JPH02255837A - Particulate polyorganosiloxane and its production - Google Patents

Particulate polyorganosiloxane and its production

Info

Publication number
JPH02255837A
JPH02255837A JP31066389A JP31066389A JPH02255837A JP H02255837 A JPH02255837 A JP H02255837A JP 31066389 A JP31066389 A JP 31066389A JP 31066389 A JP31066389 A JP 31066389A JP H02255837 A JPH02255837 A JP H02255837A
Authority
JP
Japan
Prior art keywords
fine particles
polyorganosiloxane
parts
particles
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31066389A
Other languages
Japanese (ja)
Other versions
JP2842904B2 (en
Inventor
Hiroshi Kimura
博 木村
Kenji Saito
健司 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Original Assignee
Toshiba Silicone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26563702&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02255837(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Silicone Co Ltd filed Critical Toshiba Silicone Co Ltd
Priority to JP1310663A priority Critical patent/JP2842904B2/en
Publication of JPH02255837A publication Critical patent/JPH02255837A/en
Application granted granted Critical
Publication of JP2842904B2 publication Critical patent/JP2842904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PURPOSE:To obtain the title particle which can be easily mixed or dispersed with various plastics by forming a polyorganosiloxane so that it may have a specified average compositional formula, a spherical particulate form and a specified mean particle diameter. CONSTITUTION:An organosilanol and/or its partial condensate obtained by partially or fully hydrolyzing an organoalkoxysilane mixture desirably containing 1mol of an organotrialkoxysilane of formula I (wherein R<1> is a hydrocarbon group; and R<2> is an alkyl) and 0.01-2mol of a diorganodialkoxysilane of formula II in the presence of an organic acid (e.g. acetic acid) is polycondensed in an aqueous alkali solution (e.g. ammonia water) or a mixture of an aqueous alkali solution with an organic solvent to obtain a dispersion of polyorganosiloxane particles, and these particles are separated and dried to obtain the title particles being spherical and having a mean particle diameter of 0.01-100mum and an average composional formula: RaSiOb (wherein R is a monovalent hydrocarbon group; 1<a<1.7; 1<b<1.5; and a+2b=4).

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はポリオルガノシロキサン微粒子に関し2、更に
詳しくは、平均粒子径が小さく均一で、かつ均質な組成
の、形状が球状であるポリオルガノシロキサン微粒子及
びその製造方法に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Field of Application) The present invention relates to polyorganosiloxane fine particles2, more specifically, polyorganosiloxane fine particles having a small average particle size, a uniform composition, and a spherical shape. The present invention relates to polyorganosiloxane fine particles and a method for producing the same.

(従来の技術) シロキサン結合をもつ微粒子としては、煙霧質シリカ、
沈殿シリカ、粉砕石英などのシリカ類が公知である。こ
れらの微粒子は、各種プラスチックの増粘、揺変効果、
顔料の凝集防止効果、有機ゴムの補強効果、液体の微粒
子化、フィルムのブロッキング防止、塗料の艶消し、ト
ナーの凝集防止及び帯電量の調節などを目的とした添加
剤として用いられている。
(Prior art) Fine particles with siloxane bonds include fumed silica,
Silicas such as precipitated silica and ground quartz are known. These fine particles have a thickening, thixotropic effect, and
It is used as an additive for the purpose of preventing pigment aggregation, reinforcing organic rubber, making liquids into fine particles, preventing film blocking, matting paint, preventing toner aggregation, and adjusting the amount of charge.

しかし、これらシリカ微粒子は平均組成式がSiO□で
、真比重(以下比重と略す)が約2.0と大きいために
、分散液等に用いた場合は沈降分離が生じ易く、また、
親水性が大きいために、各種プラスチックスへの相溶性
が悪く、かつ配合が困難であったり、耐水性が求められ
る用途には不向きである。
However, since these silica fine particles have an average composition formula of SiO□ and a true specific gravity (hereinafter abbreviated as specific gravity) of about 2.0, they tend to cause sedimentation and separation when used in dispersions, etc.
Due to its high hydrophilicity, it has poor compatibility with various plastics and is difficult to blend, and is unsuitable for applications that require water resistance.

相溶性と耐水性とを向上させる目的のために、疎水性を
もつ微粒子の製造方法として特開昭63−6062号公
報には、シリカ微粉末を両末端に加水分解性基やハロゲ
ン原子を有するポリオルガノシロキサン及び有機ゲイ素
化合物で処理する方法が、また、特表昭57−5007
38号公報には、アルキルシリケート、該アルキルシリ
ケートのアルコキシ基を完全に加水分解する水、アルコ
ール及び有機ケイ素化合物の疎水性化剤を塩基性触媒の
存在下に混合してシリカ充填剤を製造する方法が開示さ
れている。しかしながら、これらの方法で得られた微粒
子はいずれも無機のンリカ粉末表面にシリコーン化合物
による表面処理をしたものである。したがって、この様
な製造方法による微粒子は比重が大きいという欠点が残
されている。加えて、前記特表昭57−500738号
公報に記載の製造方法は、アルキルシリケートの加水分
解時にゲル化が起こる前に、有機ケイ素化合物の疎水性
化剤を添加混合しなければならない複雑なもので、粒子
成分が均質で特性も安定した微粒子を得ることが困難で
あるという問題がある。
For the purpose of improving compatibility and water resistance, JP-A-63-6062 discloses a method for producing hydrophobic fine particles, in which fine silica powder has hydrolyzable groups or halogen atoms at both ends. The method of treatment with polyorganosiloxane and organogylene compound is also disclosed in Japanese Patent Publication No. 57-5007.
No. 38 discloses that a silica filler is produced by mixing an alkyl silicate, water that completely hydrolyzes the alkoxy group of the alkyl silicate, an alcohol, and a hydrophobizing agent of an organosilicon compound in the presence of a basic catalyst. A method is disclosed. However, the fine particles obtained by these methods all have the surface of inorganic phosphor powder treated with a silicone compound. Therefore, there remains a drawback that the fine particles produced by such a manufacturing method have a large specific gravity. In addition, the production method described in Japanese Patent Publication No. 57-500738 is a complicated process in which a hydrophobizing agent for an organosilicon compound must be added and mixed before gelation occurs during hydrolysis of the alkyl silicate. However, there is a problem in that it is difficult to obtain fine particles with homogeneous particle components and stable characteristics.

一方疎水性を有しかつ比重も小さくしたゴム状の微粒子
を得る方法とし2て特開昭59−68333号公報には
硬化性ポリオルガノシロキサン組成物を熱風中に噴出さ
せて硬化させる方法が開示されており、特開昭62−2
43621号公報には付加型液状ゴム組成物を水中に乳
化させてエマルション化させたのちに、25℃以上の温
水中に分散させて粒状に硬化させる方法が開示されてお
り、特開昭63=17959号公報には前記特開昭62
−243621号公報記載の付加型液状ゴム組成物の構
成成分を一60〜+5℃の低温下で混合したのち、熱風
中に噴霧させて、噴霧状態で硬化させる方法が開示され
ている。
On the other hand, as a method for obtaining rubber-like fine particles having hydrophobicity and a low specific gravity, JP-A-59-68333 discloses a method in which a curable polyorganosiloxane composition is ejected into hot air and cured. JP-A-62-2
43621 discloses a method of emulsifying an addition-type liquid rubber composition in water and then dispersing it in hot water of 25° C. or higher to harden it into granules. No. 17959 has the above-mentioned Japanese Patent Application Laid-open No. 17959.
JP-243621 discloses a method in which the constituent components of an addition-type liquid rubber composition are mixed at a low temperature of -60 to +5°C, and then sprayed into hot air and cured in the sprayed state.

しかし、これらの方法では均一な組成で、ミクロンオー
ダーの平均粒子径が小さい微粒子や粒子形状が球状に揃
った微粒子を得ることが困難である。したがって、グラ
スチックに配合する際均一分散が困難であったり、フィ
ルム等への添加用途には不向きであるという不都合を有
する。
However, with these methods, it is difficult to obtain fine particles with a uniform composition, a small average particle diameter on the order of microns, or fine particles with a uniform spherical particle shape. Therefore, it has the disadvantage that it is difficult to uniformly disperse it when blended into a glass stick, and it is not suitable for use as an additive to films or the like.

