強度の
向上が図られるようになった。その結果、得られた物質
の嵩比重は理論密度の97%以上にまで緻密化し、かつ
物質の曲げ強度が1500〜2000kg/−となった
。しかし湿式沈殿法でTCP粉末を合成するにはアバイ
トの微粉末を調整する場合と同じような高度な技術が必
要であり、かつ大量に発生する濾過洗浄後の排水処理の
問題がでてくる。
It has become possible to improve density and mechanical strength by firing at high temperatures such as 1400°C. As a result, the bulk specific gravity of the obtained material was densified to 97% or more of the theoretical density, and the bending strength of the material was 1500 to 2000 kg/-. However, synthesizing TCP powder using the wet precipitation method requires the same advanced technology as the preparation of fine powder of abaite, and there is also the problem of treating wastewater after filtration and washing, which is generated in large quantities.

従来の技術により、TCP物質の曲げ強度が1500〜
2000kg/Jと向上したが、機械的強度は得られた
β−TCP系物質の撤物質と関連する。すなわち出発原
料が如何に微細であっても、また転移抑制剤が如何に効
率的であっても機械的強度は得られた最終製品の微組織
によって左右される。たとえば、出発粉末が微細であっ
ても、また転移抑制剤が添加されていても、高温になれ
ば構成β−TCP粒子が均一に粒成長するか、あるいは
不均一粒成長し、その結果、嵩密度が理論密度に近くて
も、機械的強度の小さい場合がある。
By conventional technology, the bending strength of TCP material is 1500 ~
Although the mechanical strength was improved to 2000 kg/J, it is related to the withdrawal material of the obtained β-TCP-based material. That is, no matter how fine the starting material is and no matter how efficient the metastasis inhibitor, the mechanical strength is determined by the microstructure of the final product obtained. For example, even if the starting powder is fine or a dislocation inhibitor is added, at high temperatures the constituent β-TCP particles will either grow uniformly or non-uniformly, resulting in increased bulk. Even if the density is close to the theoretical density, the mechanical strength may be low.

従来の技術では粒成長の管理が不十分である。また、従
来から研究されている超微粉末製造方法は工程が複雑で
コストも高いという欠点がある。
Conventional techniques provide insufficient control of grain growth. Furthermore, the methods for producing ultrafine powder that have been researched to date have the drawbacks of complicated processes and high costs.

(発明が解決しようとする問題点) 従来法によるTCP系物質の製造方法は工程が複雑で高
度な技術が必要とされ、かつコストも高い。しかも、高
密度にするために粉末を高温で長時間焼成するとα−T
CP化しやすく、かつ不均一な粒成長を起こす場合が多
く、そのため密度も向上せず、かつ機械的な強度も低下
しやすいという問題点がある。この発明では、これらの
問題点を解決しようとするものである。
(Problems to be Solved by the Invention) Conventional methods for producing TCP-based substances require complicated processes, require advanced technology, and are expensive. Moreover, if the powder is fired at high temperature for a long time to achieve high density, α-T
It is easy to become CP and often causes non-uniform grain growth, so there are problems in that density does not improve and mechanical strength tends to decrease. This invention attempts to solve these problems.

(問題点を解決するための手段) 発明者らはβ−TCPを主結晶相とするリン酸カルシウ
ム系の粉末作成法について種々研究を重ねた結果、試薬
の炭酸カルシウムとリン酸及び転移抑制剤(M g +
 S i+ A”などの酸化物または塩)、希土類酸化
物または希土類塩とを所定比になるように配合し電気炉
中1000℃で数時間仮焼し粉砕する方法または試薬の
炭酸カルシウムとリン酸および転移抑制剤とを所定比に
なるように配合し、電気炉中1350℃以上の温度で数
時間加熱溶融し急冷しガラスにし微粉砕した粉末に希土
類酸化物または希土類塩を所定比になるように配合する
方法または試薬の炭酸カルシウムとリン酸、転移抑制剤
及び希土類酸化物または希土類塩を所定比になるように
配合し、電気炉中1350℃以上の温度で数時間加熱溶
融し急冷しガラスにし微粉砕する方法によって粉末を作
成する方法を開発し、この方法は設備、管理の点で有利
であり、産業排水が無く、かつ高温で焼成しても主結晶
相はβ−TCPであり、α−TCPを生成せず、粒成長
が抑制されるために焼結体の密度が向上し。
(Means for Solving the Problems) As a result of various studies conducted by the inventors on methods for producing calcium phosphate-based powders containing β-TCP as the main crystal phase, the inventors found that calcium carbonate and phosphoric acid as reagents and a dislocation inhibitor (M g+
A method in which calcium carbonate and phosphoric acid as reagents are blended in a predetermined ratio with oxides or salts such as "S i+ and a metastasis inhibitor in a predetermined ratio, heated and melted in an electric furnace at a temperature of 1,350°C or higher for several hours, rapidly cooled, made into glass, finely ground, and a rare earth oxide or rare earth salt in a predetermined ratio. A method of blending calcium carbonate and phosphoric acid as reagents, a transition inhibitor, and rare earth oxides or rare earth salts in a predetermined ratio, melting by heating in an electric furnace at a temperature of 1350°C or higher for several hours, and then rapidly cooling the glass. We have developed a method to create powder by pulverizing it. This method is advantageous in terms of equipment and management, does not require industrial wastewater, and even when fired at high temperatures, the main crystal phase is β-TCP. Since α-TCP is not generated and grain growth is suppressed, the density of the sintered body is improved.

