JPH02258401A - Fretting damage prevention for automotive wheel - Google Patents

Fretting damage prevention for automotive wheel

Info

Publication number
JPH02258401A
JPH02258401A JP8123389A JP8123389A JPH02258401A JP H02258401 A JPH02258401 A JP H02258401A JP 8123389 A JP8123389 A JP 8123389A JP 8123389 A JP8123389 A JP 8123389A JP H02258401 A JPH02258401 A JP H02258401A
Authority
JP
Japan
Prior art keywords
wheel
hub
hardness
graphite
automotive wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8123389A
Other languages
Japanese (ja)
Inventor
Kazuo Toyama
外山 和男
Mitsusachi Yamamoto
三幸 山本
Noboru Yoda
登 誉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8123389A priority Critical patent/JPH02258401A/en
Publication of JPH02258401A publication Critical patent/JPH02258401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To improve the durability of a wheel with simplicity and low cost by applying graphite to the hum attachment datum surface of an automotive wheel and radiating laser to it to establish its surface hardness within a particular range. CONSTITUTION:By applying graphite to the hub attachment datum surface of an automotive wheel and radiating laser to it, the hardness of the hub attachment datum surface is established to HV 300 - 700. Namely, only to the hub attachment datum surface which is a necessary section for the automotive wheel, first, graphite is applied and dried. Next, a laser beam is radiated to the section. As a result, applied carbon is immersed into the wheel material from the surface in form of solid solution, and a relevant portion is tempered by self-cooling after laser radiation. Since the hardness of the surface becomes HV 300 - 700, it is possible to prevent fretting damage effectively, thus improving the durability of the wheel with simplicity and low cost.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、自動車用ホイールのハブディスクへの取付
は基準面のフレッティング損傷を効果的に防止し、その
耐久性を向上させる方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for effectively preventing fretting damage to a reference surface of an automobile wheel and improving its durability when attached to a hub disk. It is.

〈従来技術とその課題) 一般に、乗用車、トラック、バス等の区別なく、ハブデ
ィスクへボルトにより固定されるタイプの自動車用ホイ
ールにとって最も重要な要求特性は強度と耐久性である
。しかるに、長期に亘って苛酷な条件で自動車が使用さ
れた場合にはホイールに疲労亀裂が発生することがあり
、安全上その防止策が懸命に検討されてきた。
<Prior Art and its Problems> In general, the most important characteristics required for automobile wheels that are fixed to hub discs with bolts, regardless of whether they are passenger cars, trucks, buses, etc., are strength and durability. However, when an automobile is used under harsh conditions for a long period of time, fatigue cracks may occur in the wheels, and measures to prevent this have been intensively studied for safety reasons.

自動車用ホイールにおける疲労亀裂発生部位は、ホイー
ルの形状、材質並びに荷重の掛かり方によって変化する
が、代表的にはホイールの風孔部。
The location where fatigue cracks occur in automobile wheels varies depending on the shape, material, and load applied to the wheel, but the typical location is the air vent area of the wheel.

ハツト部及びハブ取付は基準面の3個所である。The hat and hub are attached at three locations on the reference surface.

そして、風孔部並びにハツト部に発生する疲労亀裂につ
いては応力集中に起因したものであったことから、材質
、形状及び成形法等の面より対策が講じられ一応の成果
が得られている。これに対して、ハブ取付は基準面の疲
労亀裂は、ハブディスクとホイールとがボルトによって
締結されている故に生じる“ハブディスクとの繰り返し
接触によるフレッティング損傷“に起因したものであり
、現在に至るも有効な対策が見出されていない。
Since the fatigue cracks that occurred in the air holes and the hat were caused by stress concentration, countermeasures were taken in terms of material, shape, molding method, etc., and some results were obtained. On the other hand, fatigue cracks on the reference surface of hub installations are caused by "fretting damage due to repeated contact with the hub disc", which occurs because the hub disc and wheel are fastened with bolts. However, no effective countermeasure has been found.