一方、本発明者らは、シロキサン結合をも一〇微粒子と
して、メチルトリアルコキシシランをアンモニア又はア
ミン等の水溶液中で加水分解・縮合することにより、自
由流動性が優れ、かつ球状の揃ったポリメチルシルセス
キオキサン粒子が得られることを見出した(特開昭60
 13813号公報、特開昭63−77940号公報な
ど)。
On the other hand, the present inventors created polystyrene particles with excellent free-flowing properties and uniform spherical shape by hydrolyzing and condensing methyltrialkoxysilane in an aqueous solution of ammonia or amine with 10 fine particles containing siloxane bonds. It was discovered that methylsilsesquioxane particles could be obtained (Japanese Unexamined Patent Publication No. 1983-1999)
13813, JP-A-63-77940, etc.).

しかし、この方法で得られた微粒子は比重が約1.32
であり、粒子形状も揃っているが、弾性に乏しく、半導
体のような繊細な被封止物に適用する場合には被封止物
を破壊したり、微粒子自身が外圧に対して変形できず、
応力の集中で割れるなどの問題を生じることがある。ま
た、メチル基以外の有機基を導入し、て各種プラスチッ
クとの相溶性や屈折率の調整機#fi:や反応性基によ
る変性機能を持たせた微粒子を提供するには至っていな
い。
However, the fine particles obtained by this method have a specific gravity of about 1.32.
Although the particle shape is uniform, it has poor elasticity, and when applied to delicate objects such as semiconductors, it may destroy the object to be sealed, or the particles themselves may not be able to deform due to external pressure. ,
Problems such as cracking may occur due to stress concentration. Further, it has not yet been possible to provide fine particles that have compatibility with various plastics, a refractive index adjuster #fi:, or a modifying function using a reactive group by introducing an organic group other than a methyl group.

(発明が解決しようとする課題) 本発明は、真比重が小さく、平均粒子径が小さく、粒子
形状が球状で、疎水性を有し、各種有機基を導入した割
れにくい均質な組成を持つ粒子径の揃ったポリオルガノ
シロキサン微粒子及びその製造方法を提供することを目
的とする。
(Problems to be Solved by the Invention) The present invention provides particles that have a small true specific gravity, a small average particle diameter, a spherical particle shape, hydrophobicity, and have a homogeneous composition that is difficult to break and incorporates various organic groups. It is an object of the present invention to provide polyorganosiloxane fine particles with uniform diameter and a method for producing the same.

[発明の構成] (課題を解決するための手段) 本発明者らはこのようなポリオルガノシロキサン微粒子
を得るべく、先に提案した特開平01−217039号
公報に記載の製造方法を踏まえて更に検討を重ねた結果
、2種類のアルコキシシランを有機酸の存在下で加水分
解して2種類のオルガノシラノール及び/又はその加水
分解縮合物を得、これらをアルカリ溶液中で重縮合反応
させて粒子化し、次いで乾燥させるごとにより、目的の
ポリオルガノシロキサン微粒子が得られることを見出し
、本発明を完成するに至った。
[Structure of the Invention] (Means for Solving the Problems) In order to obtain such polyorganosiloxane fine particles, the present inventors further developed the method based on the manufacturing method described in JP-A No. 01-217039 proposed earlier. As a result of repeated studies, two types of alkoxysilanes were hydrolyzed in the presence of an organic acid to obtain two types of organosilanols and/or their hydrolyzed condensates, and these were subjected to a polycondensation reaction in an alkaline solution to form particles. The inventors have discovered that the desired polyorganosiloxane fine particles can be obtained by drying and then drying, and have completed the present invention.

即ち、本発明は 平均組成式 %式% (式中、Rは置換又は非置換の1価の炭化水素基を表わ
し、a及び1)はそれぞれ1<a≦1,7.1<b<1
.5及び a+2b=4の関係を満たす数である)で示される、平
均粒子径が0.O1〜]0OII7+であり、粒子の形
状が球状であるポリオルガ、ノシロキサン微粒子に関す
る。
That is, the present invention has an average compositional formula % formula % (wherein R represents a substituted or unsubstituted monovalent hydrocarbon group, and a and 1) are 1<a≦1, 7.1<b<1, respectively.
.. 5 and a+2b=4), and the average particle diameter is 0. O1~]0OII7+, and relates to polyorganic and nosiloxane fine particles having a spherical particle shape.

前記平均組成式中、置換又は非置換の1価の炭化水素基
としては、メチル、エチル、プロピル、フ゛デル、ヘキ
シル、ヘブヂル、オクチル、ノニル、デシル、ドデシル
のようなアルキル基;シクロヘキシルのようなシクロア
ルギル基;2−フェニルプロピルのようなアラルギル基
;フェニル、トリルのようなアリール基;ビニル、アリ
ルのようなアルケニル基:及びクロロメチル、γ−クロ
ロプロピル、γ−メタクリロキシプロピル、γ−グリシ
ドキシブロビル、3.4−エポキシシクロヘキシルエチ
ル、γ−メルカプトプロピル、γ−アミノプロピル、N
−(β−アミノエチル)−Tmアミノプロピル、3.3
.3−トリフルオロプロピルのような置換炭化水素基を
例示することができ、これらは°1種類又は2種類以上
が結合しCいても差支えない。
In the above average compositional formula, substituted or unsubstituted monovalent hydrocarbon groups include alkyl groups such as methyl, ethyl, propyl, phidel, hexyl, hebutyl, octyl, nonyl, decyl, and dodecyl; cycloargyl groups such as cyclohexyl; groups; aralgyl groups such as 2-phenylpropyl; aryl groups such as phenyl and tolyl; alkenyl groups such as vinyl and allyl; and chloromethyl, γ-chloropropyl, γ-methacryloxypropyl, γ-glycidoxy Brovyl, 3,4-epoxycyclohexylethyl, γ-mercaptopropyl, γ-aminopropyl, N
-(β-aminoethyl)-Tm aminopropyl, 3.3
.. Examples include substituted hydrocarbon groups such as 3-trifluoropropyl, and one type or two or more types of these may be bonded together.

前記平均組成式中、a及びbは、1<a≦1.7.1<
b<1.5及びa+2に+=4の関係を満たす数である
In the average compositional formula, a and b are 1<a≦1.7.1<
This is a number that satisfies the relationship b<1.5 and a+2 +=4.

ポリオルガノシロキサン微粒子は、平均粒子径が001
〜100p+++であり、より好ましくは0.01〜2
0Fである6 また、本発明は、−取代 RaSiOb() (式中、R1は置換又は非置換の1価の炭化水素基を表
わし、R2は置換又は非置換のアルケニル基を表わす)
で示されるオルガノトリアルコキシシランと、 一般式 RaSiOb() (式中、R’及びR2の意味は前記のとおりであるr で示されるジオルガノジアルコキシシランとからなり、
オルガノトリアルコキシシランの1−Eルに対してジオ
ルガノジアルコキシシランが001〜2モルとなるよう
な1を含む]ルガノアルコキシシランの混合物を、有機
酸の存在下で部分ないし全加水分解し、で、オルガ2ノ
シラノール及び/又はその部分縮合物を得る第】工程と
、 前記オルガノシラノール及び/又はその部分縮合物をア
ルカリの水溶液又はアルカリ水溶液と有機溶媒との混合
液中で重縮合反応させてポリオルガノシロキサン微粒子
と水又は水と有機溶媒との混合液とのデスバージョンを
得る第2工程と、 前記ディスバージョンからポリオルガノシロキサン微粒
子を乾燥させる第3工程とからなることを特徴とする前
記方法により得られるポリオルガノシロキサン微粒子の
製造方法である。
The polyorganosiloxane fine particles have an average particle diameter of 001
~100p+++, more preferably 0.01-2
6, which is 0F. The present invention also provides the following method: -Removal RaSiOb() (wherein, R1 represents a substituted or unsubstituted monovalent hydrocarbon group, and R2 represents a substituted or unsubstituted alkenyl group)
consisting of an organotrialkoxysilane represented by the formula RaSiOb() (wherein the meanings of R' and R2 are as described above), and a diorganodialkoxysilane represented by r,
A mixture of luganoalkoxysilanes containing 0.01 to 2 moles of diorganodialkoxysilane per 1-E of organotrialkoxysilane is partially or fully hydrolyzed in the presence of an organic acid, A step of obtaining an organosilanol and/or a partial condensate thereof; and carrying out a polycondensation reaction of the organosilanol and/or a partial condensate thereof in an aqueous alkali solution or a mixture of an aqueous alkali solution and an organic solvent. A second step of obtaining a desversion of polyorganosiloxane fine particles and water or a mixture of water and an organic solvent; and a third step of drying the polyorganosiloxane fine particles from the dispersion. This is a method for producing polyorganosiloxane fine particles obtained by.

