JPH02258587A - Anticorrosive vessel - Google Patents

Anticorrosive vessel

Info

Publication number
JPH02258587A
JPH02258587A JP1069033A JP6903389A JPH02258587A JP H02258587 A JPH02258587 A JP H02258587A JP 1069033 A JP1069033 A JP 1069033A JP 6903389 A JP6903389 A JP 6903389A JP H02258587 A JPH02258587 A JP H02258587A
Authority
JP
Japan
Prior art keywords
layer
frp
corrosion
resin
polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1069033A
Other languages
Japanese (ja)
Inventor
Takashi Fujimoto
孝 藤本
Yoshikazu Fujii
義和 藤井
Katsuichi Fujimoto
藤本 勝市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMITSUTO JUSHI KOGYO KK
Taoka Chemical Co Ltd
Nippon Polyester Co Ltd
Original Assignee
SAMITSUTO JUSHI KOGYO KK
Taoka Chemical Co Ltd
Nippon Polyester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMITSUTO JUSHI KOGYO KK, Taoka Chemical Co Ltd, Nippon Polyester Co Ltd filed Critical SAMITSUTO JUSHI KOGYO KK
Priority to JP1069033A priority Critical patent/JPH02258587A/en
Publication of JPH02258587A publication Critical patent/JPH02258587A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent exfoliation of a resin layer and a FRP layer in a poly-layer anticorrosive vessel and to maintain the strength and the high anticorrosiveness for a long time, by directly laminating a FRP member on the outside of an interior layer of ethylene-vinyl acetate copolymer saponified matter or further the one including polyethylene, or by laminating the FRP member via a polyurethane adhesive. CONSTITUTION:A FRP layer B is directly bonded on the outside of an anticorrosive interior layer member A made of a saponified matter of ethylene-vinyl acetate copolymer. In this case, a blended material of EVA saponified matter and polyethylene may be preferably used as the anticorrosive interior layer member A according to the kind of the contents. And further, a polyurethane adhesive C is interposed between the anticorrosive interior layer member A and the FRP layer B to increase further adhesive force between inter-layers. EVA saponified matter have an excellent adhesiveness against FRP materials but occasionally have an inadequate adhesiveness depending on the kinds of resin constituting FRP and hence, in such a case, the inadequate adhesiveness is compensated by use of polyurethane adhesive.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明は酸性溶液、アルカリ性溶液、塩溶液等に対して
高耐食性を示し、且つ高い強度を持った合成樹脂製の耐
食性容器に関するものである。
[Detailed Description of the Invention] [Field of Application in Industry A] The present invention relates to a corrosion-resistant container made of synthetic resin that exhibits high corrosion resistance against acidic solutions, alkaline solutions, salt solutions, etc., and has high strength. be.

[従来の技術] 酸性溶液やアルカリ性溶液等を貯留し又は連部する目的
で合成樹脂製の耐食性容器が利用されている。第4図は
溶液運搬用のタンクローリ−を示す側面説明図、第5図
は該タンクローリ−に搭載される耐食性容器の構造説明
図、第6図は第5図のV−V線断面を示す一部拡大図で
ある。耐食性容器1はトレーラ2の荷台3上にバンド4
等によって固定される。該耐食性容器1の上部には溶液
を導入するための溶液導入口6が形成され、且つ下部に
は溶液を取り出すための溶液取出ロアが形成される。尚
該耐食性容器1の容積が大きい場合には、運搬中の溶液
心動による衝撃を緩和するため、容器の中間部に堰板5
を設けることもある。またこの堰板を鏡板にして完全な
仕切り壁とし、容器1内に異なった種類の溶液を分割収
納できる様にすることもあり、従って該堰板乃至堰板5
は各仕切室の容積に合わせて複数枚適宜の間隙で設ける
こともできる。
[Prior Art] Corrosion-resistant containers made of synthetic resin are used for storing or communicating acidic solutions, alkaline solutions, and the like. Fig. 4 is a side explanatory view showing a tank truck for transporting solutions, Fig. 5 is a structural explanatory view of a corrosion-resistant container mounted on the tank truck, and Fig. 6 is a cross-sectional view taken along the line V-V in Fig. It is an enlarged view of the part. The corrosion-resistant container 1 is attached to a band 4 on the loading platform 3 of the trailer 2.
Fixed by etc. A solution inlet 6 for introducing a solution is formed in the upper part of the corrosion-resistant container 1, and a solution extraction lower for taking out the solution is formed in the lower part. If the capacity of the corrosion-resistant container 1 is large, a dam plate 5 is installed in the middle of the container in order to reduce the impact caused by the movement of the solution during transportation.
may be provided. In addition, this weir plate may be used as a mirror plate to form a complete partition wall so that different types of solutions can be stored separately in the container 1. Therefore, the weir plate or weir plate 5
It is also possible to provide a plurality of sheets at appropriate intervals depending on the volume of each partition.