かつ焼結体の微組織が均一であることから、機械的強度
が著しく向上することを見いだした。さらに転移抑制剤
や希土類元素の酸化物または塩を適当量加えることによ
り材質どうしの複合効果(たとえば過剰のリン酸アルミ
ニウムやムライトなどを添加すると針状の結晶がTCP
結晶の粒界に析出する)が現れて1機械的特性がさらに
向上する。
It was also found that the mechanical strength of the sintered body was significantly improved because the microstructure of the sintered body was uniform. Furthermore, by adding appropriate amounts of dislocation inhibitors and rare earth element oxides or salts, the composite effect of materials can be achieved (for example, when excessive aluminum phosphate or mullite is added, needle-shaped crystals become TCP).
(precipitated at the grain boundaries of the crystals) appears, further improving mechanical properties.

さらに従来の湿式沈殿法で合成した微粉末は焼成収縮が
大きいという欠点があったが、この発明でのガラス粉末
は焼成収縮が小さいという利点がある。以上の知見に基
づいて本発明をなすに至った。
Further, while the fine powder synthesized by the conventional wet precipitation method has the disadvantage of large shrinkage upon firing, the glass powder of the present invention has the advantage of low shrinkage upon firing. The present invention has been accomplished based on the above findings.

一般に無機材料の焼結において1粒成長速度が気孔の移
動よりも大きいときには、粒子内部に気孔が捕獲された
形になり高密度の焼結体が得られない。このような場合
には粒成長速度を支配する拡散係数を減少させ、粒成長
速度を抑えて気孔を少なくすることができる。このこと
が可能な条件は添加剤を構成する元素と添加される物質
を構成する元素との間にイオン半径が近似し、かつイオ
ン価数が相違している場合である。この発明では添加剤
を構成する希土類元素とTCPを構成する主要な元素で
あるCaとを比較すると両者のイオン半径が互いに近似
しているので、希土類元素は容易にTCP内に固溶し、
かつイオン価数は前者が3価あるいは4価、後者が2価
であるので、拡散係数が減少し、TCPの粒成長が抑制
され、焼成中に気孔は結晶内に入らずに外へ押し出され
焼結体の密度が高くなり、かつ粒成長が抑えられている
ので1組織が均一になり1以上の総合的な効果から、機
械的強度が向上したものである。
Generally, in sintering an inorganic material, when the growth rate of one grain is higher than the movement of pores, the pores are trapped inside the grains and a high-density sintered body cannot be obtained. In such cases, the diffusion coefficient that governs the grain growth rate can be reduced to suppress the grain growth rate and reduce the number of pores. This is possible under the conditions that the elements constituting the additive and the elements constituting the substance to be added have similar ionic radii and different ionic valences. In this invention, when comparing the rare earth elements constituting the additive and Ca, the main element constituting the TCP, the ionic radii of both are similar to each other, so the rare earth elements easily dissolve in solid solution in the TCP.
In addition, since the ion valence is trivalent or tetravalent for the former and divalent for the latter, the diffusion coefficient decreases, grain growth of TCP is suppressed, and pores are pushed out without entering the crystal during firing. Since the density of the sintered body is increased and grain growth is suppressed, the structure becomes uniform, and mechanical strength is improved due to one or more comprehensive effects.