以下、各工程ごとに説明する。Each step will be explained below.

第1工程は、前記−取代(I)及び(II)で示される
2種類のオルガノアルコキシシランを有機酸の存在下で
部分ないし全加水分解して、オルガノシラノール及び/
又はその部分縮合物を得る工程である。
The first step is to partially or completely hydrolyze the two types of organoalkoxysilanes represented by the above-mentioned removal allowances (I) and (II) in the presence of an organic acid to produce organosilanol and/or
or a step of obtaining a partial condensate thereof.

前記−取代CI)及び(II)中のR’の置換又は非置
換の1価の炭化水素基としては、上記したようにポリオ
ルガノシロキサン微粒子のケイ素原子に結合するものと
同一の1価の炭化水素基を例示することができる。また
これらの基が、γ−グリシドキシプロビル基、3.4−
エボキシシクロヘキシルエチル基のようなエポキシ環含
有基の場合は、加水分解反応の触媒である有機酸や重縮
合反応の触媒であるアルカリにより、一部のエポキシ環
が開環し、特に後者の触媒としてアンモニアを用いると
きは、開環反応により窒素含有基が生成するが、それは
本発明の目的を何ら損なうものではない。
The substituted or unsubstituted monovalent hydrocarbon group for R' in the above-mentioned -replacement CI) and (II) is the same monovalent carbide group as that bonded to the silicon atom of the polyorganosiloxane fine particles as described above. A hydrogen group can be exemplified. Moreover, these groups are γ-glycidoxyprobyl group, 3.4-
In the case of epoxy ring-containing groups such as epoxycyclohexylethyl, some of the epoxy rings are opened by organic acids that are catalysts for hydrolysis reactions and alkalis that are catalysts for polycondensation reactions. When ammonia is used, a ring-opening reaction produces nitrogen-containing groups, which does not in any way detract from the purpose of the invention.

前記−取代(I)及び(IN)中のR2の置換又は非置
換のアルキル基としては、メチル、エチル、プロピル、
ブチルなどのアルキル基:及びメトキシエチル、エトキ
シエチル、ブトキシエチルなどの置換アルキル基を例示
することができる。
The substituted or unsubstituted alkyl group of R2 in the above-mentioned replacement allowances (I) and (IN) includes methyl, ethyl, propyl,
Examples include alkyl groups such as butyl, and substituted alkyl groups such as methoxyethyl, ethoxyethyl, and butoxyethyl.

これらの中でも、反応速度の点からメチル基、エチル基
が好ましく、とくにメチル基が好ましい。
Among these, methyl group and ethyl group are preferred from the viewpoint of reaction rate, and methyl group is particularly preferred.

前記−取代(I)で示されるオルガノトリアルコキシシ
ランとしては、メチルトリメトキシシラン、メチルトリ
エトキシシラン、メチル]・リイソブロボキシシラン、
メチルトリス(メトキシエトキシ)シラン、エチルトリ
メトキシシラン、ビニルトリメトキシシラン、ビニルト
リス(メトキシエトキシ)シラン、フェニルトリメトキ
シシラン、γ−クロロプロピルトリメトキシシラン、γ
−メタクリロキシプロピルトリメトキシシラン、γ−グ
リシドキシプロビルトリメトキシシラン、3.4−エポ
キシシクロヘキシルエチルトリメトキシシラン、γ−メ
ルカプトプロピルトリメトキシシランを例示することが
でき、これらは1種類を用いても2種類以上を併用して
も差し支えない。
As the organotrialkoxysilane represented by the above-mentioned allowance (I), methyltrimethoxysilane, methyltriethoxysilane, methyl]-liisobroboxysilane,
Methyltris(methoxyethoxy)silane, ethyltrimethoxysilane, vinyltrimethoxysilane, vinyltris(methoxyethoxy)silane, phenyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ
Examples include methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, 3,4-epoxycyclohexylethyltrimethoxysilane, and γ-mercaptopropyltrimethoxysilane. However, there is no problem in using two or more types together.

前記式(II)で示されるオルガノジアルコキシシラン
としては、ジメチルジメトキシシラン、ジメチルジェト
キシシラン、ジフェニルジメトキシシラン、ジフェニル
ジェトキシシラン、γ−クロロプロピルメチルジメトキ
シシラン、N−(β−アミノエチル)−γ−アミノプロ
ピルメチルジメトキシシラン、γ−グリシドキシプロビ
ルメチルジメトキシシランを例示することができ、これ
らは1種類を用いても2種類以上を併用しても差し支久
ない。
The organodialkoxysilane represented by the formula (II) includes dimethyldimethoxysilane, dimethyljethoxysilane, diphenyldimethoxysilane, diphenyljethoxysilane, γ-chloropropylmethyldimethoxysilane, N-(β-aminoethyl)- Examples include γ-aminopropylmethyldimethoxysilane and γ-glycidoxypropylmethyldimethoxysilane, and these may be used alone or in combination of two or more.

この−取代(I)及び(II)で示されるオルガノアル
コキシシランの使用量は、−取代(1)で示されるオル
ガノトリアルコシンラン1モルに対し、−取代(II)
で示されるジオルガノジアルコキシシランがO,03〜
2モルである。この使用量が2モルを超えると均質な組
成をもつポリオルガノシロキサン微粒子が得難くなる。
The amount of the organoalkoxysilane represented by the -receiving amount (I) and (II) to be used is the amount of the -receiving amount (II) per mol of the organotrialcosine silane represented by the -receiving amount (1).
The diorganodialkoxysilane represented by O,03~
It is 2 moles. If the amount used exceeds 2 moles, it becomes difficult to obtain polyorganosiloxane fine particles with a homogeneous composition.

また0、01モル未満では有機基導入による機能性付与
や弾性の付与ができない。
Further, if it is less than 0.01 mole, it is impossible to impart functionality or elasticity by introducing an organic group.

第1工程の力ひ水分解反応に際しては、過剰の水に触媒
となる有機酸を溶解させて水溶液として行う。
In the first step, the strain water splitting reaction, an organic acid serving as a catalyst is dissolved in excess water to form an aqueous solution.

このように触媒として有機酸を用いることは、反応速度
が速いことと、最終的に得られるポリオルガノシロキサ
ン微粒子の用途を制限するようなイオン性物質などの不
純物を残さないか、若しくは残しても少量であることか
ら優れているものである。かかる有機酸としては、ギ酸
、酢酸、プロピオン酸、モノクロロ酢酸、シュウ酸、ク
エン酸を例示することができるが、少量で加水分解の反
応速度を上げ、かつ生成したポリオルガノシラノールの
部分縮合反応を抑制することがらギ酸及び酢酸が好まし
い。
The use of an organic acid as a catalyst in this way is advantageous in that the reaction rate is fast and that impurities such as ionic substances that limit the uses of the ultimately obtained polyorganosiloxane particles are not left behind, or even if they are left behind. It is excellent because it is a small amount. Examples of such organic acids include formic acid, acetic acid, propionic acid, monochloroacetic acid, oxalic acid, and citric acid. Formic acid and acetic acid are preferred because of their inhibition.

有機酸の使用量は、シラン及び有機酸の種類によっても
異なるが、オルガ、ノアルフキシシランな加水分解する
場合に用いる水の量100重1部に対してlXl0−”
〜1重量部が好ましく、5×10″□S〜0,1重量部
が更に好ましい。1×10−3重量部未満の場合には反
応が十分に進行せず、1重量部を超λる場合には不純物
中の酸基と11.て系中に残存する濃度が高くなるばか
りでなく、生成したオルガノシラノールが縮合しやすく
なる。
The amount of organic acid used varies depending on the type of silane and organic acid, but it is lXl0-'' per 100 parts by weight of water used when hydrolyzing Orga, Noalfoxysilane.
-1 part by weight is preferable, and 5 x 10''□S - 0.1 part by weight is more preferable.If it is less than 1 x 10-3 parts by weight, the reaction will not proceed sufficiently, and if it exceeds 1 part by weight. In this case, not only the concentration of acid groups in impurities remaining in the system increases, but also the produced organosilanol tends to condense.