前記耐食性容器1の内側は、収納溶液による腐食に対し
て高い耐久性を示す合成樹脂材料を選択して形成すると
共に、容器自体の機械的強度を高める目的で複層構造が
採られている。たとえば第6図はその一例を示すもので
、内側を耐食性樹脂層8で構成し、その外側には該樹脂
層8を補強する目的で繊維強化樹脂層(以下単にFRP
層という)9が形成されている。上記耐食性樹脂層8の
形成材料としては、例えばポリエチレン樹脂や弗素樹脂
等が用いられ、FRP層9としては、熱硬化性樹脂を含
浸したガラス繊維や有機、無機繊維等をFW法に従って
巻回したり、或はハンドレイアップ法により添着し複層
に積層したものが利用される。
The inside of the corrosion-resistant container 1 is formed by selecting a synthetic resin material that exhibits high durability against corrosion by the storage solution, and has a multilayer structure for the purpose of increasing the mechanical strength of the container itself. For example, FIG. 6 shows one example, in which the inside is made up of a corrosion-resistant resin layer 8, and the outside is made of a fiber-reinforced resin layer (hereinafter simply FRP) for the purpose of reinforcing the resin layer 8.
layer) 9 is formed. The material for forming the corrosion-resistant resin layer 8 is, for example, polyethylene resin or fluororesin, and the FRP layer 9 is made by winding glass fiber, organic or inorganic fiber impregnated with a thermosetting resin according to the FW method. Alternatively, a multi-layered material attached by hand lay-up method is used.

上記タンクローリ−に利用される耐食性容器1の直径は
一般に1.5ff1程度にまで及び、また定置式のもの
では直径2〜3IIlに及ぶこともある。従つて耐食性
樹脂層8によって形成される樹脂タンク1は通常の押出
し成形法や圧縮成形法によって製造するのは事実上不可
能であり、第7図(A)に示す様な割り型20.21を
使った回転成形法が利用される。即ちフランジ部20a
によって一体接合された中空状の割り型20.21内に
粉末状の樹脂原料30を入れ、該割り型の近傍に設けら
れた加熱装置22によって割り型20.21を加熱して
前記樹脂原料30を溶融しつつ、図示しない回転機構に
よって割り型20.21を矢印方向へ回転し、溶融樹脂
を割り型20.21内周全面に均一に流延させる。そし
て割り型20.21を冷却して内部の樹脂材料が保形さ
れたのを確認してから、割り型20.21を分解し、成
形された樹脂タンク31を取り出す。その後該樹脂タン
ク31の外表面を荒研磨することによって粗面化し、そ
の上へFRP層構成用樹脂を塗布し、第7図(B)に示
す如く強化!a維32を巻回し、この作業を繰返してF
RP層9を形成する。尚FRP層9の形成手段は前述の
如く種々変更可能である。
The diameter of the corrosion-resistant container 1 used in the above-mentioned tank truck generally ranges up to about 1.5 ff1, and in the case of a stationary type, the diameter may reach 2 to 3 IIl. Therefore, it is virtually impossible to manufacture the resin tank 1 formed by the corrosion-resistant resin layer 8 by the usual extrusion molding method or compression molding method. A rotational molding method is used. That is, the flange portion 20a
Powdered resin raw material 30 is put into a hollow split mold 20.21 that is integrally joined by the split mold 20. While melting the resin, the split molds 20.21 are rotated in the direction of the arrow by a rotating mechanism (not shown), and the molten resin is uniformly cast over the entire inner circumference of the split molds 20.21. After cooling the split mold 20.21 and confirming that the resin material inside has retained its shape, the split mold 20.21 is disassembled and the molded resin tank 31 is taken out. Thereafter, the outer surface of the resin tank 31 is roughened by rough polishing, and an FRP layer forming resin is applied thereon to strengthen it as shown in FIG. 7(B)! Wind the a fiber 32, repeat this operation, and
RP layer 9 is formed. Note that the means for forming the FRP layer 9 can be variously modified as described above.

第7図(C)はFRP層9を形成した後の耐食性容器1
を示す説明図である。尚前述の如く容器1内に複数の部
屋を独立して形成する場合は、(イ)やや短尺に形成し
た樹脂タンク31を長さ方向に並べて突き合せ溶接した
後、その外側にFRP層を形成して一体化する工程、或
は(ロ)樹脂タンク31にFRP層を形成したもの同士
を突き合わせ、FRP材を使って一体に接合する工程の
いずれかが追加される。
FIG. 7(C) shows the corrosion-resistant container 1 after forming the FRP layer 9.
FIG. In addition, when forming a plurality of chambers independently in the container 1 as described above, (a) after the resin tanks 31 formed in a slightly short length are lined up in the length direction and butt welded, an FRP layer is formed on the outside thereof. Either a step of integrating the two, or a step of (b) abutting the resin tanks 31 with FRP layers formed thereon and joining them together using FRP material is added.