もっとも、一般鋼材のフレッティング損傷防止技術その
ものについては従来から数多くの捉案がなされてきてお
り、例えば、 a)接触面圧の低減。
However, many proposals have been made for the prevention of fretting damage to general steel materials, such as a) reduction of contact surface pressure.

b)相対すべり量の低減。b) Reduction of relative slip amount.

C)摩擦係数の低減。C) Reduction of coefficient of friction.

d)表面硬度の上昇。d) Increase in surface hardness.

e)圧縮残留応力の付与。e) Application of compressive residual stress.

等の如き対策が有効であることが知られている。It is known that the following measures are effective.

しかしながら、自動車用ホイールのハブ取付は基準面に
対しては、その機能からして上記a)項及びb)項で示
した対策を採用するこ゛とは難しい、−方、上記C)項
の観点から[フッ素樹脂シールを施す対策」が、また上
記e)項の観点から「シタットビーニングを施す対策」
がそれぞれ採用された例はあるが、フッ素樹脂シールで
はシール自身の耐久性の問題やハブディスクへの締め付
は力の変化等の問題があり、シタットビーニングでは残
留応力の制御が困難であるとの問題や面の荒れを余儀無
くされる等の問題があって、何れも実際的なものとは言
えなかった。
However, due to its function, it is difficult to adopt the measures shown in items a) and b) above when attaching a hub to a car wheel relative to a reference surface.From the perspective of item C) above, however, [Measures to apply fluororesin seals] are also considered as "measures to apply sit-beaning" from the perspective of item e) above.
There are examples where these have been adopted, but with fluororesin seals, there are problems with the durability of the seal itself and changes in force when tightening to the hub disk, and with sit-beaning, it is difficult to control residual stress. There were problems such as problems with the surface and roughness of the surface, so none of them could be said to be practical.

このような諸問題を考慮すると、自動車用ホイールのハ
ブ取付は基準面に対する最も効果的かつ安定なフレンテ
ィング損傷防止対策は、前記d)項及びe)項で示した
要件を同時に満足させ得る“高周波焼入れ”、“浸炭”
或いは“窒化”等の表面硬化法になるとの結論に落ち着
く。しかしながら、高周波焼入れが有効であるためには
素材鋼が少なくとも0.2重量%以上の固溶炭素を有し
ていることが必要であり、そのためホイール材等のよう
に成形性を重視した低炭素鋼には高周波焼入れ法を適用
することはできない。また、浸炭や窒化はガスや液によ
る雰囲気処理であるため、これらの処理を施すと一般に
は部品全体が硬化されてしまって著しく靭性を損なうよ
うになり、やはり自動車用ホイールには適用できない。
Considering these problems, the most effective and stable measure to prevent frent damage to the reference surface when mounting an automobile wheel hub is one that simultaneously satisfies the requirements shown in items d) and e) above. "Induction hardening", "Carburizing"
Alternatively, the conclusion was that a surface hardening method such as "nitriding" would be used. However, in order for induction hardening to be effective, the material steel must have at least 0.2% by weight of solid solute carbon. Induction hardening cannot be applied to steel. Furthermore, since carburizing and nitriding are atmospheric treatments using gas or liquid, these treatments generally harden the entire part and significantly impair toughness, so they cannot be applied to automobile wheels.

もっとも、部品の必要部位(ハブ取付は基準面)のみ浸
炭、窒化処理する方法も存在してはいるが、不要部位の
浸炭防止、窒化防止に多大な手間と時間を要して経済的
でないことから実際的な手段とは言えなかった。
However, although there is a method of carburizing and nitriding only the necessary parts of the part (hub mounting reference surface), it is not economical because it takes a lot of time and effort to prevent carburizing and nitriding of unnecessary parts. Therefore, it could not be called a practical method.