加水分解反応に用いる水の量は、オルガノアルコキシシ
ラン1モルに対して2〜10モルが好ましい。水の量が
2モル未満の場合には加水分解反応が十分に進行せず、
10モルを超λる場合にはオルガノシラノールの部分縮
合物がゲル状物として分離析出してしまう。
The amount of water used in the hydrolysis reaction is preferably 2 to 10 moles per mole of organoalkoxysilane. If the amount of water is less than 2 moles, the hydrolysis reaction will not proceed sufficiently,
If the amount exceeds 10 moles, the partial condensate of organosilanol will separate and precipitate as a gel-like substance.

加水分解時の温度はとくに制限されず、常温または加熱
状態で行なってもよいが、オルガノシラノールを収率よ
く得るためには5〜80℃に保持した状態で反応を行わ
せることが好ましい。
The temperature during hydrolysis is not particularly limited and may be carried out at room temperature or in a heated state, but in order to obtain organosilanol in a good yield, it is preferable to carry out the reaction at a temperature of 5 to 80°C.

第2工程は、第1工程で得られたオルガノシラノール及
び/又はその部分縮合物から重縮合反応によりポリオル
ガノシロギ→ノ′ン微粒子を得る工程である。この第2
工程の反応は、アルカリの水溶液又は前記アルカリの水
溶液と有機溶媒との混合液中で行う。
The second step is a step of obtaining polyorganosilanol particles by polycondensation reaction from the organosilanol and/or its partial condensate obtained in the first step. This second
The reaction in the step is carried out in an aqueous alkali solution or a mixture of the aqueous alkali solution and an organic solvent.

アルカリは、その水溶液が塩基性を示すものであり、第
1工程で用いられた有機酸の中和剤として、また第2工
程の重縮合反応の触媒として作用するものである。かか
るアルカリとしては、水酸化リチウム、水酸化ナトリウ
ム、水酸化カリウムのような金属水酸化物;アンモニア
;及びモノメチルアミン、ジメチルアミンのにうな有機
アミン類を例示することができる。これらのなかでも、
ポリオルガノシロキサン微粒子の用途を制限するような
微量の不純物を残さないことからアンモニア及び有機ア
ミン類が好ましく、更には毒性が低く、除去が容易なこ
とからアンモニアがとくに好ましい。
The aqueous solution of the alkali is basic, and it acts as a neutralizing agent for the organic acid used in the first step and as a catalyst for the polycondensation reaction in the second step. Examples of such alkalis include metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; ammonia; and organic amines such as monomethylamine and dimethylamine. Among these,
Ammonia and organic amines are preferred because they do not leave trace amounts of impurities that would limit the uses of the polyorganosiloxane fine particles, and ammonia is particularly preferred because it has low toxicity and is easy to remove.

アルカリは、取り扱いや反応の制御が容易なことから水
溶液として用いる。
Alkali is used in the form of an aqueous solution because it is easy to handle and control reactions.

アルカリの使用量は、有機酸を中和し、重縮合反応の触
媒として有効に作用する量であり、例えばアルカリとし
てアンモニアを用いた場合には水又は水と有機溶媒との
混合物100重量部に対して0.05重量部以上を用い
る。
The amount of alkali used is the amount that neutralizes the organic acid and acts effectively as a catalyst for the polycondensation reaction. For example, when ammonia is used as the alkali, it is added to 100 parts by weight of water or a mixture of water and organic solvent. 0.05 part by weight or more is used.

第2工程においてはアルカリの水溶液とともに有機溶媒
を併用することが、平均粒子径が0.5μm以下の微粒
子を得ること、及び比表面積が100rn”/g以上の
微粒子を得ることからは好ましい。
In the second step, it is preferable to use an organic solvent together with an aqueous alkali solution in order to obtain fine particles with an average particle diameter of 0.5 μm or less and a specific surface area of 100 rn''/g or more.

かかる有機溶媒は水可溶性のものが好ましく、メタノー
ル、エタノール、n−プロパツール、インプロパツール
、n−ブタノール、イソブタノール、ジアセトンアルコ
ールなどのアルコール類;エチレングリコール、プロピ
レングリコールなどのグリコール類:エチレングリコー
ルモノエチルエーテルなどのグリコールエーテル類:ア
セトンなどのケトン類及びテトラヒドロフラン、ジオキ
サンなどの環状エーテル類を例示することができ、これ
らの中から選ばれた少なくとも1種のものが使用できる
Such organic solvents are preferably water-soluble, and include alcohols such as methanol, ethanol, n-propatool, impropatol, n-butanol, isobutanol, and diacetone alcohol; glycols such as ethylene glycol and propylene glycol; ethylene; Examples include glycol ethers such as glycol monoethyl ether; ketones such as acetone; and cyclic ethers such as tetrahydrofuran and dioxane; at least one selected from these may be used.

第2工程の重縮合反応は、アルカリの水溶液又はこれと
有機溶媒との混合液(以下、「アルカリ溶液」という)
を反応容器に仕込んだのち、この反応容器内に第1工程
で得られたオルガノシラノール又はその部分縮合物(以
下、「シラノール化合物」という)の水溶液若しくはこ
のシラノール化合物の水溶液を更に水又は上記の有機溶
媒で希釈した溶液(以下、「シラノール溶液」という)
を添加して前記アルカリ溶液と接触させることにより行
ない、必要により撹拌又は静置する。
The polycondensation reaction in the second step is performed using an aqueous alkali solution or a mixture of this and an organic solvent (hereinafter referred to as "alkaline solution").
is charged into a reaction vessel, and then the aqueous solution of the organosilanol obtained in the first step or its partial condensate (hereinafter referred to as "silanol compound") or the aqueous solution of this silanol compound is added to the reaction vessel with water or the above-mentioned aqueous solution. A solution diluted with an organic solvent (hereinafter referred to as "silanol solution")
This is carried out by adding and bringing it into contact with the alkaline solution, and stirring or standing as necessary.

シラノール溶液の添加方法は特に制限されない。The method of adding the silanol solution is not particularly limited.

シラノール溶液の添加速度も、特に制限されず、例えば
最適の添加速度はシラノール化合物の種類と、アルカリ
溶液中の有機溶媒の有無、その種類により決定される。
The rate of addition of the silanol solution is also not particularly limited, and, for example, the optimum rate of addition is determined by the type of silanol compound, the presence or absence of an organic solvent in the alkaline solution, and the type thereof.

例えば、平均粒子径の小さいポリオルガノシロキサン微
粒子を得る目的からは、シラノール溶液をアルカリの水
溶液に添加する場合には5分以上かけることが好ましく
、10〜240分かけることがさらに好ましい。
For example, for the purpose of obtaining polyorganosiloxane fine particles with a small average particle size, when adding a silanol solution to an aqueous alkali solution, it is preferable to add the silanol solution to an aqueous alkali solution for 5 minutes or more, and more preferably for 10 to 240 minutes.

シラノール溶液を有機溶媒を含むアルカリ溶液中に添加
する場合には5分以内で行なうことが好ましい。
When adding the silanol solution to an alkaline solution containing an organic solvent, it is preferable to add the silanol solution within 5 minutes.

このようにして重縮合反応を行なうことによりポリオル
ガノシロキサン微粒子を、水又は水/有機溶媒の混合液
中の流動性ないし揺変性をもったゲル状のディスバージ
ョンとして得ることができる。
By carrying out the polycondensation reaction in this manner, polyorganosiloxane fine particles can be obtained as a gel-like dispersion having fluidity or thixotropy in water or a water/organic solvent mixture.

