JPH02257109A - Optical demultiplexer - Google Patents

Optical demultiplexer

Info

Publication number
JPH02257109A
JPH02257109A JP7651889A JP7651889A JPH02257109A JP H02257109 A JPH02257109 A JP H02257109A JP 7651889 A JP7651889 A JP 7651889A JP 7651889 A JP7651889 A JP 7651889A JP H02257109 A JPH02257109 A JP H02257109A
Authority
JP
Japan
Prior art keywords
light
signal light
optical
emitted
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7651889A
Other languages
Japanese (ja)
Inventor
Shigeru Oshima
茂 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7651889A priority Critical patent/JPH02257109A/en
Publication of JPH02257109A publication Critical patent/JPH02257109A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29358Multiple beam interferometer external to a light guide, e.g. Fabry-Pérot, etalon, VIPA plate, OTDL plate, continuous interferometer, parallel plate resonator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To reduce the size of the optical demultiplexer and to enhance the stability thereof and to improve inter-channel crosstalks and the light wave band width per wave by providing a light wave filtering means from which the signal light increased in the wavelength intervals between plural light waves is emitted and a diffraction grating by which the emitted signal light is demultiplexed by each of the different wavelengths. CONSTITUTION:The 1st signal light emitted from the optical fiber 1 is converted to collimated beams of light by a 1st optical system, for example, a collimating lens 2 and is branched in 2 directions by an optical branching means, for example, a beam splitter 3. One of the branched signal light is made incident to, for example, a Fabry-Perot resonator 5. The 1st signal light transmits this Fabry-Perot resonator 5, by which the mutual wavelength intervals of the light waves multiplexed on this signal light are increased. Since the signal light is demultiplexed to each of the different wavelengths by the diffraction grating in this way and, therefore, the size of the demultiplexer is reduced and the stability thereof is enhanced. In addition, the inter-channel crosstalks and the light wave band width per wave are improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、光通信システムに用いられる光分波器に関す
る。
Detailed Description of the Invention [Object of the Invention] (Field of Industrial Application) The present invention relates to an optical demultiplexer used in an optical communication system.

(従来の技術) 光通信システムでは、−木の光伝送路中に複数の光波を
伝搬させる光多重伝送がしばしば行われているが、この
多重された複数の光波をその波長の違いによってチャネ
ル分離をするため、一般に光分波器が用いられている。
(Prior art) In optical communication systems, optical multiplex transmission in which multiple light waves are propagated through optical transmission lines is often performed. To do this, an optical demultiplexer is generally used.

第7図は、従来の光分波器の構成を示す図である。(1
)は光ファイバであり、波長の異なる複数の光波が多重
された信号光を伝送するものである。
FIG. 7 is a diagram showing the configuration of a conventional optical demultiplexer. (1
) is an optical fiber that transmits signal light in which multiple light waves of different wavelengths are multiplexed.

光ファイバ(1)から出射された信号光は、コリメート
レンス(102)で平行光に変換され、回折格子(10
3)に入射される。ここで、光波が多重されている信号
光は、その波長により、異なる回折角で分波される。分
波された信号光は、集光レンズ(104)により集光さ
れ、受光素子(105)で受光される。
The signal light emitted from the optical fiber (1) is converted into parallel light by a collimating lens (102), and then passed through a diffraction grating (10
3). Here, the signal light in which light waves are multiplexed is demultiplexed at different diffraction angles depending on its wavelength. The demultiplexed signal light is focused by a condensing lens (104) and received by a light receiving element (105).

ところで、この受光素子(105)における受光位置間
隔と光波の波長間隔との間には、次式■に示ずような関
係がある。
By the way, there is a relationship as shown in the following equation (2) between the light receiving position interval in the light receiving element (105) and the wavelength interval of the light wave.

ΔX占fΔλ/S  ・・・・・・■ ここで、ΔXは受光位置間隔、Δλは光波の波長間隔、
fはレンズの焦点距離、Sは回折格子のピッチである。
ΔX ratio fΔλ/S ・・・・・・■ Here, ΔX is the light receiving position interval, Δλ is the wavelength interval of the light wave,
f is the focal length of the lens, and S is the pitch of the diffraction grating.

■式かられかるように、ΔXを小さくせず、Δλの小さ
い信号光を分波するためには、回折格子のピッチSを小
さくするか、又はレンズの焦点距離fを大きくするかの
どちらかである。
■As can be seen from the equation, in order to demultiplex a signal light with a small Δλ without reducing ΔX, either the pitch S of the diffraction grating should be reduced, or the focal length f of the lens should be increased. It is.