[発明が解決しようとする課題] 耐食性容器1における樹脂層8の外面は、第7図でも説
明した様に粗面加工が施されているとはいうものの、こ
の粗面は機械加工によりわずかな凹凸を施した程度に過
ぎないものであるから、温度変化による膨張・収縮が生
じたり、又は大ぎな外力が作用したときには樹脂層8と
FRP層が容易に剥離する。即ち樹脂層8の構成素材と
しては、耐食性に主眼を置いてポリエチレンや弗素樹脂
の如く化学的安定性の高い樹脂を選択使用しているが、
これらの樹脂層は活性基を有しないのでFRP層との親
和性が乏しく、積層界面に剥離方向の力が大きく作用す
ると簡単に剥離してしまう。そしてこの様な層間剥離が
起こると、FRP層9による補強効果は失なわれて内部
の樹脂タンク31はそれ自身の強度に頼らざるを得なく
、例えば溶接々合部が存在するものでは、該溶接部にク
ラック等の破損が生じ易くなる。また前記(ロ)の工程
を実施する場合には、接合作業時にかかる外力や温度変
化等のために、同様の剥離現象が起こり易く、接合作業
に高度の熟練を必要としていた。
[Problem to be Solved by the Invention] Although the outer surface of the resin layer 8 in the corrosion-resistant container 1 is roughened as explained in FIG. Since it is merely a textured surface, the resin layer 8 and the FRP layer will easily peel off when expansion or contraction occurs due to temperature changes or when a large external force is applied. That is, as the constituent material of the resin layer 8, resins with high chemical stability such as polyethylene and fluororesin are selected and used with emphasis on corrosion resistance.
Since these resin layers do not have active groups, they have poor affinity with the FRP layer, and will easily peel off if a large force in the peeling direction acts on the laminated interface. When such delamination occurs, the reinforcing effect of the FRP layer 9 is lost and the internal resin tank 31 has to rely on its own strength. For example, if there are welded joints, Damage such as cracks is likely to occur in the welded part. Furthermore, when carrying out the step (b) above, a similar peeling phenomenon is likely to occur due to external forces applied during the bonding operation, temperature changes, etc., and a high degree of skill is required for the bonding operation.

本発明はこの様な事情に着目してなされたものであって
、その目的は、複層構造の耐食性容器における樹脂層と
FRP層の剥離を可及的に防止し、強度と高耐食性を長
期間に亘って維持することのできる耐食性容器を提供し
ようとするものである。
The present invention was made with attention to these circumstances, and its purpose is to prevent as much as possible the peeling of the resin layer and FRP layer in a corrosion-resistant container with a multilayer structure, and to prolong the strength and high corrosion resistance. The purpose is to provide a corrosion-resistant container that can be maintained over a long period of time.

[課題を解決するための手段] 上記目的を達成することのできた本発明に係る耐食性容
器の構成は、エチレン−酢酸ビニル共重合体の鹸化物ま
たは更にポリエチレンとを含む内層材の外面側に、直接
FRP材を積層形成し或はポリウレタン系接着剤を介し
てFRP材を積層形成し、必要であれば上記内層材の更
に内面側にポリエチレン樹脂層を形成してなるところに
要旨を有するものである。
[Means for Solving the Problems] The structure of the corrosion-resistant container according to the present invention, which has achieved the above object, is that on the outer surface side of the inner layer material containing a saponified ethylene-vinyl acetate copolymer or further polyethylene, The gist is that FRP materials are directly laminated or FRP materials are laminated using a polyurethane adhesive, and if necessary, a polyethylene resin layer is further formed on the inner surface of the inner layer material. be.

[作用及び実施例] 未発明における第1の特徴は、内層構成材としてエチレ
ン−酢酸ビニル共重合体(以下、EVAと表わす)鹸化
物を使用するところにある。即ちこの鹸化物はそれ自身
が酸、アルカリ、塩類の溶液あるいは様々の溶剤に対し
て優れた耐食性を有しているばかりでなく、分子中に活
性基を有しているためFRP材との親和性にも優れてい
る。
[Operations and Examples] The first feature of the invention lies in the use of saponified ethylene-vinyl acetate copolymer (hereinafter referred to as EVA) as the inner layer constituent material. In other words, this saponified product itself not only has excellent corrosion resistance against acids, alkalis, salt solutions, and various solvents, but also has an active group in its molecules, making it compatible with FRP materials. It is also excellent in sex.