〔実施例〕〔Example〕

次に実施例により本発明をさらに詳細に説明する。なお
、各側における各試験及び組織観察は次のようにして行
った。
Next, the present invention will be explained in more detail with reference to Examples. In addition, each test and structure observation on each side were performed as follows.

(1) 嵩比重測定、見掛は気孔率測定:焼結試料を1
05〜120℃の温度で十分に乾燥させて、試料重量を
求め、JISR2205−74r耐火レンガの見掛は気
孔率、吸水率及び比重の測定方法」により。
(1) Bulk specific gravity measurement, apparent porosity measurement: 1 sintered sample
The sample was thoroughly dried at a temperature of 05 to 120°C, and the weight of the sample was determined.

水中での試料の嵩比重と見掛は気孔率を測定した。測定
は5回おこなって、平均した。
The bulk specific gravity and apparent porosity of the sample in water were measured. Measurements were performed five times and averaged.

(2) 焼成収縮率: 成形体の試料長さと焼成後の試料長さとがら計算によっ
て求めた。測定は5回おこなって、平均した。
(2) Firing shrinkage rate: Calculated from the sample length of the molded body and the sample length after firing. Measurements were performed five times and averaged.

(3) 曲げ強度試験: JIS  R1601rファインセラミックスの曲げ強
さ試験方法」によって焼結体の曲げ強度を測定した。測
定は5回おこなって、平均した。
(3) Bending strength test: The bending strength of the sintered body was measured according to "JIS R1601r Fine Ceramics Bending Strength Test Method". Measurements were performed five times and averaged.

(4) 組織観察: 走査型電子顕微鏡により焼結体の表面及び破面の組織観
察をおこなった。
(4) Structure observation: The structure of the surface and fracture surface of the sintered body was observed using a scanning electron microscope.

(5) 生成物の固定: 粉末X線回折(Cu K a  radation)に
よりおこなった・ 〔実施例 I〕 市販の特級試薬である炭酸カルシウム342g。
(5) Fixation of the product: Performed by powder X-ray diffraction (CuKa radiation). [Example I] 342 g of calcium carbonate, a commercially available special grade reagent.