しかしながら、波長が1.5珈帯で効率の高いブレーズ
ド回折格子ではSは1 / 600 mn+程度で限界
となるため、小さいΔλを分波する光分波器では、レン
ズの焦点距離を長くするしかなく、装置が大型になって
しまう。例えば、Δλ−0.5A、Δx=20IJM、
s=1/600mmを■式に代入すると、f = 66
 cmとなる。
However, in the case of a blazed diffraction grating with a wavelength of 1.5 C band and high efficiency, S reaches its limit at around 1/600 mn+, so in an optical demultiplexer that demultiplexes a small Δλ, the only option is to lengthen the focal length of the lens. Therefore, the device becomes large. For example, Δλ-0.5A, Δx=20IJM,
Substituting s = 1/600mm into formula ■, f = 66
cm.

このように、小さいΔλを分波する光分波器では、レン
ズの焦点距離を長くするしかなく、装置が大型になって
しまう。このような大型の装置は、温度変化に対する安
定性の面からも問題となる。
In this way, in an optical demultiplexer that demultiplexes small Δλ, the focal length of the lens must be made long, which results in an increase in the size of the device. Such large-sized devices also pose problems in terms of stability against temperature changes.

さらに、波長間隔が小さい信号光を分波すると、チャン
ネル間のクロスト−りの劣化が生じ、1波あたりの光波
の帯域幅も減少してしまうという欠点もあった。
Furthermore, when signal lights with small wavelength intervals are demultiplexed, there is a drawback that crosstalk between channels deteriorates, and the bandwidth of each light wave also decreases.

(発明が解決しようとする課題) 上述したように、従来の光分波器にあっては、波長間隔
の小さい信号光を分波するには装置が大型となり、この
ため温度変化に対する安定性に欠け、さらにチャネル間
のクロスト−りの劣化や1波あたりの光波の帯域幅が減
少するといった欠点があった。
(Problems to be Solved by the Invention) As mentioned above, in conventional optical demultiplexers, the device is large in size in order to demultiplex signal lights with small wavelength intervals, and as a result, stability against temperature changes is affected. In addition, there were drawbacks such as deterioration of crosstalk between channels and a reduction in the bandwidth of each light wave.

そこで本発明は、これらの欠点を除去すべくなされたも
ので、小型で安定性が高く、チャネル間クロストークや
1波あたりの光波帯域幅が改善さ上記目的を達成するた
めに、本発明の光分波器にあっては、波長の異なる複数
の光波が多重されている信号光が出射される光学系と、
この信号光に多重されている複数の光波の互いの波長間
隔が増大された信号光が出射される光波濾過手段と、前
記光波濾過手段より出射された信号光が、異なる波長ご
とに分波される回折格子とにより構成されている。
Therefore, the present invention was made to eliminate these drawbacks.In order to achieve the above objects, the present invention is compact and highly stable, and improves inter-channel crosstalk and optical wave bandwidth per wave. An optical demultiplexer includes an optical system that emits signal light in which multiple light waves with different wavelengths are multiplexed;
a light wave filtering means from which a signal light in which the mutual wavelength spacing of a plurality of light waves multiplexed on the signal light is increased is emitted; It consists of a diffraction grating.

(作用) 波長の異なる複数の光波が多重されている信号光は、光
波濾過手段に入射される。入射された信号光は、この光
波濾過手段を透過することにより、多重されている複数
の光波の互いの波長間隔が増大された信号光となり、回
折格子によって、チャネル間クロスト−りが劣化される
ことなく、分波が行われる。
(Operation) Signal light, in which a plurality of light waves with different wavelengths are multiplexed, is input to the light wave filtering means. The incident signal light passes through this light wave filtering means, thereby becoming a signal light in which the mutual wavelength spacing of a plurality of multiplexed light waves is increased, and inter-channel crosstalk is degraded by the diffraction grating. Demultiplexing is performed without any interference.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明における光分波器の第1−の実施例を
示す図である。(1)は光ファイバであり、この光ファ
イバ(1)で伝送される信号光には、波長の異なる複数
の光波が多重されている。例えば、この信号光には、第
2図に示すように#1から#Nまでの異なる波長を持つ
N個の光波が等間隔に多重されている。この隣り合う光
波の波長間隔をΔλとする。
FIG. 1 is a diagram showing a first embodiment of an optical demultiplexer according to the present invention. (1) is an optical fiber, and the signal light transmitted through this optical fiber (1) is multiplexed with a plurality of light waves having different wavelengths. For example, in this signal light, N light waves having different wavelengths from #1 to #N are multiplexed at equal intervals as shown in FIG. Let the wavelength interval between these adjacent light waves be Δλ.