本発明のポリオルガノシロキサン微粒子はこのようなデ
ィスバージョンのまま用いることができるが、さらに第
3工程として乾燥を行う、ここで比表面積がL OOm
 ” / g以上のような微粒子を製造する場合には、
この第3工程において乾燥処理とともに、微粒子の凝集
体をほぐして粒子を分離独立させる解砕処理が必要にな
る。
Although the polyorganosiloxane fine particles of the present invention can be used as they are after such dispersion, drying is further performed as a third step, where the specific surface area is LOOm.
When producing fine particles of ”/g or more,
In this third step, in addition to the drying process, it is necessary to perform a crushing process to loosen the aggregates of fine particles and separate the particles independently.

即ち第3工程において乾燥処理のみを行った場合は、粒
子の凝集体として得ることができるが、第3工程におい
て乾燥とともに解砕処理を行った場合は、前記凝、集体
な構成する粒子が分離され、それぞれ独立した微粒子と
12で得ることができる。
That is, if only drying treatment is performed in the third step, the particles can be obtained as aggregates, but if drying and crushing treatment is performed in the third step, the particles constituting the agglomerated and aggregated particles are separated. 12, each with independent microparticles.

この乾燥又は解砕方法は特に制限されないが、100m
g/g以上の比表面積若しくは独立した球状微粒子を得
るためには前記デイスパージョンの乾燥によって得られ
た微粒子粉体の揮発分が5重1%以下になるまで乾燥を
行うことが必要であ杭 乾燥・解砕処理は、通常ミクロンドライヤ(商標名、ホ
ソカワミクロン用製)又はサーモジェットドライヤー(
商標名、■セイシンキ企業製)などを用いることができ
る。
This drying or crushing method is not particularly limited, but
In order to obtain a specific surface area of g/g or more or independent spherical fine particles, it is necessary to dry the fine particle powder obtained by drying the dispersion until the volatile content of the fine particle powder becomes 5% by weight or less. Pile drying and crushing are usually carried out using a micron dryer (trade name, manufactured by Hosokawa Micron) or a thermojet dryer (
Trademark names, ■Manufactured by Seishinki Corporation), etc. can be used.

以上の第2工程及び第3工程の工程条件を、ポリオルガ
ノシロキサン微粒子の平均粒子径との関係で整理すると
次表のようになる。
The process conditions for the second and third steps described above are summarized in relation to the average particle diameter of the polyorganosiloxane fine particles as shown in the following table.

ただし、以上は工程を判りやすく説明するためにまとめ
た条件の例であり、実際上は上記方法に限定されるもの
ではない。
However, the above is an example of conditions summarized to explain the process in an easy-to-understand manner, and the method is not actually limited to the above method.

[発明の効果] 本発明によって得られたポリオルガノシロキサン微粒子
は、平均粒子径が0.01〜100Pと小さいものであ
り、かつ、粒子形状が球状であるため各種プラスチック
への配合・分散か容易である。なお、プラスチックへの
添加と分散性からは平均粒子径が0.01〜20pmで
あることが更に好ましい。
[Effects of the Invention] The polyorganosiloxane fine particles obtained by the present invention have a small average particle diameter of 0.01 to 100P and have a spherical particle shape, so they can be easily blended and dispersed into various plastics. It is. In addition, from the viewpoint of addition to plastics and dispersibility, it is more preferable that the average particle diameter is 0.01 to 20 pm.

本発明の製造方法によれば、従来方法では製li)が困
難であった各種の有機基を含むポリオルガノシロキサン
微粒子を、原料組成比どおりの組成で、収率よく得るこ
とができる。また、本発明の製造方法によりば、比表面
積が100m’/g以上のものも得ることができる。
According to the production method of the present invention, polyorganosiloxane fine particles containing various organic groups, which have been difficult to produce using conventional methods, can be obtained in good yield with the same composition as the raw material composition. Further, according to the manufacturing method of the present invention, a material having a specific surface area of 100 m'/g or more can be obtained.

本発明の製造方法により得られたポリオルガノシロキサ
ン微粒子は、塗料、プラスチック、ゴム、紙などの充填
剤や添加剤として有用である、特にプラスチックフィル
ムの滑り性向上剤、透明プラスチック用充填剤、補強剤
として好適であり、更に、有機官能性基を導入したもの
はプラスチック成形品の表面改質処理などに用いること
ができる。
The polyorganosiloxane fine particles obtained by the production method of the present invention are useful as fillers and additives for paints, plastics, rubber, paper, etc., and are particularly useful as slipperiness improvers for plastic films, fillers for transparent plastics, and reinforcements. It is suitable as an agent, and those into which an organic functional group has been introduced can be used for surface modification treatment of plastic molded articles.

(実施例) 以下、本発明を実施例及び比較例により、更に詳しく説
明する。これらの例において部は重量部を表す。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples. In these examples, parts represent parts by weight.

実施例1 1土工韮 温度計、還流器及び撹拌機を備えた反応容器に水1..
836部を仕込み、酢酸1部を添加して均一な溶液とし
た。これを30℃で撹拌しつつ、メチルトリメトキシシ
ラン2,040部及びジメチルジメトキシシラン360
部の混合物を添加したところ、加水分解反応が進行し、
60分間で温度は60℃に上昇し、透明な反応液を得た
9次に、攪拌を10時間継続したのち清適を行いシラノ
ール溶液を得た。
Example 1 1. Water was added to a reaction vessel equipped with an earthworm thermometer, a reflux device, and a stirrer. ..
836 parts were charged, and 1 part of acetic acid was added to make a homogeneous solution. While stirring this at 30°C, 2,040 parts of methyltrimethoxysilane and 360 parts of dimethyldimethoxysilane were added.
When a mixture of parts was added, the hydrolysis reaction proceeded,
The temperature rose to 60° C. in 60 minutes to obtain a transparent reaction solution.Next, stirring was continued for 10 hours and then clarified to obtain a silanol solution.

第にL程 温度計、還流器及び撹拌機を備えた反応容器に水1.5
60部と28%アンモニア水溶液40部をとり、温度を
25℃に設定したにれを撹拌しながら第1工程で得たシ
ラノール溶液400部を約10分間かけて滴下した0滴
下終了後、16時間攪拌を続けた。撹拌中にポリメチル
シロキサン微粒子が析出して、反応液は乳白色のディス
バージョンに変わった。
Add 1.5 L of water to a reaction vessel equipped with a thermometer, reflux and stirrer.
60 parts and 40 parts of a 28% ammonia aqueous solution were taken, and 400 parts of the silanol solution obtained in the first step was added dropwise over about 10 minutes while stirring the mixture at a temperature of 25°C. After the completion of the dropwise addition, 16 hours Continued stirring. Polymethylsiloxane fine particles precipitated during stirring, and the reaction solution turned into a milky white dispersion.

11工我 第2工程で得たディスバージョンを遠心分離機にかけて
微粒子を沈降させたのち取出し2.200℃の乾燥機で
24時間乾燥させた、110部の白色微粒子を得た。こ
れはメチルトリメトキシシランを基準にした理論収量の
94.8%に相当する。
Step 11 The dispersion obtained in the second step was centrifuged to sediment the fine particles, then taken out and dried in a dryer at 200° C. for 24 hours to obtain 110 parts of white fine particles. This corresponds to 94.8% of the theoretical yield based on methyltrimethoxysilane.

この微粒子を電子顕微鏡で観察しなどころ、はとんどの
粒子は球状を呈しており、粒子径は最大値が2P、最小
値が075μmであり、平均粒子径が1戸であった。
Observation of the fine particles with an electron microscope revealed that most of the particles were spherical, with a maximum particle size of 2P and a minimum particle size of 075 μm, and an average particle size of 1.

この微粒子を磁性ルツボに入れ空気中で900℃に加熱
して熱分解させたところ、残量は87.0%であった。
When these fine particles were placed in a magnetic crucible and heated to 900° C. in air for thermal decomposition, the remaining amount was 87.0%.

これはポリメチルシロキサンが酸化熱分解して二酸化ケ
イ素になる理論量87.4%に近い値である。また、こ
の熱分解物をX線分析した結果、非晶質シリカであるこ
とを確認した7このことから得られた白色微粒子がポリ
メチルシロキサンであることを確認した。
This value is close to the theoretical amount of 87.4% that polymethylsiloxane undergoes oxidative thermal decomposition to form silicon dioxide. Further, as a result of X-ray analysis of this thermal decomposition product, it was confirmed that it was amorphous silica.7 It was also confirmed that the white fine particles obtained from this were polymethylsiloxane.