このようなことから、本発明の目的は、自動車用ホイー
ルのハブ取付は基準面のフレッティング損傷を効果的に
抑制し、ホイールの耐久性を改善する経済的かつ簡易な
方法を提供することに置かれた。
Therefore, an object of the present invention is to provide an economical and simple method for attaching an automobile wheel hub to effectively suppress fretting damage on the reference surface and improve the durability of the wheel. placed.

く課題を解決するための手段〉 本発明は、上記目的を達成すべく行われた様々な観点か
らの敗多くの実験・研究の結果完成されたものであり、 「自動車用ホイールのハブ取付は基準面にグラファイト
を塗布してからレーザ照射を行い、これによってハブ取
付は基準面の表面硬度をHシ300〜700とすること
で、格別な悪影響無しに自動車用ホイールハブ取付は基
準面のフレッティング損傷を効果的に防止し得るように
した点」に特徴を有している。
Means for Solving the Problems> The present invention was completed as a result of numerous experiments and studies conducted from various viewpoints in order to achieve the above object. After applying graphite to the reference surface, laser irradiation is performed, and by this, the surface hardness of the reference surface is set to H series 300 to 700. It is characterized by the fact that it can effectively prevent damage caused by

く作用〉 即ち、本発明は、自動車用ホイールの必要な部位(ハブ
取付は基準面)のみにまずグラファイトを塗布・乾燥さ
せ、次いでこの部位にレーザ光を照射すると、塗布した
炭素が表面からホイール材中へ浸入・固溶すると共に、
レーザ光照射後の自己冷却により該部分の焼入れがなさ
れて表面硬度がHシ300〜700となり、フレッティ
ング損傷が効果的に防止されるようになるとの現象を利
用したものであるが、以下、本発明をその作用と共によ
り詳細に説明する。
In other words, in the present invention, graphite is first applied and dried only on the necessary parts of an automobile wheel (the reference surface for hub attachment), and then when this part is irradiated with a laser beam, the applied carbon is removed from the surface of the wheel. In addition to penetrating into the material and becoming a solid solution,
This method takes advantage of the phenomenon that self-cooling after laser beam irradiation hardens the area, resulting in a surface hardness of H 300 to 700, effectively preventing fretting damage. The present invention will be explained in more detail along with its operation.

さて、フレッティング疲労損傷を防止するためには、フ
レッティング疲労亀裂の発生と成長を抑えなければなら
ず、疲労亀裂の発生抑制には表面硬化層の存在が、そし
て疲労亀裂の成長抑制には表面圧縮残留応力の存在が有
効である。
Now, in order to prevent fretting fatigue damage, it is necessary to suppress the occurrence and growth of fretting fatigue cracks. The presence of surface compressive residual stress is effective.

表面硬化層を生成させる手段としては、機械的方法、化
学的方法或いは熱的方法があるが、ホイール材のような
低降伏点の低炭素鋼材では機械的又は熱的硬化法を利用
するのは困難である。
There are mechanical, chemical, and thermal methods to generate a surface hardening layer, but mechanical or thermal hardening methods are not recommended for low carbon steel materials with low yield points such as wheel materials. Have difficulty.

一方、化学的な表面硬化法の場合は適用が可能であるが
、既に説明した如く、ホイール材のハブ取付は基準面だ
けを部分的に処理するには多大な費用と工数を必要とす
る。
On the other hand, a chemical surface hardening method can be applied, but as already explained, attaching the wheel material to the hub requires a great deal of cost and man-hours if only the reference surface is partially treated.