光ファイバ(1)から出射された信号光である第1の信
号光は、第1の光学系、例えばコリメートレンズ(2)
で平行光に変換され、光分岐手段、例えばビームスプリ
ッタ(3)によって2方向に分岐される。分岐された一
方の信号光は光波濾過手段、例えばファブリペロ−共振
器(5)に入射される。
The first signal light, which is the signal light emitted from the optical fiber (1), is sent to a first optical system, for example, a collimating lens (2).
The light is converted into parallel light and split into two directions by a light branching means, for example a beam splitter (3). One of the branched signal lights is input to a light wave filtering means, for example, a Fabry-Perot resonator (5).

このファブリペロ−共振器(5)を第1の信号光が透過
することにより、この信号光に多重されている光波の互
いの波長間隔か増大される。
By transmitting the first signal light through this Fabry-Perot resonator (5), the mutual wavelength spacing of the light waves multiplexed with this signal light is increased.

例えば、ここでは、ファブリペロ−共振器(5)の共振
周波数を、第2図のN個の光波のうち、偶数番号の光波
を透過させる特性を持つように調整する。
For example, here, the resonant frequency of the Fabry-Perot resonator (5) is adjusted so that it has a characteristic of transmitting even-numbered light waves among the N light waves shown in FIG.

ファブリペロ−共振器(5)を透過した信号光は、回折
格子(6)に入射され、ここで信号光は、波長ごとに分
波される。分波された信号光は、集光レンズ(7)によ
って焦点面上の受光素子(8)に集光される。
The signal light transmitted through the Fabry-Perot resonator (5) is incident on the diffraction grating (6), where the signal light is demultiplexed into wavelengths. The demultiplexed signal light is focused by a condensing lens (7) onto a light receiving element (8) on the focal plane.

前記ビームスプリッタ(3)で分岐されたもう一方の信
号光は、ミラー(4)によって進行方向が変換され、光
波濾過手段1例えばファブリペロ−共振器(9)に入射
される。このファブリペロ−共振器(9)は、前記ファ
ブリペロ−共振器(5)と同様のものを用い、これをわ
ずかに傾けて、例えば、第2図の奇数番号の光波を透過
させるよう共振周波数を調整する。
The other signal light branched by the beam splitter (3) has its traveling direction changed by a mirror (4), and enters the light wave filtering means 1, for example, a Fabry-Perot resonator (9). This Fabry-Perot resonator (9) is similar to the Fabry-Perot resonator (5), and is slightly tilted to adjust the resonant frequency so that, for example, odd-numbered light waves in FIG. 2 are transmitted. do.

ファブリペロ−共振器(9)を透過した信号光は、回折
格子(10)で分波され、集光レンズ(11)により分
波された信号光が焦点面上の受光素子(12)に集光さ
れる。
The signal light transmitted through the Fabry-Perot resonator (9) is demultiplexed by the diffraction grating (10), and the demultiplexed signal light is focused by the condenser lens (11) onto the light receiving element (12) on the focal plane. be done.

ここで受光素子(8) 、 (12)には例えば、光検
出器アレイ等が用いられる。あるいは受光素子の代わり
に半導体レーザアレイ、光導波路アレイ等が用いられる
。半導体レーザアレイが用いられる場合は、第1図の装
置を光合波器として用いることも可能である。
Here, for example, a photodetector array or the like is used as the light receiving elements (8) and (12). Alternatively, a semiconductor laser array, an optical waveguide array, etc. may be used instead of the light receiving element. When a semiconductor laser array is used, the device shown in FIG. 1 can also be used as an optical multiplexer.

上記のように構成した場合は、ファブリペロ−共振器(
5) 、 (9)を透過し、回折格子(6) 、  (
1,0)に入射される信号光に多重されている光波の波
長間隔を2Δλとすることかできるので、前記した式■
かられかるように△λを分波する光分波器と比較すれば
、光学レンズの焦点距離を小さくすることができる。
When configured as above, a Fabry-Perot resonator (
5), (9) and diffraction gratings (6), (
1,0)), the wavelength interval of the light waves multiplexed to the signal light incident on the input signal light can be set to 2Δλ, so the above equation
Compared to an optical demultiplexer that separates Δλ from light, the focal length of the optical lens can be made smaller.

第3図は、本発明にかかる第2の実施例の構成を示す図
である。
FIG. 3 is a diagram showing the configuration of a second embodiment according to the present invention.