従ってこの鹸化物を内層材として使用し、その外面側に
強化層としてFRP層を形成すると、内層材とFRP層
は強固に接合し、従来の強化樹脂製耐食性容器で指摘し
た様な眉間剥離の問題は起こらず、耐食性及び機械強度
のいずれにも優れた容器を得ることができる。また組み
合わせて使用されるFRPの樹脂材料によっては、内層
材とFRP層の間にポリウレタン系の接着剤を介装する
ことにより層間接着性が一段と向上し、積層体の物性を
更に高めることができる。EVA鹸化物はポリエチレン
との親和性も良好であるので、この鹸化物をポリエチレ
ンとブレンドして耐食性内層材とすることができるばか
りでなく、該鹸化物よりなる内層材の更に内面側にポリ
エチレン樹脂層を形成して複層の耐食性樹脂層を形成す
る場合でも、ポリエチレン樹脂層とEVA鹸化物層は強
固に接合し、両層が眉間剥離を起こす様な恐れはない。
Therefore, if this saponified material is used as the inner layer material and an FRP layer is formed as a reinforcing layer on the outer surface side, the inner layer material and the FRP layer will be firmly bonded, and the peeling between the eyebrows as pointed out with conventional reinforced resin corrosion-resistant containers will be avoided. No problems occur, and a container excellent in both corrosion resistance and mechanical strength can be obtained. Also, depending on the FRP resin material used in combination, interlayer adhesion can be further improved by interposing a polyurethane adhesive between the inner layer material and the FRP layer, and the physical properties of the laminate can be further improved. . Since saponified EVA has good affinity with polyethylene, it is not only possible to blend this saponified material with polyethylene to make a corrosion-resistant inner layer material, but also to add polyethylene resin to the inner surface of the inner layer material made of the saponified material. Even when a multilayer corrosion-resistant resin layer is formed by forming layers, the polyethylene resin layer and the saponified EVA layer are firmly bonded, and there is no fear that the two layers will peel off between the eyebrows.

第1〜3図は本発明に係る耐食性容器を構成する積層構
造を例示するもので、第1図はEVA鹸化物よりなる耐
食性内層材Aの外面側にFRP層Bを直接接合したもの
であり、本発明ではこの積層構造が基本となる。この場
合、内容物の種類によっては、耐食性内層材AとしてE
VA鹸化物とポリエチレンとのブレンド物を使用した方
が好ましいこともある。また第2図は、耐食性内層材A
とFRP/iBの間にポリウレタン系接着剤Cを介装し
、層間接着性を更に高めたものである。即ちEVAtl
i化物はFRP材に対し優れた接着性を示すことが1つ
の特徴となっているが、FRPを構成する樹脂の種類に
よっては接着性不足になることもあるので、その様な場
合は、ポリウレタン系接着剤を使用することによって接
着力不足を補うことが望まれる。更に第3図はEVA鹸
化鹸化物的層材AとFRP層Bよりなる積層体の更に内
面側に、ポリエチレン樹脂よりなる耐食性樹脂層りを形
成したものであり、EVAIl!化物はポリエチレンに
対する接着性にも優れたものであるから、こうした3層
構造とした場合でも3つの層は強固に接合−法化される
。この様な3層構造のものは内容物の種類によってはE
VA鹸化物よりもポリエチレンの方が高耐食性を示すと
ぎに有利である。またEVA鹸化物はポリエチレンより
も高価であるので、これらが同等の耐食性を示す場合は
、EVAfi化物を比較的薄肉の接合層として活用し、
耐食性自体はポリエチレン層りにもたせることによって
、積層構造全体の低コスト化を図ることができる。
Figures 1 to 3 illustrate the laminated structure constituting the corrosion-resistant container according to the present invention, and Figure 1 shows a structure in which an FRP layer B is directly bonded to the outer surface of a corrosion-resistant inner layer material A made of saponified EVA. This laminated structure is the basis of the present invention. In this case, depending on the type of contents, E may be used as the corrosion-resistant inner layer material A.
It may be preferable to use a blend of saponified VA and polyethylene. Figure 2 also shows corrosion-resistant inner layer material A.
A polyurethane adhesive C is interposed between FRP/iB and FRP/iB to further improve interlayer adhesion. That is, EVAtl
One of the characteristics of i-oxide is that it exhibits excellent adhesion to FRP materials, but depending on the type of resin that makes up FRP, the adhesion may be insufficient, so in such cases, polyurethane It is desirable to compensate for the lack of adhesive strength by using a type adhesive. Furthermore, FIG. 3 shows a laminate made of EVA saponification layer material A and FRP layer B, with a corrosion-resistant resin layer made of polyethylene resin formed on the inner surface side. Since the compound also has excellent adhesion to polyethylene, even in the case of such a three-layer structure, the three layers can be firmly bonded and bonded. Depending on the type of contents, this kind of three-layer structure has an E.
Polyethylene is advantageous over saponified VA because it exhibits higher corrosion resistance. In addition, EVA saponified products are more expensive than polyethylene, so if they exhibit equivalent corrosion resistance, EVAfied products can be used as a relatively thin bonding layer.
By providing corrosion resistance to the polyethylene layer, it is possible to reduce the cost of the entire laminated structure.

次に本発明で使用されるEVA鹸化物について説明する
。この鹸化物は、エチレン−酢酸ビニル共重合体をナト
リウムやカリウム等の水酸化物、アルコシト等のアルカ
リ金属化合物を用いて鹸化することによって得られる。
Next, the saponified EVA used in the present invention will be explained. This saponified product is obtained by saponifying the ethylene-vinyl acetate copolymer using a hydroxide such as sodium or potassium, or an alkali metal compound such as an alkoxide.