ところが、グラファイトペイントのような取り扱いが極
めて簡便なグラファイト材を補助剤としてホイール材の
ハブ取付は基準面に塗布し、この部分にレーザ照射を実
施すると、グラファイトがその部位にのみ浸入・固溶し
て必要部分だけが熱処理可能に改質されると共に、その
後の自己冷却により上記改質部分がマルテンサイト変態
して硬化層を形成する。そして、マルテンサイト変態が
起きた部分は体積膨張を起こすので、形成された硬化層
は必然的に圧縮残留応力層となる。このため、通常の手
段では不可能であるか或いは品質や工数等の点で非現実
的であった自動車用ホイール材の部分的な表面硬化と圧
縮残留応力の付与が極めて効果的かつ簡便に実現でき、
自動車用ホイールのハブ取付は基準面でのフレッティン
グ損傷を適切に防止することができるようになる。
However, when a graphite material such as graphite paint, which is extremely easy to handle, is applied to the reference surface for attaching the hub of the wheel material as an auxiliary agent, and this area is irradiated with a laser, the graphite infiltrates and dissolves only in that area. Only the necessary portions are modified to be heat-processable, and the modified portions are transformed into martensitic material by subsequent self-cooling to form a hardened layer. Since the portion where martensitic transformation has occurred undergoes volumetric expansion, the formed hardened layer inevitably becomes a compressive residual stress layer. As a result, it is extremely effective and easy to achieve partial surface hardening and imparting compressive residual stress to automotive wheel materials, which was impossible or impractical in terms of quality and man-hours using normal means. I can,
When attaching a hub to an automobile wheel, it becomes possible to properly prevent fretting damage on the reference surface.

なお、これまで、レーザ加工に関する実験結果に基き「
レーザ光の吸収効率を改善するため塗布したグラファイ
トが被加工材表面溶融部に固溶して割れを生じると言う
不都合な現象が起きる」との報告がなされたことはあっ
たが〔溶接学会全国大会講演概要、第35集(’84−
10)、第76〜77頁〕、上記グラファイトの固溶現
象を適度に抑制し、工学的に利用すると言う示唆は過去
全くなされたことはなかった。
Furthermore, based on experimental results regarding laser processing, we have
It has been reported that the graphite applied to improve the absorption efficiency of laser light dissolves in the molten part of the surface of the workpiece, causing cracks, which is an inconvenient phenomenon.'' Conference Lecture Summary, Volume 35 ('84-
10), pp. 76-77], there has never been any suggestion made in the past that the above-mentioned solid solution phenomenon of graphite could be appropriately suppressed and utilized for engineering purposes.

ところで、本発明法においてホイールのハブ取付は基準
面に塗布される「グラファイト」には格別な制限はなく
、グラファイト及びグラファイト含有物質の何れを適用
しても良いが、入手性や作業性等の面から前記「グラフ
ァイトペイント」が好適であると言える。
By the way, in the method of the present invention, there is no particular restriction on the "graphite" applied to the reference surface for wheel hub mounting, and either graphite or graphite-containing substances may be applied, but depending on availability, workability, etc. From this point of view, it can be said that the above-mentioned "graphite paint" is suitable.