光ファイバ(1)より出射された第1の信号光は、コリ
メートレンズ(2)で平行光に変換された後、偏光ビー
ムスプリッタ(21) 、 (2B) 、45°ファラ
デ回転子(23)、  コ、/2波長板(24)、及び
ミラー(22)(25) 、 (27) 、 (28)
より成る第1の光ザーキュレータ(■迎に入射される。
The first signal light emitted from the optical fiber (1) is converted into parallel light by the collimating lens (2), and then polarized beam splitter (21), (2B), 45° Faraday rotator (23), , /2 wavelength plate (24), and mirrors (22) (25) , (27) , (28)
The light is incident on the first light circulator (2).

コリメートレンズ(2)より出射された第1の信号光は
はじめに偏光ビームスプリッタ(21)に入射される。
The first signal light emitted from the collimating lens (2) first enters the polarizing beam splitter (21).

この偏光ビームスプリッタ(21)は、偏光方向が紙面
に平行な信号光を透過させ、紙面と垂直な信号光を反射
させる特性をもつ。偏光ビームスプリッタ(21)を透
過した信号光(20a)は、45゜ファラデー回転子(
23)に入射され、偏光方向か45°回転される。そし
てこの信号光が1/2波長板(24)に入射されると偏
光方向は、45°フアラデ一回転子(23)で回転され
た方向とは逆方向に45°回転される。従って、1/2
波長板(24)を透過した後の信号光(20a)の偏光
方向は、45°フアラデ一回転子(23)に入射される
前と同じになる。
This polarizing beam splitter (21) has a characteristic of transmitting signal light whose polarization direction is parallel to the plane of the paper and reflecting signal light whose polarization direction is perpendicular to the plane of the paper. The signal light (20a) transmitted through the polarizing beam splitter (21) is rotated by a 45° Faraday rotator (
23), and the polarization direction is rotated by 45°. When this signal light is incident on the 1/2 wavelength plate (24), the polarization direction is rotated by 45° in the opposite direction to the direction rotated by the 45° Farade single rotator (23). Therefore, 1/2
The polarization direction of the signal light (20a) after passing through the wave plate (24) is the same as before entering the 45° Farade single rotator (23).

偏光ビームスプリッタ(2I)で反射された信号光(2
0b)も、45°フアラデ一回転子(23)、  1/
2波長板(24)で同様の偏光面の変換が行われる。
Signal light (2I) reflected by polarizing beam splitter (2I)
0b) also has a 45° Hualade single rotor (23), 1/
A similar polarization plane conversion is performed by a two-wave plate (24).

両信号光は、偏光ビームスプリッタ(26)で合成され
、ボート(30)より出射され、ファブリペロ−共振器
(5)に入射される。ここではこのファブリペロ−共振
器(5)の共振周波数を例えば、第2図に示す等間隔に
多重されたN個の光波のうち、#1、#4.#7.・・
・、3に−2(1(=定数)の光波を透過させる特性を
有するよう調整する。
Both signal lights are combined by a polarizing beam splitter (26), output from a boat (30), and input into a Fabry-Perot resonator (5). Here, the resonant frequency of this Fabry-Perot resonator (5) is set to, for example, #1, #4, etc. of N light waves multiplexed at equal intervals shown in FIG. #7.・・・
・Adjust so that it has a characteristic of transmitting light waves of −2 (1 (=constant)) to 3.

ファブリペロ−共振器(5)を透過した信号光は、回折
格子(6)に入射され、波長ごとに分波される。
The signal light transmitted through the Fabry-Perot resonator (5) enters the diffraction grating (6) and is demultiplexed into wavelengths.

分波された信号光は、集光レンズ(7)により受光素子
(8)上に集光される。
The demultiplexed signal light is focused onto a light receiving element (8) by a focusing lens (7).

一方、ファブリペロ−共振器(5)の入射面て反射され
た信号光は、再びボート(30)より偏光ビムスブリッ
タ(26)で2つの信号光に分割される。
On the other hand, the signal light reflected from the entrance surface of the Fabry-Perot resonator (5) is split into two signal lights by the polarizing beam splitter (26) from the boat (30) again.