この鹸化反応には、たとえばトルエンやキシレン等の炭
化水素系溶媒、あるいはこれにメタノール等のアルコー
ル類を加えた混合溶媒中における均−系、またはメタノ
ールやエタノール等のアルコール類に必要により水を加
えた不均一系で行なわれる。この場合、目的にかなう耐
食性と強度を得るには、鹸化度を75%以上とすべきで
ある。またEVA鹸化物中に占めるエチレン成分の含有
率は75〜98モル%、より好ましくは80〜95モル
%とするのがよい。エチレン成分の含有率が75モル%
未満である場合はポリエチレンとの親和性が悪くなって
ポリエチレンと均一にブレンドし難くなるばかりでなく
、ポリエチレン層との接着性も乏しくなり、一方、ポリ
エチレン含量が98モル%を超える場合は、活性基の量
が不足するためFRP層との接着性が十分に改善されず
、従来例で指摘した様な層間5!!I Itff現象を
起こし易くなる。
This saponification reaction can be carried out homogeneously in a hydrocarbon solvent such as toluene or xylene, or a mixed solvent in which alcohol such as methanol is added, or water may be added to an alcohol such as methanol or ethanol if necessary. This is done in a heterogeneous system. In this case, the degree of saponification should be greater than 75% in order to obtain the desired corrosion resistance and strength. The content of the ethylene component in the saponified EVA is preferably 75 to 98 mol%, more preferably 80 to 95 mol%. Content of ethylene component is 75 mol%
If the polyethylene content is less than 98 mol%, the affinity with polyethylene will deteriorate, making it difficult to blend uniformly with polyethylene, and the adhesion with the polyethylene layer will also be poor.On the other hand, if the polyethylene content exceeds 98 mol%, the active Due to the insufficient amount of base, the adhesion with the FRP layer was not sufficiently improved, resulting in the interlayer 5! as pointed out in the conventional example. ! I Itff phenomenon is more likely to occur.

EVA鹸化物の分子量は、大ぎ過ぎると溶融性が悪くな
って遠心成形性が悪くなり、一方小さ過ぎる場合は内層
材としての要求強度が確保できなくなるので、メルト・
インデックスで1〜5008710分、より好ましくは
3〜300 g/10分の範囲のものがよい。更にこの
齢化物は、その単独粉粒体或はポリエチレン粉粒体と混
合して、たとえば第7図(八)に示した様な方法で溶融
回転成形されるが、このときの成形性や取扱い性を高め
るには、粒径が100μm以下、より好ましくは10〜
60μmの範囲の細粒物として使用することが望まれる
If the molecular weight of saponified EVA is too large, the meltability and centrifugal formability will be poor, while if it is too small, it will not be possible to secure the required strength as an inner layer material.
The index is preferably in the range of 1 to 5,008,710 minutes, more preferably 3 to 300 g/10 minutes. Furthermore, this aged material is melted and rotationally molded by the method shown in FIG. 7 (8), either alone or mixed with polyethylene powder, but the moldability and handling at this time may vary. In order to improve the properties, the particle size is 100 μm or less, more preferably 10 to
It is desired to use it as a fine grain in the range of 60 μm.

次に本発明で使用されるFRP材としては、ガラス繊維
強化ポリエステル樹脂が最も一般的であるが、このほか
強化繊維として炭素繊維や金属繊維あるいは天然繊維も
しくは合成繊維を使用することもでき、また樹脂として
はエポキシ樹脂、ポリアミド樹脂、フェノール樹脂、ポ
リカーボネート樹脂、アセタール樹脂等を使用すること
も可能である。またポリエチレンとしては、低圧法、中
庄方、高圧法いずれの方法で製造したものでもよいが、
耐食性、強度、成形性を総合的に考えるとメルト・イン
デックスがO2N2008710分、より好ましくは0
3〜1008710分の範囲のものが望ましい。EVA
鹸化物100重量部に対してポリエチレン500重量部
以下が好ましい。
Next, glass fiber-reinforced polyester resin is the most common FRP material used in the present invention, but carbon fiber, metal fiber, natural fiber, or synthetic fiber can also be used as the reinforcing fiber. As the resin, it is also possible to use epoxy resin, polyamide resin, phenol resin, polycarbonate resin, acetal resin, etc. The polyethylene may be produced by any of the low-pressure method, Nakasho method, and high-pressure method, but
Considering corrosion resistance, strength, and formability comprehensively, the melt index should be O2N2008710 minutes, more preferably 0.
A range of 3 to 1008710 minutes is desirable. EVA
The amount of polyethylene is preferably 500 parts by weight or less per 100 parts by weight of the saponified material.

上記の素材を用いた耐食性容器の製造には柊別特殊な技
術が要求される訳ではなく、たとえば前記第7図(A)
〜(C) に示した方法が採用される。
Manufacturing a corrosion-resistant container using the above-mentioned materials does not require any special technology; for example, as shown in Figure 7 (A) above.
The methods shown in ~(C) are adopted.