また、上述したようにマルテンサイト変態による硬化層
は必然的に圧縮残留応力場となり、その近傍に引張残留
応力場が形成されるが、これらの現象を効果的に活用す
るためにはその程度を制御する必要がある。本発明法に
おいて硬化処理層の表面硬度を規定したのはこのためで
ある。即ち、硬化処理したホイールのハブ取付は基準面
の表面硬度がHν〈300と言うことは、固溶される炭
素量或いは冷却速度が十分でなく、マルテンサイト変態
による表面硬化層、圧縮残留応力層が共に小さくてフレ
ッティング疲労損傷を防止する効果が十分でないことに
つながり、一方、その表面硬度がHν〉700と言うこ
とは固溶される炭素量或いは冷却速度が大き過ぎて冷却
時に割れを生じることを意味するため、“硬化処理した
ホイールのハブ取付は基準面の表面硬度”はIIシ30
0〜700となるように調整することと定めた。そして
、この条件を満足させるためには、母材炭素濃度や板厚
に応じてレーザ出力、焦点及び操作速度を適正に調整し
たレーザ光照射処理条件を設定する必要がある。例えば
、出力5kWのCO2レーザ光を集光点距離3fiで照
射して板厚3mmのホイール材を処理する場合、母材炭
素濃度が0.15重量%以上であって走査速度が1.0
m/分以下のときには割れを生じてしまい、該炭素濃度
が0.15重量%未満であって走査速度が5.0m/分
以上のときには表面硬度が11ν280程度にしかなら
ずに所望性能を発揮しない。
In addition, as mentioned above, a hardened layer due to martensitic transformation inevitably becomes a compressive residual stress field, and a tensile residual stress field is formed in the vicinity, but in order to effectively utilize these phenomena, it is necessary to limit the degree of stress. need to be controlled. This is the reason why the surface hardness of the hardened layer is specified in the method of the present invention. In other words, when attaching a hardened wheel to a hub, the surface hardness of the reference surface is Hν<300, which means that the amount of carbon dissolved in solid solution or the cooling rate is insufficient, resulting in a hardened surface layer due to martensitic transformation and a compressive residual stress layer. Both of these are small, leading to an insufficient effect in preventing fretting fatigue damage.On the other hand, the surface hardness of Hν>700 means that the amount of dissolved carbon or the cooling rate is too high, causing cracks during cooling. This means that "the surface hardness of the reference surface for mounting hardened wheels on the hub" is based on II series 30.
It was decided that the value should be adjusted to be between 0 and 700. In order to satisfy this condition, it is necessary to set laser beam irradiation processing conditions in which the laser output, focus, and operation speed are appropriately adjusted according to the base material carbon concentration and plate thickness. For example, when processing a wheel material with a thickness of 3 mm by irradiating a CO2 laser beam with an output of 5 kW with a focal point distance of 3 fi, the base material carbon concentration is 0.15% by weight or more and the scanning speed is 1.0%.
When the carbon concentration is less than 0.15% by weight and the scanning speed is 5.0 m/min or more, the surface hardness is only about 11ν280 and the desired performance is not exhibited.

続いて、本発明の効果を実施例により更に具体的に説明
する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

〈実施例〉 まず、厚さ:3.5mのJiSSAPH381n板(自
動車構造用熱間圧延鋼板)を準備し、これから3種の試
験片を切り出し、1種を除いてはその表面の一部(後述
するシューと接触する部分よりや−広い部分)に25重
量%のグラファイトを含むペイントを乾燥膜厚が20I
xmとなるように塗布し乾燥させた後、該部分にレーザ
光を照射して硬質層を形成した。
<Example> First, a JiSSAPH381n plate (hot rolled steel plate for automobile structures) with a thickness of 3.5 m was prepared, and three types of test pieces were cut from it. Paint containing 25% by weight of graphite is applied to the area (slightly wider than the area that contacts the shoe) to a dry film thickness of 20I.
After coating and drying to give xm, the portion was irradiated with laser light to form a hard layer.

なお、レーザ光照射は5kWのCO□レーザ発射装置を
使用し、集光点距離3鶴以上でArシールガスを用いて
実施したが、走査速度は1種については3m/分、残り
1種については1.5m/分とした。
The laser beam irradiation was carried out using a 5 kW CO□ laser emitting device with Ar seal gas at a focal point distance of 3 cranes or more, but the scanning speed was 3 m/min for one type and 3 m/min for the remaining one. was set at 1.5 m/min.

次いで、上記3種の供試材について、前記シューとの接
触部位における“表面から深さ方向への炭素濃度”をE
PMAで測定すると共に、同部位での硬度測定を行い、
更に平面曲げ疲労試験(フレッティング疲労試験)を実
施したが、これら3種の供試材を整理して示すと次の通
りである。
Next, for the three types of test materials mentioned above, the "carbon concentration in the depth direction from the surface" at the contact area with the shoe was determined by E.
In addition to measuring with PMA, hardness was also measured at the same site.
Furthermore, a plane bending fatigue test (fretting fatigue test) was conducted, and the three types of test materials are summarized as follows.

供試材A・・・無処理の鋼板(比較材)。Test material A: untreated steel plate (comparison material).