圧皿迭 ポリオルガノシロキサン微粒子の特性は以下に説明する
評価法により測定した。
The characteristics of the polyorganosiloxane fine particles in the pressure plate were measured by the evaluation method described below.

平均微粒子径及び形状:電子顕微鏡により測定及び観察
した。
Average particle size and shape: Measured and observed using an electron microscope.

比表面積:BET法によった。Specific surface area: Based on the BET method.

嵩比重:JISK−5101に準じて測定した。Bulk specific gravity: Measured according to JISK-5101.

以上の結果を第1表に示した。The above results are shown in Table 1.

実施例2 第2工程の処理を下記のとおりにしたほかは実施例1と
同様にしてポリオルガノシロキサン微粒子を得た。
Example 2 Polyorganosiloxane fine particles were obtained in the same manner as in Example 1, except that the second step was carried out as follows.

温度計、還流器および撹拌機を備えた反応容器にメタノ
ール300部、水300部及び28%アンモニア水溶液
15部をとり、温度を25°Cに設定した0次に、これ
を攪拌しながら、実施例】の第1工程で得られたシラノ
ール溶液300部を約10秒かけて添加した。その後、
約60秒間撹拌した。次に、攪拌を停止したのち静置し
、そのままの状態で24時間放置した。その結果、ポリ
オルガノシロキサン微粒子が生成し、沈降した。この沈
降した微粒子を実施例1の第3工程と同様に処理して、
最大粒子径15P、最小粒子径5F。
300 parts of methanol, 300 parts of water, and 15 parts of 28% ammonia aqueous solution were placed in a reaction vessel equipped with a thermometer, a reflux device, and a stirrer, and the temperature was set at 25°C.Next, while stirring, the reaction was carried out. 300 parts of the silanol solution obtained in the first step of Example was added over about 10 seconds. after that,
Stir for approximately 60 seconds. Next, after stopping stirring, the mixture was allowed to stand still for 24 hours. As a result, polyorganosiloxane fine particles were generated and precipitated. The precipitated fine particles were treated in the same manner as in the third step of Example 1,
Maximum particle size 15P, minimum particle size 5F.

平均粒子径81JMのポリオルガノシロキサン微粒子を
得た。この微粒子を電子顕微鏡で観察したところ、はと
んどの粒子は球状であった。
Polyorganosiloxane fine particles having an average particle diameter of 81 JM were obtained. When these fine particles were observed under an electron microscope, most of the particles were spherical.

以上の結果を第1表に示した。The above results are shown in Table 1.

実施例3 1土工程 水2.025部、酢酸0.75部、メチル1−ジメトキ
シシラン1.530部、ジメチルジメトキシシラン1.
350部を用いたほかは、実施例1と同様にしてシラノ
ール溶液を得た。
Example 3 1 Soil process Water 2.025 parts, acetic acid 0.75 parts, methyl 1-dimethoxysilane 1.530 parts, dimethyldimethoxysilane 1.
A silanol solution was obtained in the same manner as in Example 1, except that 350 parts were used.

1主二上 第1工程で得たシラノール溶液300部、水600部、
28%アンモニア水溶液15部を用いたほかは実施例2
と同様にしてポリオルガノシロキサン微粒子を得た。
1 Main 2 300 parts of the silanol solution obtained in the first step, 600 parts of water,
Example 2 except that 15 parts of 28% ammonia aqueous solution was used.
Polyorganosiloxane fine particles were obtained in the same manner as above.

1ユニ韮 この微粒子について実施例1の第3工程と同じ処理をし
て、最大粒子径5μrrn、f!&小粒子径2μm、平
均粒子径的3μmであるほとんど球状のポリオルガノシ
ロキサン微粒子を得た。
The same treatment as in the third step of Example 1 was carried out for the fine particles of 1-Uni Dwarf, and the maximum particle size was 5 μrrn, f! & Almost spherical polyorganosiloxane fine particles having a small particle diameter of 2 μm and an average particle diameter of 3 μm were obtained.

以上の結果を第1表に示した。The above results are shown in Table 1.

実施例4 第2工程において、実施例3の第1工程で得たシラノー
ル溶液300部を用い、水600部の代わりに水450
部とメタノール150部の混合液を用いたほかは実施例
3の第2工程及び第3工程と同じ処理をした。
Example 4 In the second step, 300 parts of the silanol solution obtained in the first step of Example 3 was used, and 450 parts of water was used instead of 600 parts of water.
The same treatment as in the second and third steps of Example 3 was performed except that a mixed solution of 150 parts of methanol and 150 parts of methanol was used.

その結果、得られたポリオルガノシロキサン微粒子は、
4〜8Pの球状粒子が、多数癒着・凝集したものであっ
た。そこで、次にこの凝集体をジェットミル粉砕機で解
砕して、平均粒子径5Pの微粒子を得た。
As a result, the obtained polyorganosiloxane fine particles are
A large number of spherical particles of 4 to 8P were adhered and aggregated. Therefore, this aggregate was then crushed using a jet mill to obtain fine particles having an average particle size of 5P.

以上の結果を第1表に示した。The above results are shown in Table 1.

比較例1 実施例1と同じアルコキシシランの混合物250部を、
加水分解をしないで直接それぞれ実施例3の第2工程と
同様に有機溶媒を含まない水1.725部及び28%ア
ンモニア水溶液lOO部の混合液中に約10秒で添加し
た。その後実施例2と同様に撹拌、静置したところ、油
状の液体が表面に浮いていた。また、反応容器の底部に
は大きなゲル物の塊があった。
Comparative Example 1 250 parts of the same alkoxysilane mixture as in Example 1,
They were directly added to a mixed solution of 1.725 parts of organic solvent-free water and 100 parts of a 28% ammonia aqueous solution in about 10 seconds in the same manner as in the second step of Example 3 without being hydrolyzed. Thereafter, when the mixture was stirred and left to stand in the same manner as in Example 2, an oily liquid was found floating on the surface. Additionally, there was a large lump of gel material at the bottom of the reaction vessel.

以上の結果を第1表に示した。The above results are shown in Table 1.

実施例5 1土工量 実施例1の第1工程において、ジメチルジメトキシシラ
ン360部の代わりに、γ−グリシドキシプロビルメチ
ルジメトキシシラン660部を用いたほかは、実施例1
と同様にしてシラノール溶液を得た。
Example 5 1 Earthwork amount Example 1 except that in the first step of Example 1, 660 parts of γ-glycidoxypropylmethyldimethoxysilane was used instead of 360 parts of dimethyldimethoxysilane.
A silanol solution was obtained in the same manner as above.

1主工丘 撹拌機だけを備えた反応容器にメタノール5.400部
と28%アンモニア水溶液90部を入れた0次に、第1
工程で得られたシラノール溶液2.700部を添加し、
均一になるように約S分間撹拌した。撹拌を止めたのち
、混合液を静置状態に保持して反応を進行させた。攪拌
停止後、混合液はしだいに増粘し、約3時間後には流動
性はないが、揺変性を有するゲル状のディスバージョン
に変化した。
1. 5.400 parts of methanol and 90 parts of 28% ammonia aqueous solution were placed in a reaction vessel equipped with only a stirrer.
Add 2.700 parts of the silanol solution obtained in the step,
The mixture was stirred for about S minutes to ensure uniformity. After stopping the stirring, the mixture was kept stationary to allow the reaction to proceed. After the stirring was stopped, the mixed solution gradually thickened, and after about 3 hours it turned into a gel-like dispersion that had no fluidity but had thixotropy.

11工丘 第2工程で得られたディスバージョンを、サーモジェッ
トドライヤーを用い、150℃の熱風中で乾燥しつつ、
解砕した。
While drying the disversion obtained in the 11th construction hill second step using a thermojet dryer in hot air at 150°C,
Disintegrated.

以上の第1〜第3工程の処理を行うことにより、比表面
積が450ば7g、嵩比重が35g/β、150℃、6
0分の乾燥処理後の揮発分が2%以下であるポリオルガ
ノシロキサン微粒子を得た。
By performing the above first to third steps, the specific surface area was 450 and 7 g, the bulk specific gravity was 35 g/β, 150 ° C., 6
Polyorganosiloxane fine particles having a volatile content of 2% or less after drying for 0 minutes were obtained.