かくして得られる耐食性容器1は、タンクローリ−とし
てトレーラ−に搭載されるものであってもよいし、或は
定置式のタンクとして地上や地下に固定されるものであ
ってもよい。
The corrosion-resistant container 1 thus obtained may be mounted on a trailer as a tank lorry, or may be fixed on the ground or underground as a stationary tank.

[実施例] 実施例1 下記の素材を使用し、下記[I]〜[IV ]に示す構
造の積層体を製造した。
[Examples] Example 1 Laminated bodies having structures shown in [I] to [IV] below were manufactured using the following materials.

構成素材 EVA鹸化物:酢酸ビニル含有率11.2モル%、鹸化
度99%、メルト・イン デックス185g/10分、 粒度20〜40μm FRP材  、ガラス繊維強化ポリエステル樹脂(日本
触媒化学工業■製商品 名「エボラック、RF 1001 J )ポリエチレン
二三井石油化学工業■製商品名[ウルトセックス 40
30J ウレタン系接着剤:田岡化学工業■製商品名[テクノダ
インU −A 1 / B I J積層構造体(内層側
からの積層順で示す)[1]EVAlfll>化物層(
3mm)−FRP層(3nm) [+1]EVA鈷化物/ポリx f L/ ン= 50
/ 50(7)ブレンド層(3mm)−FRP層(3m
m)[111]EVA鹸化物層/ポリエチレン=501
50のブレンド層(3mm)−ポリウレタン系接着剤(
0,1mm ) −F RP層(3mm)[+v ]ポ
リエチレン層(3mm)−EvAi化物層/ポリエチレ
ン=50150のブレンド層、 (2mm)−ポリウレ
タン系接着剤(0,1mm ) −F RP層(3+n
m)[V]ポリエチレン層(5m+n)−FRP層(3
mm)  (従来の積層体) 得られた各fA層構造体より20mmX 100mmの
試験片を切り出し、FRP層との剥1lll1強度(J
 I S−に−6850)を調べたところ、第1表に示
す如く、本発明に係る積層構造体[I]〜[+17]は
従来材[V]に比べて格段に1憂ねた層間接着性を有し
ていることが確認された。
Constituent material Saponified EVA: Vinyl acetate content 11.2 mol%, degree of saponification 99%, melt index 185 g/10 min, particle size 20-40 μm FRP material, glass fiber reinforced polyester resin (product name manufactured by Nippon Shokubai Chemical Industry Co., Ltd.) "Evolac, RF 1001 J) Polyethylene manufactured by Nimitsui Petrochemical Industries ■Product name [Urtsex 40
30J Urethane adhesive: Taoka Chemical Co., Ltd. Product name [Technodyne U-A 1 / BI J laminated structure (shown in stacking order from the inner layer side) [1] EVAlfl> Compound layer (
3mm) - FRP layer (3nm) [+1] EVA forged/poly x f L/n = 50
/ 50 (7) Blend layer (3mm) - FRP layer (3m
m) [111] EVA saponified layer/polyethylene = 501
50 blend layers (3 mm) - polyurethane adhesive (
0,1 mm) -F RP layer (3 mm) [+v] Polyethylene layer (3 mm) - EvAi compound layer/polyethylene = 50150 blend layer, (2 mm) - Polyurethane adhesive (0,1 mm) -F RP layer (3+n
m) [V] Polyethylene layer (5m+n)-FRP layer (3
mm) (Conventional laminate) A test piece of 20 mm x 100 mm was cut out from each fA layer structure obtained, and the peeling strength (J
As shown in Table 1, the interlayer adhesion of the laminated structures [I] to [+17] according to the present invention was significantly lower than that of the conventional material [V]. It was confirmed that it has sex.

謁 表 実施例2 下記の素材を使用し、下記に示す構造の積層体を製造し
た。
Audience Table Example 2 A laminate having the structure shown below was manufactured using the following materials.

構成素材 EVA鹸化物 酢酸ビニル含有率11.2モル%、鹸化
度90%、メルト・イン デックス205 g710分、 粒度20〜40μm ニガラス繊維強化ポリエステル樹 脂(日本触媒化学工業■製部品 FRP材 名「エボラック、RF 1001 J )ポリエチレン
・三井石油化学工業■製商品名「ウルトゼックス 40
30J ウレタン系接着剤・田岡化学工業■製商品名「テクノダ
インU−Al/BIJ 積層構造体(内層側からの積層順で示す)ポリエチレン
層(3mm)−EVA鹸化物層/ポリエチレン=507
50のブレンド層(2mm)−ポリウレタン系接着剤(
0,1mm ) −F Rp層(3mm) 得られた各積層構造体より20mmX 100mmの試
験片を切り出し、FRP層との剥離強度(JIS−に−
6850)を調べたところ、65kg/cm’の値が得
られた。
Constituent material EVA saponified product Vinyl acetate content 11.2 mol%, degree of saponification 90%, melt index 205 g710 minutes, particle size 20-40 μm Glass fiber reinforced polyester resin (manufactured by Nippon Shokubai Chemical Co., Ltd. Parts FRP material name "Evolac") RF 1001 J) Polyethylene, manufactured by Mitsui Petrochemical Industries, Ltd. Product name: ``Urtzex 40''
30J Urethane adhesive, manufactured by Taoka Chemical Co., Ltd. Product name: "Technodyne U-Al/BIJ Laminated structure (shown in stacking order from inner layer side) Polyethylene layer (3 mm) - EVA saponified layer/polyethylene = 507
50 blend layers (2 mm) - polyurethane adhesive (
0.1 mm) -F Rp layer (3 mm) A 20 mm x 100 mm test piece was cut out from each of the obtained laminated structures, and the peel strength with the FRP layer (JIS-
6850), a value of 65 kg/cm' was obtained.