供試材B・・・走査速度=3m1分で処理したもの(本
発明相当処理材)。
Sample material B: processed at a scanning speed of 3 m 1 minute (processed material equivalent to the present invention).

供試材C・・・走査速度:1.5m/分で処理したもの
(本発明相当処理材)。
Sample material C: processed at a scanning speed of 1.5 m/min (processed material equivalent to the present invention).

ここで、平面曲げ疲労試験(フレッティング疲労試験)
は、第1図に示すように、ボルト・ナツト1によって一
端を固定した供試材(ホイール材)2の中間位置をハブ
ディスクと同じ材質のシュー3を介してボルト・ナツト
4で締付け、その自由端に繰り返し曲げモーメントを加
えて疲労亀裂発生を調査する方法によった。なお、図中
の符号5は試験機の架台を、そして6はベースを示して
いる。
Here, plane bending fatigue test (fretting fatigue test)
As shown in Fig. 1, a test material (wheel material) 2 whose one end is fixed with a bolt and nut 1 is tightened at an intermediate position with a bolt and nut 4 through a shoe 3 made of the same material as the hub disc. A method was used to investigate the occurrence of fatigue cracks by repeatedly applying bending moments to the free end. In addition, the code|symbol 5 in the figure shows the mount of a test machine, and 6 shows the base.

このようにして得られた炭素濃度の測定結果を第2図に
、また硬度の測定結果を第3図に、そして平面曲げ疲労
試験(フレッティング疲労試験)の結果を第4図に示し
た。
The carbon concentration measurement results thus obtained are shown in FIG. 2, the hardness measurement results are shown in FIG. 3, and the results of the plane bending fatigue test (fretting fatigue test) are shown in FIG.

第2図及び第3図に示される結果からは、本発明に係る
処理によってホイール材の特定部位表面が炭素濃度で0
.11〜0.14重量%、硬度でHva60〜430そ
れぞれ高くなることが分かる。
From the results shown in FIGS. 2 and 3, it is clear that the treatment according to the present invention caused the surface of specific parts of the wheel material to have a carbon concentration of 0.
.. It can be seen that the hardness increases by 11 to 0.14% by weight, and the hardness increases by Hva 60 to 430, respectively.

そして、平面曲げ疲労試験(フレッティング疲労試験)
結果を示す第4図からは、供試材A(比較材)では疲労
破壊に対する限界応力振幅が11kgf/−であったの
に対して、本発明に係る対策を施した供試材Bでは17
kgf/−、同じく供試材Cでは20kgf/−と、各
々55%、82%の顕著なフレッティング疲労強度改善
効果を確保できることが確認できる。
And plane bending fatigue test (fretting fatigue test)
From FIG. 4 showing the results, the critical stress amplitude for fatigue failure was 11 kgf/- for sample material A (comparative material), whereas it was 17 kgf/- for sample material B, which had the measures taken according to the present invention.
It can be confirmed that remarkable fretting fatigue strength improvement effects of 55% and 82%, respectively, can be secured with kgf/- and 20 kgf/- in the case of sample C.