各信号光は1/2波長板(24)、 45°ファラデ回
転子(23)に入射される。1/2波長板(24)で、
信号光の偏光方向は456回転され、45°フアラデ一
回転子(23)で、さらに同じ方向に45°回転される
。従って、45°フアラデ一回転子(23)を透過した
信号光(20a) 、 (20b)の偏光方向は、それ
ぞれ紙面と垂直1紙面と平行となる。各信号光は偏光ビ
ームスプリッタ(2I)で合成され、ミラー(27)で
進行方向が変換され、ポート(33)よりファブリペロ
−共振器(9)に入射される。
Each signal light is incident on a 1/2 wavelength plate (24) and a 45° Faraday rotator (23). With a 1/2 wavelength plate (24),
The polarization direction of the signal light is rotated by 456 degrees, and further rotated by 45 degrees in the same direction by a 45 degree Farade rotator (23). Therefore, the polarization directions of the signal lights (20a) and (20b) transmitted through the 45° Farade single rotator (23) are perpendicular to the page and parallel to the page. Each signal light is combined by a polarizing beam splitter (2I), its traveling direction is changed by a mirror (27), and the signal light is input to a Fabry-Perot resonator (9) through a port (33).

ファブリペロ−共振器(9)は、第1の実施例の場合と
同様の特性を有し、第2図において隣りあわない波長の
光波を透過させる。ファブリペロ共振器(9)を透過し
た信号光は多重されている光波の互いの波長間隔が増大
され、回折格子(10)に入射される。ここで、この信
号光は波長ごとに分岐され、集光レンズ(11)により
受光素子(12)に集光される。
The Fabry-Perot resonator (9) has the same characteristics as in the first embodiment and transmits light waves of non-adjacent wavelengths in FIG. The signal light transmitted through the Fabry-Perot resonator (9) is multiplexed and the wavelength interval between the multiplexed light waves is increased, and the signal light is incident on the diffraction grating (10). Here, this signal light is split into wavelengths and is focused onto a light receiving element (12) by a condensing lens (11).

前記ファブリペロ−共振器(9)の入射面で反射された
信号光は再びポー1−(33)から偏光ビームスプリッ
タ(2])に入射されて、2方向に分割される。
The signal light reflected by the entrance surface of the Fabry-Perot resonator (9) enters the polarizing beam splitter (2) from the port 1-(33) again and is split into two directions.

分割された信号光は偏光ビームスプリッタ(21)。The split signal light is sent to a polarization beam splitter (21).

45°フアラデ一回転子(23)、  1 / 2波長
板(24)偏光ビームスプリッタ(2B)、  ミラー
(28)を経て、ボー) (34)より出射される。こ
の信号光は、回折格子(35)で波長ごとに分波され、
集光レンズ(36)によって受光素子(37)上に集光
される。
After passing through a 45° Farade single rotator (23), a 1/2 wavelength plate (24), a polarizing beam splitter (2B), and a mirror (28), it is emitted from a bow (34). This signal light is split into wavelengths by a diffraction grating (35),
The light is focused onto a light receiving element (37) by a focusing lens (36).

上記のように構成した場合は、特に光ファイバ(1)よ
り出射された信号光を3分割して回折格子で分波するこ
とができるので、多重されている光波の波長間隔をさら
に大きくすることができる。
In the case of the above configuration, the signal light emitted from the optical fiber (1) can be divided into three parts and demultiplexed by the diffraction grating, so the wavelength interval of the multiplexed light waves can be further increased. I can do it.

第4図は本発明の第3の実施例を示す図である。FIG. 4 is a diagram showing a third embodiment of the present invention.

(60)は半導体レーザであり、コヒーレント光を発生
する。このコヒーレント光は、第2の光学系、例えばコ
リメートレンズ(6I)で平行光に変換された後、ビー
ムスプリッタ(3)に入射される。一方、光ファイバ(
1)より出射された信号光は、コリメトレンズ(2)で
平行光に変換された後、ビームスプリッタ(3)に入射
され、ここで前記コヒーレント光との混合が行われる。
(60) is a semiconductor laser that generates coherent light. This coherent light is converted into parallel light by a second optical system, such as a collimating lens (6I), and then enters a beam splitter (3). On the other hand, optical fiber (
The signal light emitted from 1) is converted into parallel light by a collimating lens (2), and then enters a beam splitter (3), where it is mixed with the coherent light.

混合された信号光は、偏光ビームスプリッタ(21)、
(51,) 、  ミラー(22) 、 (52)及び
45°ファラデ回転子(23〉より成る光サーキュレー
タ(300)に入射される。
The mixed signal light is sent to a polarizing beam splitter (21),
(51,), mirrors (22), (52), and a 45° Faraday rotator (23).

信号光は、はじめに偏光ビームスプリッタ(2I)に入
射され、2信号に分割される。
The signal light first enters the polarizing beam splitter (2I) and is split into two signals.