実施例3 下記の素材を使用し、下記に示す構造の積層体を製造し
た。
Example 3 A laminate having the structure shown below was manufactured using the following materials.

構成素材 EVA@化物・酢酸ビニル含有率11,2モル%、鹸化
度80%、メルト・イン デックス205g710分、 粒度20〜40μm FRP材  ニガラス繊維強化ポリエステル樹脂(日本
触媒化学工業■製部品 名「エボラック、RF 1001 J )ポリエチレン
;三井石油化学工業■製商品名「ウルトゼックス 40
30J ウレタン系接着剤:田岡化学工業■製商品名’ テ’)
 ) タインU −A l / B l 」積層構造体
(内層側からの積層順で示す)ポリエチレン層(3mm
)−EVA@化物層/ポリエチレン=5Q150のブレ
ンド層(2+++m)−ポリウレタン系接着剤(0,1
+++m ) −F RP層(3mm) 得られた各積層構造体より20mmX 100mmの試
験片を切り出し、FRP層との9!l 191i強度(
J I S−に−6850)を調べたところ、55kg
/cm’の値が得られた。
Constituent material: EVA @ compound/vinyl acetate content: 11.2 mol%, saponification degree: 80%, melt index: 205 g, 710 min, particle size: 20-40 μm FRP material: Glass fiber reinforced polyester resin (manufactured by Nippon Shokubai Chemical Co., Ltd. Part name: "Evolac") RF 1001 J) Polyethylene; Manufactured by Mitsui Petrochemical Industries ■Product name: ``Urtzex 40''
30J Urethane adhesive: Manufactured by Taoka Chemical Industry ■Product name: 'TE')
) Tine U-A l/B l' laminated structure (shown in the order of lamination from the inner layer side) polyethylene layer (3 mm
) - EVA@ compound layer/polyethylene = 5Q150 blend layer (2+++m) - polyurethane adhesive (0,1
+++m) -F RP layer (3 mm) A 20 mm x 100 mm test piece was cut out from each of the obtained laminated structures, and 9! l 191i strength (
When I checked J I S-ni-6850), it was 55 kg.
A value of /cm' was obtained.

[発明の効果コ 本発明は以上の様に構成されており、耐食性内層材とF
RP層が強固に接合されたものであるから、積層による
強化効果が有効に発揮され、耐食性及び機械強度の共に
すぐれた耐食性容器を提供し得ることになった。
[Effects of the invention] The present invention is constructed as described above, and the corrosion-resistant inner layer material and F
Since the RP layers are firmly bonded, the reinforcing effect of lamination is effectively exhibited, making it possible to provide a corrosion-resistant container with excellent corrosion resistance and mechanical strength.

【図面の簡単な説明】 第1〜3図は本発明に係る耐食性容器の断面構造を示す
一部拡大説明図、第4図は耐食性容器を載置したタンク
ローリ−を示す側面説明図、第5図は耐食性容器を示す
説明図、第6図は従来の耐食性容器の断面を示す一部拡
大説明図、第7図(A)は回転成形法に用いられる装晋
を示す概略説明図、第7図CB) はフィラメントワイ
ンディングによるFRP層の形成例を示す説明図、第7
図(C)はFRP層形成後の耐食性容器を示す説明図で
ある。 1・・・耐食性容器 3・・・荷台 5・・・堰板 7・・・取出口 9・・・FRP層 2・・・トレーラ 4・・・バンド 6・・・溶液導入口 8・・・耐食性樹脂帰 A・・・EVA鹸化物層 B・・・FRP層 C・・・ポリウレタン接着剤層 D・・・ポリエチレン層
[Brief Description of the Drawings] Figures 1 to 3 are partially enlarged explanatory views showing the cross-sectional structure of the corrosion-resistant container according to the present invention, Figure 4 is a side view showing a tank truck on which the corrosion-resistant container is placed, and Figure 5 is an explanatory side view showing the tank truck on which the corrosion-resistant container is placed. The figure is an explanatory diagram showing a corrosion-resistant container, FIG. 6 is a partially enlarged explanatory diagram showing a cross section of a conventional corrosion-resistant container, and FIG. Figure CB) is an explanatory diagram showing an example of forming an FRP layer by filament winding.
Figure (C) is an explanatory diagram showing the corrosion-resistant container after forming the FRP layer. 1... Corrosion-resistant container 3... Loading platform 5... Weir plate 7... Outlet port 9... FRP layer 2... Trailer 4... Band 6... Solution inlet 8... Corrosion-resistant resin layer A...EVA saponified layer B...FRP layer C...Polyurethane adhesive layer D...Polyethylene layer