以上の結果を第1表に示した。The above results are shown in Table 1.

実施例6 実施例5の第2工程の28%アンモニア水溶液90部の
うちの45部の代わりにN−(β−アミノエチル)−γ
−アミノプロピルメチルジメトキシシラン45部を用い
たほかは実施例5と同様にして処理した。得られたポリ
オルガノシロキサン微粒子は、比表面積が550111
″/gで、嵩比重が300g/42であった。
Example 6 N-(β-aminoethyl)-γ instead of 45 parts of the 90 parts of 28% ammonia aqueous solution in the second step of Example 5.
The treatment was carried out in the same manner as in Example 5, except that 45 parts of -aminopropylmethyldimethoxysilane was used. The obtained polyorganosiloxane fine particles have a specific surface area of 550111
''/g, and the bulk specific gravity was 300 g/42.

以上の結果を第1表に示した。The above results are shown in Table 1.

実施例7 実施例1の第1工程において、ジメチルジメトキシシラ
ン360部を120部、水1836部を1692部に代
λた以外は同様にして、シラノール溶液を調製した。
Example 7 A silanol solution was prepared in the same manner as in Example 1, except that 360 parts of dimethyldimethoxysilane was replaced with 120 parts and 1,836 parts of water was replaced with 1,692 parts.

第2工程、第3工程は実施例5と同様にし゛C″ポリオ
ルガノシロキサン微粒子を得た。
The second and third steps were carried out in the same manner as in Example 5 to obtain "C" polyorganosiloxane fine particles.

得られた球状のポリオルガノシロキサン微粒子は、最大
粒子径0.06p、R小粒子径O203戸、平均粒子径
0.04μmであり、比表面積が450 m”7gであ
った。
The obtained spherical polyorganosiloxane fine particles had a maximum particle size of 0.06p, an R small particle size of 0203p, an average particle size of 0.04μm, and a specific surface area of 450 m''7g.

以上の結果を第1表に示した。The above results are shown in Table 1.

実施例8 メチルトリメトキシシラン1836部、ビニルトリメト
キシシラン222部、ジメチルジメトキシシラン360
部を用いたほかは、実施例1と同様にして、ポリオルガ
ノシロキサン微粒子を得た。
Example 8 1836 parts of methyltrimethoxysilane, 222 parts of vinyltrimethoxysilane, 360 parts of dimethyldimethoxysilane
Polyorganosiloxane fine particles were obtained in the same manner as in Example 1, except that 1.5% was used.

得られた微粒子は、実施例1の第3工程と同じ処理をし
て、最大粒子径1.5P、最小粒子径0.5戸、平均粒
子径的0.8Pであるほとんど球状のポリオルガノシロ
キサン微粒子を得た。
The obtained fine particles were subjected to the same treatment as in the third step of Example 1 to obtain almost spherical polyorganosiloxane having a maximum particle size of 1.5P, a minimum particle size of 0.5P, and an average particle size of 0.8P. Fine particles were obtained.

以上の結果を第1表に示した。The above results are shown in Table 1.

実施例9 メチルトリメトキシシラン1836部、フェニルトリメ
トキシシラン298部、ジメチルジメトキシシラン36
0部、酢酸3部、水2025部を用い、第2工程でメタ
ノール300部と水300部の代わりに水】600部を
使用した以外は実施例2と同様の操作をして、ポリオル
ガノシロキサン微粒子を得た。 得られた微粒子は、実
施例1の第3工程と同じ処理をして、最大粒子径5F、
最小粒子径0.8P、平均粒子径的2pmである球状の
ポリオルガノシロキサン微粒子を得た。
Example 9 1836 parts of methyltrimethoxysilane, 298 parts of phenyltrimethoxysilane, 36 parts of dimethyldimethoxysilane
Polyorganosiloxane was prepared in the same manner as in Example 2, except that in the second step, 600 parts of water was used instead of 300 parts of methanol and 300 parts of water. Fine particles were obtained. The obtained fine particles were subjected to the same treatment as in the third step of Example 1, and the maximum particle size was 5F,
Spherical polyorganosiloxane fine particles having a minimum particle diameter of 0.8 P and an average particle diameter of 2 pm were obtained.

以上の結果を第1表に示した。The above results are shown in Table 1.

実施例10 ヘキシルトリメトキシシラン2064部、ジメチルジメ
トキシシラン240部、酢酸2部にした以外は、実施例
1の第1工程と同様にして、ンラノール溶液を得た。
Example 10 A nranol solution was obtained in the same manner as in the first step of Example 1, except that 2064 parts of hexyltrimethoxysilane, 240 parts of dimethyldimethoxysilane, and 2 parts of acetic acid were used.

第2工程、第3工程は、実施例4と同様の操作をしてポ
リオルガノシロキサン微粒子を得た6得られたポリオル
ガノシロキサン微粒子は、最大粒子径5P、最小粒子径
0.4P、平均粒子径1.2Pであった。
In the second and third steps, polyorganosiloxane fine particles were obtained by the same operation as in Example 4.6 The obtained polyorganosiloxane fine particles had a maximum particle size of 5P, a minimum particle size of 0.4P, and an average particle size of The diameter was 1.2P.

以上の結果を第1表に示した。The above results are shown in Table 1.

比較例2 平均組成式 RaSiOb(2 (式中、rn=100)で示されるビニル基を両末端に
有するジメチルポリシロキサン100部に平均組成式 %式%) で示されるメチルハイドロジエンポリシロキサン2部と
、上記ポリシロキサン全量に対して白金としてiopp
mに相当する重量の塩化白金酸のイソプロピルアルコー
ル溶液と3−メチル−1−ブチン−3−才一ル0.1部
を添加し混合したものを直径2m、高さ4mのスプレー
ドライヤ中に回転ノズルを用いて噴霧させ、硬化させた
ところ50kg/時間の速度で硬化物粉末が得られた。
Comparative Example 2 100 parts of dimethylpolysiloxane having vinyl groups at both ends, represented by the average compositional formula RaSiOb (2 (where rn=100), and 2 parts of methylhydrodiene polysiloxane represented by the average compositional formula, %). and iopp as platinum based on the total amount of polysiloxane.
A mixture of an isopropyl alcohol solution of chloroplatinic acid with a weight equivalent to 0.0 m and 0.1 part of 3-methyl-1-butyne-3-salt was mixed and rotated in a spray dryer with a diameter of 2 m and a height of 4 m. When the mixture was sprayed using a nozzle and cured, a cured powder was obtained at a rate of 50 kg/hour.

なお、スプレードライヤの熱風の入口温度は230℃で
あった。硬化物はザイクロンで補集したが、走査型電子
顕微鏡による観察では粒子1個の大きさが直径2〜30
Pの球状ゴムであった。この球状ゴム粉末は、直径31
tlIll以下の塊状物をなしていた。
Note that the inlet temperature of the hot air of the spray dryer was 230°C. The cured material was collected using Zyclone, but observation using a scanning electron microscope showed that the size of each particle was 2 to 30 mm in diameter.
It was a spherical rubber of P. This spherical rubber powder has a diameter of 31 mm.
It formed a lump of less than tlIll.

応用例1 実施例1で得られたポリメチルシロキサン微粉末0.5
部とポリプロピレン粉末(融点162’C)99.5部
をヘンシェルミキサーにより混合し、二軸押出機により
250°Cで押出し造粒して本発明の微粉末を添加した
組成物のデツプを得た。
Application example 1 Polymethylsiloxane fine powder obtained in Example 1 0.5
and 99.5 parts of polypropylene powder (melting point 162'C) were mixed in a Henschel mixer and extruded and granulated at 250°C in a twin-screw extruder to obtain a depth of a composition to which the fine powder of the present invention was added. .

上記の組成物のチップを2層金型を用いて250℃で共
押出しし、40℃に保持し、で冷却固化させ、2層から
なるフィルムを得た。次に、このフィルムを140℃に
加熱し、長平方向に5倍延伸し、直ちに40℃に冷却し
た。次にこのフィルムを160℃に保持されたテンクー
に導ぎ、幅方向に8倍延伸した。延伸処理後のフィルム
全体の厚さは20Fで、そのなかでエチレン−プロピレ
ンランダム共重合体の層厚は3−であった。
Chips of the above composition were coextruded at 250°C using a two-layer mold, maintained at 40°C, and solidified by cooling to obtain a two-layer film. Next, this film was heated to 140°C, stretched 5 times in the longitudinal direction, and immediately cooled to 40°C. Next, this film was introduced into a thermometer maintained at 160° C. and stretched 8 times in the width direction. The thickness of the entire film after stretching was 20F, and the layer thickness of the ethylene-propylene random copolymer was 3-F.