各信号光は、45°フアラデ一回転子(23)に入射さ
れ、ここで光波の偏光面が、45°回転される。
Each signal light is incident on a 45° Faraday rotator (23), where the plane of polarization of the light wave is rotated by 45°.

各信号光はファブリペロ−共振器(5)に入射される。Each signal light is input to a Fabry-Perot resonator (5).

このファブリペロ−共振器(5)は第1の実施例の場合
と同様の特性を持ち、これを透過した2つの信号光は、
多重されている光波の互いの波長間隔が増大され、回折
格子(6)で波長ごとに分波される。分岐された2つの
信号光は、集光レンズ(43a) 、 (48b)で集
光されて受光素子(44a) 、 (44J+)上に入
射される。
This Fabry-Perot resonator (5) has the same characteristics as in the first embodiment, and the two signal lights transmitted through it are
The mutual wavelength spacing of the multiplexed light waves is increased, and the light waves are separated into wavelengths by a diffraction grating (6). The two branched signal lights are condensed by condensing lenses (43a) and (48b) and are incident on light receiving elements (44a) and (44J+).

ファブリペロ−共振器(5)の入射面で反射された2つ
の信号光は、45°フアラデ一回転子(23)て再び偏
光方向が変換され、偏光ビームスプリッタ(21,、)
、ビームスプリッタ(51)、  ミラー(52)を経
て、回折格子(10)に入射される。
The two signal lights reflected by the entrance plane of the Fabry-Perot resonator (5) are polarized again by the 45° Farade rotator (23), and then transferred to the polarizing beam splitter (21, , 2).
, a beam splitter (51), and a mirror (52) before entering the diffraction grating (10).

ここで分波が行われ、各々の信号光は集光レンズ(47
a) 、 (47b)に集光され、素子(48a) 、
 (49b)に入射される。
Demultiplexing is performed here, and each signal light is sent to a condenser lens (47
a) , (47b), and is focused on the element (48a),
(49b).

上記のように構成した場合は、特に半導体レーザ(60
)より出射されるコヒーレント光が局部発振信号の役割
を果し、局発ゲインが得られる。また、偏波ダイバーシ
チ構成になっているので、光ファイバ(1)による偏光
変動に対応することができる。
In the case of the above configuration, especially the semiconductor laser (60
) plays the role of a local oscillation signal, and local oscillation gain is obtained. Furthermore, since it has a polarization diversity configuration, it is possible to cope with polarization fluctuations due to the optical fiber (1).

また、1/2波長板を一つ略すことができ、コストが低
減される。
Furthermore, one half-wave plate can be omitted, reducing costs.

第5図に本発明の第4の実施例を示す。この例では第1
図におけるファブリペロ−共振器(5)。
FIG. 5 shows a fourth embodiment of the present invention. In this example, the first
Fabry-Perot resonator (5) in the figure.

(9)のかわりに、ビームスプリッタ([12) 、 
(ee) 、ミラー(83)、 (84)で構成される
マツハツエンダ−干渉計を用いている。マツハツエンダ
−干渉計も波長に対して周期的に分波できるので、ファ
ブリペロ−共振器と同様に用いることができる。しかし
、ファブリベロー共振器と異赴る点として、第6図に示
すように、マソハッニンダー干渉計を透過する光の透過
強度の特性が正弦波になる点、またマツハツエンダ−干
渉計では出力ポートが2つあり、第1のポート(67)
で打ち消された波長の信号光は第2のポート(68)よ
り出射され、第2のポート(68)で打ち消された波長
の信号光は第1のポート(67)より出射されるという
点である。第11のポートより出射された信号光は、第
1の回折格子に入射され波長ごとに分波される。第2の
ポートより出射された信号光も同様に第2の回折格子に
入射され分波が行われる。マツハフェンダ−干渉計の波
長特性を微調するには平行板(65)をマツハツエンダ
−干渉計の光路中に挿入し、これの角度を微調すればよ
い。
Instead of (9), beam splitter ([12),
A Matsuhatsu Ender interferometer consisting of (ee), mirrors (83), and (84) is used. Since the Matsuhatsu Ender interferometer can also periodically demultiplex wavelengths, it can be used in the same way as the Fabry-Perot resonator. However, it differs from the Fabry-Bello resonator in that, as shown in Figure 6, the transmission intensity characteristics of the light that passes through the Masso-Hunninder interferometer are sinusoidal, and the Matsoh-Hunninder interferometer has two output ports. Yes, the first port (67)
The signal light of the wavelength canceled by is emitted from the second port (68), and the signal light of the wavelength canceled by the second port (68) is emitted from the first port (67). be. The signal light emitted from the eleventh port enters the first diffraction grating and is demultiplexed into wavelengths. The signal light emitted from the second port is similarly incident on the second diffraction grating and demultiplexed. To finely adjust the wavelength characteristics of the Matsuha Fender interferometer, a parallel plate (65) may be inserted into the optical path of the Matsuha Fender interferometer, and the angle of the parallel plate (65) may be finely adjusted.