酸化アルミニウム57gと、リン酸235 m lを十
分に混合した後、電気炉中1000℃で2時間仮焼し、
ついで1370℃で1時間加熱溶融し、これを適当な容
器内に流しこみ急冷する方法で透明なガラスを得た。こ
のガラスをボールミルで48時時間式粉砕し、微粉末を
得た。この微粉末しこ市販(99,9%純度)の酸化ジ
スプロシウムを1.2,5,710.15,20,25
,30,35.40重量部になるように配合し、ポット
ミルで48時間混合し、電気炉中1000℃で2時間仮
焼し、ボールミルで48時間の微粉砕をおこなった後、
CIP&こて2t/aJの圧力をかけて、約60+nm
の長さ(直径6nm)の棒状の成形体を得た。成形体の
相対密度は60%程度である。この成形体を電気炉にい
れて空気中1340℃で4時間焼成した。酸化ジスプロ
シウムを添加していない試料では1340℃で焼成する
と溶融したが、酸化ジスプロシウムを添加すると融点が
高くなるために溶融せず、かつ緻密に焼結した。嵩密度
は酸化ジスプロシウムが多くなるにつれて高くなり、7
%添加した試料では3.0g/alfであり、見掛は気
孔率が1%以下となった。また、焼成収縮率は10〜1
4%程度であった。電子顕微鏡wt察によれば、観察さ
れる粒子の殆どが均一な球形であり、その大きさは3μ
m以下であった。また針状の微細なリン酸アルミニウム
結晶(長さは2μm以下)がTCPの粒と粒との間に存
在していた。粉末X線回折によれば、主結晶相はβ−T
CPであり、それに少量のリン酸アルミニウムが生成し
ていたが、それ以外の生成物は認められなかった。ただ
し、Dy20゜の添加量が15%以上になると、D!/
203が認められた。曲げ強度の測定結果を図1に示す
1図1から酸化ジスプロシウムを僅か2%添加した材質
は曲げ強度値が1500kg/aJを越え、7%添加し
た場合には最高2500kg/a(を得た。さらに酸化
ジスプロシウムの添加量を増していくと1強度が低下し
はじめた。このことは過剰の酸化ジスプロシウムが粒と
粒との間に析出しはじめ、TCPと酸化ジスプロシウム
との間に熱膨張差があるために、微小クランクが生成し
はじめたと考えられる。
After thoroughly mixing 57 g of aluminum oxide and 235 ml of phosphoric acid, the mixture was calcined in an electric furnace at 1000°C for 2 hours.
Then, the mixture was melted by heating at 1370° C. for 1 hour, poured into a suitable container, and rapidly cooled to obtain a transparent glass. This glass was ground in a ball mill for 48 hours to obtain a fine powder. 1.2,5,710.15,20,25 of this finely powdered commercially available dysprosium oxide (99.9% purity)
, 30, 35.40 parts by weight, mixed in a pot mill for 48 hours, calcined in an electric furnace at 1000°C for 2 hours, and pulverized in a ball mill for 48 hours.
Approximately 60+nm by applying pressure of CIP & iron 2t/aJ
A rod-shaped molded body having a length (6 nm in diameter) was obtained. The relative density of the molded body is about 60%. This molded body was placed in an electric furnace and fired in air at 1340°C for 4 hours. A sample to which no dysprosium oxide was added melted when fired at 1340°C, but when dysprosium oxide was added, the melting point became higher, so the sample did not melt and was sintered densely. The bulk density increases as the amount of dysprosium oxide increases, and 7
% of the added sample was 3.0 g/alf, and the apparent porosity was 1% or less. In addition, the firing shrinkage rate is 10 to 1
It was about 4%. According to electron microscopy, most of the particles observed are uniformly spherical, with a size of 3 μm.
m or less. Further, fine needle-like aluminum phosphate crystals (length: 2 μm or less) were present between the TCP grains. According to powder X-ray diffraction, the main crystal phase is β-T
CP, and a small amount of aluminum phosphate was formed thereon, but no other products were observed. However, if the amount of Dy20° added exceeds 15%, D! /
203 were recognized. The measurement results of bending strength are shown in FIG. 1. As shown in FIG. 1, the bending strength value of the material to which only 2% of dysprosium oxide was added exceeded 1,500 kg/aJ, and the maximum flexural strength value of 2,500 kg/a was obtained when 7% of dysprosium oxide was added. Furthermore, as the amount of dysprosium oxide added increased, the strength began to decrease.This means that excess dysprosium oxide began to precipitate between the grains, and a difference in thermal expansion between TCP and dysprosium oxide occurred. It is thought that this is why minute cranks have begun to form.

〔実施例 2〕 市販の特級試薬である炭酸カルシウム342 g。[Example 2] 342 g of calcium carbonate, a commercially available special grade reagent.

酸化アルミニウム57gと、リン酸235m1とを配合
し、十分に混合した粉末に酸化ジスプロシウムを1.2
,5,7,10,15,20,25゜30.35,40
重量部を配合し、さらに十分に混合した後、電気炉中1
000℃で2時間仮焼し、ついで1450℃で1時間加
熱溶融し、これを適当な容器内に流しこみ急冷する方法
で透明なガラスを得た。このガラスをボールミルで48
時時間式粉砕し、微粉末を得た。この微粉末をCIPに
て2t/aJの圧力をかけて、約6011aの長さ(直
径6am)の棒状の成形体を得た。成形体の相対密度は
60%程度である。この成形体を電気炉に入れて空気中
1340℃で4時間焼成した。酸化ジスプロシウムを添
加していない試料では1340℃で焼成すると溶融した
が、酸化ジスプロシウムを添加すると融点が高くなるた
めに溶融せず、かつ緻密に焼結した。嵩密度や見掛は気
孔率、焼成収縮率、電子顕微鏡wt祭による微組織、粉
末X線回折による結晶相は実施例1に同じである。しか
し1曲げ強度の測定結果は実施例1とは多少異なり、実
施例1よりも曲げ強度が著しく向上した。
Mix 57 g of aluminum oxide and 235 ml of phosphoric acid, and add 1.2 g of dysprosium oxide to the thoroughly mixed powder.
,5,7,10,15,20,25°30.35,40
After blending parts by weight and mixing thoroughly, 1 part by weight was added in an electric furnace.
A transparent glass was obtained by calcining at 000° C. for 2 hours, then heating and melting at 1450° C. for 1 hour, pouring this into a suitable container, and rapidly cooling it. This glass was milled in a ball mill for 48
Pulverization was performed to obtain a fine powder. A pressure of 2 t/aJ was applied to this fine powder using CIP to obtain a rod-shaped compact having a length of about 6011 a (diameter 6 am). The relative density of the molded body is about 60%. This molded body was placed in an electric furnace and fired in air at 1340°C for 4 hours. A sample to which no dysprosium oxide was added melted when fired at 1340°C, but when dysprosium oxide was added, the melting point became higher, so the sample did not melt and was sintered densely. The bulk density, apparent porosity, firing shrinkage rate, microstructure determined by electron microscopy, and crystal phase determined by powder X-ray diffraction were the same as in Example 1. However, the measurement results of 1 bending strength were somewhat different from those of Example 1, and the bending strength was significantly improved compared to Example 1.