〈効果の総括〉 以上に説明した如く、従来採用されてきた一般的な自動
車用ホイール製造工程に極く簡単な手段(ハブ取付は基
準面にグラファイトペイント等を塗布してレーザ光照射
する手段)を付加するだけと言う本発明の方法によれば
、ホイールのハブ取付は基準面のフレッティング疲労強
度を大幅にかつ安価に改善することが可能となるなど、
産業上極めて有用な効果がもたらされる。
<Summary of Effects> As explained above, this method is an extremely simple method for the conventional general automobile wheel manufacturing process (hub installation involves applying graphite paint, etc. to the reference surface and irradiating it with laser light). According to the method of the present invention, which simply adds
Industrially extremely useful effects are brought about.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、フレッティング疲労試験方法の概略説明図で
ある。 第2図は、供試材における炭素濃度分布の調査結果を示
したグラフである。 第3図は、供試材における硬度分布の円査結果を示した
グラフである。 第4図は、供試材のフレッティング疲労試験結果を示し
たグラフである。 図面において、 1.4・・・ボルト・ナツト。 2・・・供試材(ホイール材相当材)。 3・・・シュー(ハブディスク相当材)。 5・・・8台、      6・・・ベース。 第1図 第2図
FIG. 1 is a schematic explanatory diagram of a fretting fatigue test method. FIG. 2 is a graph showing the results of an investigation of the carbon concentration distribution in the sample material. FIG. 3 is a graph showing the results of a circular survey of the hardness distribution in the sample material. FIG. 4 is a graph showing the results of the fretting fatigue test of the sample materials. In the drawings: 1.4... Bolts and nuts. 2... Test material (material equivalent to wheel material). 3...Shoe (material equivalent to hub disc). 5...8 units, 6...base. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 自動車用ホイールのハブ取付け基準面にグラファイトを
塗布してレーザ照射を行うことにより、ハブ取付け基準
面の表面硬度をHv300〜700とすることを特徴と
する、自動車用ホイールハブ取付け基準面のフレッティ
ング損傷防止法。
Fretting of a hub mounting reference surface for an automobile wheel, characterized in that the surface hardness of the hub mounting reference surface is set to Hv300-700 by coating graphite on the hub mounting reference surface of an automobile wheel and performing laser irradiation. Damage Prevention Law.
JP8123389A 1989-03-31 1989-03-31 Fretting damage prevention for automotive wheel Pending JPH02258401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8123389A JPH02258401A (en) 1989-03-31 1989-03-31 Fretting damage prevention for automotive wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8123389A JPH02258401A (en) 1989-03-31 1989-03-31 Fretting damage prevention for automotive wheel

Publications (1)

Publication Number Publication Date
JPH02258401A true JPH02258401A (en) 1990-10-19

Family

ID=13740733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8123389A Pending JPH02258401A (en) 1989-03-31 1989-03-31 Fretting damage prevention for automotive wheel

Country Status (1)

Country Link
JP (1) JPH02258401A (en)

Similar Documents

Publication Publication Date Title
US11186887B2 (en) Multi-track laser surface hardening of low carbon cold rolled closely annealed (CRCA) grades of steels
US20100276955A1 (en) Treatment of railway wheels
US5411770A (en) Method of surface modification of stainless steel
KR101445998B1 (en) Drive plate and manufacturing method thereof
US8332998B2 (en) Shot-peening process
US4767473A (en) Method for improving the dynamic strength of wheel disks of vehicle wheels made of heat-treatable aluminum alloys
JPH02258401A (en) Fretting damage prevention for automotive wheel
JPS63312527A (en) Brake disk
Gadag et al. Surface properties of laser processed ductile iron
JP2003014013A (en) Transformation hardening and coating by laser for braking face of disc brake rotor
EP0803315B1 (en) Ductile iron vehicle hub and method for producing same
JPH10251743A (en) Method for strengthening bolt or rivet hole of steel plate
JP2007331560A (en) Wheel bearing device and its manufacturing method
US11873873B2 (en) System and method of making an enhanced brake rotor with improved wear resistance
CN101883871A (en) A method of producing a painted steel sheet product of high strength
JP2001246901A (en) Fatigue life improving method for large/medium steel wheel
CN115961135A (en) Machining method of corrosion-resistant vibration-damping noise-reducing brake disc
JPH024990A (en) Method for hardening surface of steel
JP2000301458A (en) Surface hardening method of gear
RU2133299C1 (en) Method of manufacturing nitrided parts from low-carbon martensitic steels
JPS58197221A (en) Production of pipe flange
JP2751724B2 (en) Manufacturing method of forged aluminum wheels
SU699025A1 (en) Method of reducing high-strength steel parts
Saxena et al. Electron beam irradiation effects on fatigue crack growth resistance in an austenitic steel
JPS58163812A (en) Stretching bolt