木実施例では特に光サーキュレータを用いなくて済むの
で部品点数を削減することができる。
In the wooden embodiment, since there is no need to use an optical circulator, the number of parts can be reduced.

[発明の効果] 以上、本発明によれば、多重されている複数の光波のう
ち、一部の光波の互いの波長間隔が増大された信号光か
光波濾過手段より出射され、この信号光が回折格子によ
り異なる波長ごとに分波されるので、小型で安定性が高
くでき、またチャネル間クロストークや1波あたりの光
波帯域幅を改善することができる。
[Effects of the Invention] As described above, according to the present invention, among a plurality of multiplexed light waves, a signal light whose mutual wavelength interval has been increased is emitted from the light wave filtering means, and this signal light is Since the light is separated into different wavelengths by the diffraction grating, it can be made compact and highly stable, and the crosstalk between channels and the optical wave bandwidth per wave can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1の実施例の構成を示す図、第2
図は本発明に用いられる信号光に多重されている光波ど
うしの波長間隔を示す図、第3図は本発明の第2の実施
例の構成を示す図、第4図は本発明の第3の実施例の構
成を示す図、第5図は本発明第4の実施例の構成を示す
図、第6図はマツハツエンダ−干渉計を透過した光の透
過強度特性を示す図、第7図は本発明の従来例の構成を
示す図である。 (1)・・・光ファイバ (2)・・・コリメートレンズ (3)・・・ビームスプリッタ (4)   ミ ラ (5) 、  (9)・・・ファブリペロ−共振器。 (6) 、  (1,0)・・回折格子(7) 、  
(Il、)・・集光レンズ(8) 、 (12)・・・
受光素子
FIG. 1 is a diagram showing the configuration of the first embodiment of the present invention, and FIG.
The figure shows the wavelength spacing between light waves multiplexed in the signal light used in the present invention, Figure 3 shows the configuration of the second embodiment of the present invention, and Figure 4 shows the configuration of the third embodiment of the present invention. FIG. 5 is a diagram showing the configuration of the fourth embodiment of the present invention, FIG. 6 is a diagram showing the transmitted intensity characteristics of light transmitted through the Matsuhatsu Ender interferometer, and FIG. 7 is a diagram showing the configuration of the fourth embodiment of the present invention. 1 is a diagram showing a configuration of a conventional example of the present invention. (1)...Optical fiber (2)...Collimating lens (3)...Beam splitter (4) Mira (5), (9)...Fabry-Perot resonator. (6), (1,0)...diffraction grating (7),
(Il,)...Condensing lens (8), (12)...
Light receiving element

Claims (4)