その結果を図2に示す。酸化ジスプロシウムを2%添加
した材質は曲げ強度が1700kg/dを越え、7%添
加した場合には最高強度が3000kg/cdを得た。
The results are shown in FIG. The material containing 2% dysprosium oxide had a bending strength of over 1700 kg/d, and the material containing 7% dysprosium oxide had a maximum strength of 3000 kg/cd.

さらに酸化ジスプロシウムの添加量を増すにしたがって
実施例1と同様に強度は低下した。この理由も実施例1
と同じである。実施例2の特徴は全ての元素を含むガラ
ス粉末からの焼結であり、実施例1よりも、微組織がよ
り緻密かつ均一になったために強度が増大したものと考
えられる。
Furthermore, as the amount of dysprosium oxide added increased, the strength decreased as in Example 1. The reason for this is also in Example 1.
is the same as The feature of Example 2 is that it was sintered from glass powder containing all the elements, and it is thought that the strength was increased because the microstructure was more dense and uniform than in Example 1.

〔実施例 3〕 実施例1で用いた酸化ジスプロシウムを酸化イツトリウ
ムに置きかえて、実施例1と同様の方法で、ガラス微粉
末を得て、これをCIPにて成形した6成形体(長さ6
0I、直径6III11の棒状)の相対密度は60%程
度である。この成形体を電気炉にいれて空気中1340
℃で4時間焼成した。その結果、嵩密度が理論密度の9
5%以上にまで緻密化した。走査型電子顕微lR観察に
よる微組織や粉末X線回折による主結晶相、曲げ強度の
測定結果は実施例1にほぼ同じであった。ただしY2O
,の添加量が15%以上になるとY2O,が認められた
[Example 3] Glass fine powder was obtained in the same manner as in Example 1 except that the dysprosium oxide used in Example 1 was replaced with yttrium oxide, and the glass powder was molded by CIP to form 6 molded bodies (length 6
0I, rod-shaped with a diameter of 6III11), the relative density is about 60%. This molded body was placed in an electric furnace and heated to 1340°C in the air.
It was baked at ℃ for 4 hours. As a result, the bulk density is 9 of the theoretical density.
It was densified to 5% or more. The results of measuring the microstructure by scanning electron microscope IR observation, the main crystal phase by powder X-ray diffraction, and the bending strength were almost the same as in Example 1. However, Y2O
, Y2O was observed when the amount of addition was 15% or more.

以上から希土類元素の種類が多少変わっても、希土類元
素の添加効果はほぼ同じであることが判明した。
From the above, it has been found that even if the type of rare earth element changes somewhat, the effect of adding the rare earth element is almost the same.

〔実施例 4〕 市販の特級試薬である炭酸カルシウム342g。[Example 4] 342g of calcium carbonate, a commercially available special grade reagent.