Claims (5)

【特許請求の範囲】[Claims] (1)エチレン−酢酸ビニル共重合体の鹸化物からなる
内層材の外面側に、FRP層を形成してなることを特徴
とする耐食性容器。
(1) A corrosion-resistant container characterized by forming an FRP layer on the outer surface of an inner layer material made of a saponified ethylene-vinyl acetate copolymer.
(2)エチレン−酢酸ビニル共重合体の鹸化物とポリエ
チレンを含む内層材の外面側にFRP層を形成してなる
ことを特徴とする耐食性容器。
(2) A corrosion-resistant container characterized by forming an FRP layer on the outer surface of an inner layer material containing a saponified ethylene-vinyl acetate copolymer and polyethylene.
(3)内層とFRP層をポリウレタン系接着剤を介して
接合したものである請求項(1)又は(2)に記載の耐
食性容器。
(3) The corrosion-resistant container according to claim (1) or (2), wherein the inner layer and the FRP layer are bonded via a polyurethane adhesive.
(4)内層の更に内側にポリエチレン樹脂層を形成して
なる請求項(1)〜(3)のいずれかに記載の耐食性容
器。
(4) The corrosion-resistant container according to any one of claims (1) to (3), further comprising a polyethylene resin layer formed inside the inner layer.
(5)エチレン−酢酸ビニル共重合体の鹸化物が75〜
100%である請求項(1)〜(4)のいずれかに記載
の耐食性容器。
(5) Saponified product of ethylene-vinyl acetate copolymer is 75~
The corrosion-resistant container according to any one of claims (1) to (4), which is 100%.
JP1069033A 1989-03-20 1989-03-20 Anticorrosive vessel Pending JPH02258587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1069033A JPH02258587A (en) 1989-03-20 1989-03-20 Anticorrosive vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1069033A JPH02258587A (en) 1989-03-20 1989-03-20 Anticorrosive vessel

Publications (1)

Publication Number Publication Date
JPH02258587A true JPH02258587A (en) 1990-10-19

Family

ID=13390863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1069033A Pending JPH02258587A (en) 1989-03-20 1989-03-20 Anticorrosive vessel

Country Status (1)

Country Link
JP (1) JPH02258587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505811A (en) * 2012-01-06 2015-02-26 ポスコ Carbonation apparatus and carbonation method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010879A (en) * 1973-06-04 1975-02-04
JPS5845169A (en) * 1981-09-12 1983-03-16 日立化成工業株式会社 Manufacture of silicon carbide sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010879A (en) * 1973-06-04 1975-02-04
JPS5845169A (en) * 1981-09-12 1983-03-16 日立化成工業株式会社 Manufacture of silicon carbide sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505811A (en) * 2012-01-06 2015-02-26 ポスコ Carbonation apparatus and carbonation method using the same

Similar Documents

Publication Publication Date Title
US6946176B2 (en) Multilayer thermoplastic structure for gas tank
US8911842B2 (en) Multi-layer rotationally molded low permeation vessels and method for manufacture thereof
CN100591515C (en) Method for manufacturing pipe joint
EP2433477B1 (en) Reinforced device housing
US20120214088A1 (en) Hydrogen storage tank
US20040096611A1 (en) Composite tank and method for preparing same
JPH02258587A (en) Anticorrosive vessel
KR20220133961A (en) Multi-layered structures for transporting or storing hydrogen
JP2826125B2 (en) Rotationally molded container and method for producing the same
KR20220133959A (en) Multi-layered structures for transporting or storing hydrogen
WO1990003269A1 (en) Plastic fuel tank
US20230103345A1 (en) Multilayer structure for transporting or storing hydrogen
JP2008291944A (en) Mounted-type light hydrogen gas storing tank
CN211942349U (en) Sandwich structure composite board
JP7334641B2 (en) High-pressure tank manufacturing method
JPH06191296A (en) Automobile fuel tank
JPH0243628B2 (en) PURASUCHITSUKUSEKISOKOZOTAIOYOBYOKI
JP2017180560A (en) High pressure vessel
JPS59143638A (en) Laminated structure
JP6616552B2 (en) Method for molding fuel tank and fiber reinforced resin member
JP2001322212A (en) Composite film and container
JP2002096847A (en) Squeezing vessel
CN111890654A (en) Composite board manufacturing method, composite board manufacturing equipment and composite board
US20230045067A1 (en) Multilayer structure for transporting or storing hydrogen
KR20240027092A (en) Multi-layer structures for transporting or storing hydrogen