得られたフィルムは透明性のあるものであり、フィルム
同士を擦り合せるときわめて良好な滑り性を示した。フ
ィルム同士の擦り合せの回数を重ねても、フィルム表面
が白色化することがなく。
The obtained film was transparent, and exhibited extremely good slipperiness when rubbed together. Even if the films are rubbed together many times, the film surface will not turn white.

透明性が保持されていた。Transparency was maintained.

比較応用例1 実施例1で得られた微粉末の代わりに比較例2で得られ
た微粉末を用いたほかは、応用例1と同様にしてフィル
ムを調製した。
Comparative Application Example 1 A film was prepared in the same manner as Application Example 1, except that the fine powder obtained in Comparative Example 2 was used instead of the fine powder obtained in Example 1.

得られたフィルム同士を擦り合せると、滑り性は小さく
、擦り合せの回数を多くすると、フィルム表面が白色化
した。白色化したフィルム表面を走査型電子顕微鏡によ
り観察したところ、比較例2で得られた微粉末がフィル
ムから脱離していた。
When the obtained films were rubbed together, the slipperiness was small, and when the number of times of rubbing was increased, the film surface turned white. When the whitened film surface was observed using a scanning electron microscope, it was found that the fine powder obtained in Comparative Example 2 had been detached from the film.

Claims (2)

【特許請求の範囲】[Claims] (1)平均組成式 RaSiOb (式中、Rは置換又は非置換の1価の炭 化水素基を表わし、a及びbはそれぞれ 1<a≦1.7、1<b<1.5及び a+2b=4の関係を満たす数である) で示される、平均粒子径が0.01〜100μmであり
、粒子の形状が球状であるポリオルガノシロキサン微粒
子。
(1) Average compositional formula RaSiOb (wherein R represents a substituted or unsubstituted monovalent hydrocarbon group, a and b are 1<a≦1.7, 1<b<1.5 and a+2b=, respectively. Polyorganosiloxane fine particles having an average particle diameter of 0.01 to 100 μm and having a spherical shape.
(2)一般式 R^1Si(OR^2)_3( I ) (式中、R^1は置換又は非置換の1価の炭化水素基を
、R^2は置換又は非置換のアルキル基を表わす) で示されるオルガノトリアルコキシシランと、一般式 R^1_2Si(OR^2)_2(II) (式中、R^1及びR^2の意味は前記のとおりである
) で示されるジオルガノジアルコキシシランとからなり、
オルガノトリアルコキシシランの1モルに対してジオル
ガノジアルコキシシランが0.01〜2モルとなるよう
な量を含むオルガノアルコキシシラン混合物を、有機酸
の存在下で部分ないし全加水分解してオルガノシラノー
ル及び/又はその部分縮合物を得る第1の工程と、 前記オルガノシラノール及び/又はその部分縮合物をア
ルカリの水溶液又はアルカリ水溶液と有機溶媒との混合
液中で重縮合反応させてポリオルガノシロキサン微粒子
と水又は水と有機溶媒との混合液とのディスパージョン
を得る第2の工程と、 前記ディスパージョンからポリオルガノシロキサン微粒
子を乾燥させる第3の工程 からなることを特徴とする請求項1記載のポリオルガノ
シロキサン微粒子の製造方法。
(2) General formula R^1Si(OR^2)_3(I) (wherein, R^1 represents a substituted or unsubstituted monovalent hydrocarbon group, and R^2 represents a substituted or unsubstituted alkyl group. Organotrialkoxysilane represented by the following formula: Consisting of dialkoxysilane,
An organosilanol is obtained by partially or completely hydrolyzing an organoalkoxysilane mixture containing 0.01 to 2 moles of diorganodialkoxysilane per mole of organotrialkoxysilane in the presence of an organic acid. and/or a first step of obtaining a partial condensate thereof; a polycondensation reaction of the organosilanol and/or a partial condensate thereof in an aqueous alkali solution or a mixture of an aqueous alkali solution and an organic solvent to produce fine polyorganosiloxane particles; and a second step of obtaining a dispersion of water or a mixed solution of water and an organic solvent, and a third step of drying the polyorganosiloxane fine particles from the dispersion. A method for producing polyorganosiloxane fine particles.
JP1310663A 1988-12-02 1989-12-01 Polyorganosiloxane fine particles and method for producing the same Expired - Lifetime JP2842904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1310663A JP2842904B2 (en) 1988-12-02 1989-12-01 Polyorganosiloxane fine particles and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-303940 1988-12-02
JP30394088 1988-12-02
JP1310663A JP2842904B2 (en) 1988-12-02 1989-12-01 Polyorganosiloxane fine particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02255837A true JPH02255837A (en) 1990-10-16
JP2842904B2 JP2842904B2 (en) 1999-01-06

Family

ID=26563702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1310663A Expired - Lifetime JP2842904B2 (en) 1988-12-02 1989-12-01 Polyorganosiloxane fine particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP2842904B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104456A (en) * 2004-09-07 2006-04-20 Ge Toshiba Silicones Co Ltd Spherical particulate silicone elastomer, method for producing the same and cosmetic
JP2013249362A (en) * 2012-05-31 2013-12-12 Hitachi Chemical Co Ltd Silicone fine particle and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312324A (en) * 1987-06-15 1988-12-20 Toray Ind Inc Spherical fine particle of silicone and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312324A (en) * 1987-06-15 1988-12-20 Toray Ind Inc Spherical fine particle of silicone and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104456A (en) * 2004-09-07 2006-04-20 Ge Toshiba Silicones Co Ltd Spherical particulate silicone elastomer, method for producing the same and cosmetic
JP2013249362A (en) * 2012-05-31 2013-12-12 Hitachi Chemical Co Ltd Silicone fine particle and method for producing the same

Also Published As

Publication number Publication date
JP2842904B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
KR101927277B1 (en) Hydrophobized spherical poly (alkyl silsesquioxane) microparticles, external additive for toner, dry electrophotography toner, and method for manufacturing hydrophobized spherical poly (alkyl silsesquioxane) microparticles
JP2832143B2 (en) Silicone fine particles and method for producing the same
EP0647672B1 (en) Cured silicone powder and process for the preparation thereof
JP2844405B2 (en) Method for producing hydrophobic titanium oxide fine particles
EP0685508B1 (en) Curable resin compositions containing silica-coated microparticles of a cured organosiloxane composition
JP3337232B2 (en) Method for producing powder mixture comprising cured silicone fine particles and inorganic fine particles
JPH0618879B2 (en) Polyorganosilsesquioxane fine particles
JP2001192452A (en) Spherical silicone fine particle and mete{od for producing the same
US6433041B2 (en) Method for producing water based coating compositions
JPH0470335B2 (en)
JPH07103238B2 (en) Method for producing polyorganosilsesquioxane fine particles
JP2001240679A (en) Method for producing crosslinked silicone particle
JPH0796623B2 (en) Silicone rubber granular material and method for producing the same
GB2230018A (en) Polyorganosiloxane fine particles
KR20020020259A (en) Water base coating material composition and production process thereof
JPH0633337B2 (en) Spherical polyorganosilsesquioxane fine particles and method for producing the same
JP2992592B2 (en) Emulsion type silicone composition and method for producing silicone fine particles
KR101496746B1 (en) Silicone rubber powder and method of manufacturing thereof
JPH02255837A (en) Particulate polyorganosiloxane and its production
JPH03269020A (en) Production of silsesqueoxane globular fine powder containing acryloxy group and mercapto group
WO2007116988A1 (en) Curable silicone coating agent
JP2000302878A (en) Impalpable powder of water-repellent silicone resin
JPH07247434A (en) Water-dispersible silicone resin composition
JP2922389B2 (en) Preparation method of hydrophobic inorganic compound fine particles
JP4756596B2 (en) Polyorganosilsesquioxane fine particles and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071023

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12