酸化アルミニウム57g、リンさん235m1゜を配合
し、十分に混合した後これに市販の高純度ムライト(9
9,99%1粒径≦1μm)を10重量部、酸化ジスプ
ロシウムを10重量部配合しさらに、十分に混合した後
、電気炉中1000℃で仮焼し、ボールミルで48時時
間式で微粉砕し、得られた微分末をCIPにて2t/c
jの圧力をかけて約60++nの長さ(直径6m)の棒
状の成形体を得た。この成形体を電気炉に入れて空気中
1340℃で4時間焼成した。得られた試料の嵩密度は
2.8g/dであり、見掛は気孔率は2〜3%であり、
走査型電子顕微鏡観察によれば、構成粒子の大きさは1
〜5μ園程度であり1曲げ強度は1700〜2000k
g/altであった。粉末X線回設によれば、主結晶相
はβ−TCPと少量のリン酸アルミニウムおよび針状の
ムライトであり、α−TCPを認めない。
After mixing 57 g of aluminum oxide and 235 ml of Rin-san and mixing thoroughly, add commercially available high-purity mullite (9
10 parts by weight of 9.99% (particle size ≤ 1 μm) and 10 parts by weight of dysprosium oxide were mixed thoroughly, calcined at 1000°C in an electric furnace, and pulverized in a ball mill for 48 hours. The obtained differential powder was subjected to CIP at 2t/c.
A rod-shaped molded body with a length of about 60++n (diameter 6 m) was obtained by applying a pressure of j. This molded body was placed in an electric furnace and fired in air at 1340°C for 4 hours. The bulk density of the obtained sample was 2.8 g/d, the apparent porosity was 2 to 3%,
According to scanning electron microscopy, the size of the constituent particles is 1
It is about 5μ or so, and the bending strength is 1700 to 2000k.
g/alt. According to powder X-ray circulation, the main crystalline phase is β-TCP and small amounts of aluminum phosphate and acicular mullite, and α-TCP is not recognized.

実施例1,2.3と比較すると材質の緻密度がやや低く
、かつ曲げ強度も低い。この理由は実施例1.2.3の
いずれもがガラス粉末を出発原料に用いているためで、
ガラス粉末を出発原料に用いたほうが緻密化しやすいと
言える。しかし実施例4の方法は工程が簡単であり、か
つコストも安いことが特徴である。また、研磨や切削が
容易であるので、これらの利点を生かした用途が多くあ
るので、十分に工業用材質になりうる。発明者らによる
研究結果によれば、単に市販の炭酸カルシウムとリン酸
および転移抑制剤を添加し混合し仮焼し成形し高温で焼
いても決して緻密化しない、また、そのような報告も見
当たらない8この発明の方法は単に市販の薬品を混ぜた
だけでも十分に緻密化することが特徴である。
Compared to Examples 1, 2.3, the density of the material is slightly lower and the bending strength is also lower. The reason for this is that Examples 1, 2, and 3 all use glass powder as the starting material.
It can be said that densification is easier when glass powder is used as a starting material. However, the method of Example 4 is characterized by simple steps and low cost. In addition, since it is easy to polish and cut, there are many uses that take advantage of these advantages, so it can be used as an industrial material. According to the research results by the inventors, even if commercially available calcium carbonate, phosphoric acid, and a transfer inhibitor are simply added, mixed, calcined, molded, and baked at high temperatures, the material will never become densified, and no such reports have been found. 8 The method of this invention is characterized in that it can be sufficiently densified simply by mixing commercially available chemicals.

(発明の効果) この発明のリン酸カルシウム系物質は、製造の際7条件
制御が容易である上に、ガラス粉末から出発する場合に
は焼成収縮が小さいので、これを工業的に実施する場合
には、設備、管理の点で非常に有利である。また、機械
的強度も大きいので、生体材料用の骨や歯根、関節など
に適用できる。
(Effects of the Invention) The calcium phosphate-based substance of the present invention can be easily controlled under 7 conditions during production, and when starting from glass powder, the firing shrinkage is small. , equipment and management are very advantageous. Furthermore, since it has high mechanical strength, it can be applied to biomaterials such as bones, tooth roots, and joints.

さらに、この物質は軽量であり、研磨や切削が容易であ
るので、構造用材料や容器などの幅広い分野にも応用で
きる。
Additionally, the material is lightweight and easy to polish and cut, making it suitable for a wide range of applications, including structural materials and containers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明実施例1における曲げ強度の測定結果
を示した図表、第2図は同実施例2における曲げ強度の
測定結果を示した図表である。
FIG. 1 is a chart showing the measurement results of bending strength in Example 1 of the present invention, and FIG. 2 is a chart showing the measurement results of bending strength in Example 2 of the same.