【特許請求の範囲】[Claims] (1)波長の異なる複数の光波が多重されている第1の
信号光が出射される第1の光学系と、前記第1の信号光
に多重されている複数の光波のうち、一部の光波の互い
の波長間隔を増大するように信号光が出射される光波濾
過手段と、前記光波濾過手段より出射された信号光が異
なる波長ごとに分波される回折格子とを具備することを
特徴とする光分波器。
(1) A first optical system from which a first signal light multiplexed with a plurality of light waves with different wavelengths is emitted; It is characterized by comprising a light wave filtering means from which the signal light is emitted so as to increase the mutual wavelength interval of the light waves, and a diffraction grating from which the signal light emitted from the light wave filtering means is split into different wavelengths. Optical demultiplexer.
(2)前記第1の信号光が複数方向に分岐される光分岐
手段と、前記光分岐手段で分岐された信号光に多重され
ている複数の光波のうち、一部の光波の互いの波長間隔
を増大するように信号光が出射される複数の光波濾過手
段と、前記複数の光波濾過手段より出射された信号光が
異なる波長ごとに分波される複数の回折格子とを具備す
ることを特徴とする請求項(1)記載の光分波器。
(2) an optical branching means for branching the first signal light into a plurality of directions; and mutual wavelengths of some of the light waves among the plurality of light waves multiplexed into the signal light branched by the optical branching means. The method includes a plurality of light wave filtering means from which signal light is emitted with increasing intervals, and a plurality of diffraction gratings from which the signal light emitted from the plurality of light wave filtering means is split into different wavelengths. The optical demultiplexer according to claim (1).
(3)前記光波濾過手段がファブリペロー共振器であり
、前記第1の光学系と前記光波濾過手段との間に、複数
の出力ポートを有する光サーキュレータが挿入され、前
記複数のポートの一部より出射された信号光が異なる波
長ごとに分波される回折格子を具備することを特徴とす
る請求項(1)記載の光分波器。
(3) The light wave filtering means is a Fabry-Perot resonator, and an optical circulator having a plurality of output ports is inserted between the first optical system and the light wave filtering means, and a part of the plurality of ports is inserted. The optical demultiplexer according to claim 1, further comprising a diffraction grating that demultiplexes the signal light emitted from the optical fiber into different wavelengths.
(4)前記光波濾過手段がマッハツェンダー干渉計であ
り、前記マッハツェンダー干渉計の光路中に平行板が挿
入され、このマッハツェンダー干渉計の第1および第2
のポートより出射される互いの波長間隔が増大されて多
重されている信号光が異なる波長ごとに分波される第1
および第2の回折格子を具備することを特徴とする請求
項(1)記載の光分波器。
(4) The light wave filtering means is a Mach-Zehnder interferometer, and a parallel plate is inserted into the optical path of the Mach-Zehnder interferometer, and the first and second
The first port in which the multiplexed signal light is demultiplexed into different wavelengths by increasing the wavelength spacing between the two ports.
The optical demultiplexer according to claim 1, further comprising a second diffraction grating and a second diffraction grating.
JP7651889A 1989-03-30 1989-03-30 Optical demultiplexer Pending JPH02257109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7651889A JPH02257109A (en) 1989-03-30 1989-03-30 Optical demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7651889A JPH02257109A (en) 1989-03-30 1989-03-30 Optical demultiplexer

Publications (1)

Publication Number Publication Date
JPH02257109A true JPH02257109A (en) 1990-10-17

Family

ID=13607498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7651889A Pending JPH02257109A (en) 1989-03-30 1989-03-30 Optical demultiplexer

Country Status (1)

Country Link
JP (1) JPH02257109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0682278A1 (en) * 1994-05-13 1995-11-15 BRITISH TELECOMMUNICATIONS public limited company Optical filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0682278A1 (en) * 1994-05-13 1995-11-15 BRITISH TELECOMMUNICATIONS public limited company Optical filter

Similar Documents

Publication Publication Date Title
EP1076934B1 (en) Optical fiber even and odd channel separator with nonlinear interferometers
US5793912A (en) Tunable receiver for a wavelength division multiplexing optical apparatus and method
US6455841B2 (en) Optical wavelength router based on polarization interferometer
EP0859249A1 (en) Optical fiber wavelength multiplexer and demultiplexer
US6337935B1 (en) Dispersed image inverting optical wavelength multiplexer
US20020176135A1 (en) Multiplexer and demultiplexer for single mode optical fiber communication links
US6249364B1 (en) Optical wave-guide wavelength multiplexer and demultiplexer
US7068885B2 (en) Double diffraction grating planar lightwave circuit
US7221452B2 (en) Tunable optical filter, optical apparatus for use therewith and method utilizing same
US20030063385A1 (en) Optical multiplexer/demultiplexer and adjustment method thereof
US6606197B2 (en) Dual grating filtering system
KR100566853B1 (en) Apparatus which includes a virtually images phased array (vipa) in combination with a wavelength splitter to demultiplex a wavelength division multiplexed (wdm) light
US20040196556A1 (en) Diffraction grating for wavelength division multiplexing/demultiplexing devices
US6678440B2 (en) Optic fibre multiplexer-demultiplexer with flattened response
US6928210B2 (en) Apparatus for demultiplexing optical signals at a large number of wavelengths
AU7982600A (en) Dual grating light filtering system
JPH02257109A (en) Optical demultiplexer
JP2000131542A (en) Optical transmission and reception module
JP2004240215A (en) Optical communication device and optical communication system
WO2002001772A2 (en) Optical wavelength-division multiplexing and demultiplexing by using a common optical bandpass filter
US6859317B1 (en) Diffraction grating for wavelength division multiplexing/demultiplexing devices
JP2005338475A (en) Optical filter device
US7139447B1 (en) Angular dispersion amplification method and apparatus for optical demultiplexing
JP2634979B2 (en) Optical multiplexer / demultiplexer
KR100377389B1 (en) Reflective optical wavelength multiplexer