Claims (1)

【特許請求の範囲】 1 リン酸カルシウム系物質において、主結晶相がβ−
Ca_3(PO_4)_2で構成され、かつMg,Si
,Alの酸化物または塩,カオリン,ムライトから選ば
れる1種または2種以上と、希土類酸化物または希土類
塩から選ばれる1種または2種以上の物質で構成された
ことを特徴とするリン酸カルシウム系物質。 2 上記物質において、Mg,Si,Alの酸化物また
は塩,カオリン,ムライトの含有量が、1重量部以上で
40重量部以内、かつ希土類酸化物または希土類塩の含
有量が1重量部以上で40重量部以内であるリン酸カル
シウム系物質の製法。
[Claims] 1. In a calcium phosphate-based substance, the main crystal phase is β-
Composed of Ca_3(PO_4)_2, and Mg, Si
, Al oxide or salt, kaolin, mullite, and one or more substances selected from rare earth oxides or rare earth salts. material. 2 In the above substances, the content of Mg, Si, Al oxides or salts, kaolin, mullite is 1 part by weight or more and 40 parts by weight or less, and the content of rare earth oxides or rare earth salts is 1 part by weight or more. A method for producing a calcium phosphate-based substance containing 40 parts by weight or less.
JP1080057A 1989-03-30 1989-03-30 Calcium phosphate-based substance and production thereof Pending JPH02258663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1080057A JPH02258663A (en) 1989-03-30 1989-03-30 Calcium phosphate-based substance and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1080057A JPH02258663A (en) 1989-03-30 1989-03-30 Calcium phosphate-based substance and production thereof

Publications (1)

Publication Number Publication Date
JPH02258663A true JPH02258663A (en) 1990-10-19

Family

ID=13707607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1080057A Pending JPH02258663A (en) 1989-03-30 1989-03-30 Calcium phosphate-based substance and production thereof

Country Status (1)

Country Link
JP (1) JPH02258663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460685B1 (en) * 2002-04-10 2004-12-09 재단법인서울대학교산학협력재단 Artificial Bone by Calcium Phosphate Compounds And Method Thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460685B1 (en) * 2002-04-10 2004-12-09 재단법인서울대학교산학협력재단 Artificial Bone by Calcium Phosphate Compounds And Method Thereof

Similar Documents

Publication Publication Date Title
Tampieri et al. Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity
US4097935A (en) Hydroxylapatite ceramic
Ashuri et al. Development of a composite based on hydroxyapatite and magnesium and zinc‐containing sol–gel-derived bioactive glass for bone substitute applications
Descamps et al. Effects of powder stoichiometry on the sintering of β-tricalcium phosphate
Liou et al. Transformation mechanism of different chemically precipitated apatitic precursors into β-tricalcium phosphate upon calcination
Kannan et al. Aqueous precipitation method for the formation of Mg-stabilized β-tricalcium phosphate: An X-ray diffraction study
CA2438742C (en) A new calcium phosphate cement composition and a method for the preparation thereof
US4207306A (en) Process for producing polycrystalline ceramic oxides
Rao et al. Dispersion and slip casting of hydroxyapatite
JPS6287406A (en) Production of beta-tricalcium phosphate
Wang et al. Characterization of calcium phosphate apatite with variable Ca/P ratios sintered at low temperature
Kothapalli et al. Influence of temperature and aging time on HA synthesized by the hydrothermal method
TWI623492B (en) Method for preparing tetracalcium phosphate
Chen et al. Effect of MgF2 addition on sinterability and mechanical properties of fluorapatite ceramic composites fabricated by wollastonite and phosphate glass
JP2004026648A (en) Method for manufacture alpha- and beta-tricalcium phosphate powder
Andriotis et al. Preparation and characterization of bioceramics produced from calcium phosphate cements
Varma et al. Dense hydroxy apatite ceramics through gel casting technique
KR101647951B1 (en) Artificial bones containing nano TCP by wet chemical method and preparation method thereof
Matsumoto et al. Preparation of Beta‐Tricalcium Phosphate Powder Substituted with Na/Mg Ions by Polymerized Complex Method
JPH02258663A (en) Calcium phosphate-based substance and production thereof
JP6035623B2 (en) Control of solubility and sinterability of biomaterial ceramics made of tricalcium phosphate by the amount of trivalent metal ions dissolved
RU2391316C1 (en) Method of making ceramic biodegradable material consisting of calcium pyrophosphate and tricalcium phosphate
Kutty et al. Microwave sintering of nanocrystalline hydroxyapatite
Adzila et al. Synthesis of hydroxyapatite through dry mechanochemical method and its conversion to dense bodies: Preliminary result
Elmehalawy et al. Preparation and Evaluation of the Physico-Mechanical Properties of the Magnesium Silicate/Hydroxyapatite Composites