JPH02255707A - Catalyst for polymerizing olefins - Google Patents

Catalyst for polymerizing olefins

Info

Publication number
JPH02255707A
JPH02255707A JP7516389A JP7516389A JPH02255707A JP H02255707 A JPH02255707 A JP H02255707A JP 7516389 A JP7516389 A JP 7516389A JP 7516389 A JP7516389 A JP 7516389A JP H02255707 A JPH02255707 A JP H02255707A
Authority
JP
Japan
Prior art keywords
polymerization
catalyst component
compound
solid catalyst
tetraalkoxytitanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7516389A
Other languages
Japanese (ja)
Inventor
Minoru Terano
稔 寺野
Hirokazu Soga
弘和 曽我
Kohei Kimura
公平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP7516389A priority Critical patent/JPH02255707A/en
Publication of JPH02255707A publication Critical patent/JPH02255707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain the subject catalyst, consisting of a specific solid catalyst component, epoxy-p-menthane compound and organoaluminum compound, having high activity and capable of providing a highly stereoregular polymer with hardly any residual chlorine without requiring a deashing step. CONSTITUTION:The objective catalyst consisting of (A) a solid catalyst component obtained by reacting metallic Mg power with an alkyl monohalide in a molar mount of >=2 times in the presence of iodine, pulverizing the resultant substance together with a tetraalkoxytitanium and phthalic acid diester, successively adding the tetraalkoxytitanium, an aliphatic alcohol and the phthalic acid diester to the obtained product in the presence of an aliphatic hydrocarbon at >=10 deg.C, carrying out respective treatments, adding titanium tetrachloride to the resultant product and further treating the obtained mixture, (B) an epoxy- menthane compound and (C) an organoaluminum compound.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、オレフィン類の重合に供した際に、高活性に
作用し、しかも形状の整った高立体規則性重合対を得る
ことのできる高性能触媒に係るものである。更に詳しく
言えば、本発明は、後に詳述する如き、特殊な固体触媒
成分〔1)とエポキシパラメンタン化合物[0)と有機
アルミニウム化合物(8)とからなるオレフィン類重合
用触媒を提供するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is capable of obtaining highly stereoregular polymer pairs that act with high activity and have a uniform shape when subjected to the polymerization of olefins. This relates to high-performance catalysts. More specifically, the present invention provides a catalyst for polymerizing olefins comprising a special solid catalyst component [1), an epoxy paramenthane compound [0), and an organoaluminum compound (8), as detailed later. It is.

〔従来の技術〕[Conventional technology]

近時、プロピレンをはじめとするオレフィン類重合用触
媒における固体触媒成分として従来周知の三塩化チタン
触媒成分に代り、新しい型の触媒成分として活性成分で
あるチタンを塩化マグネシウムに電子供与体と共に担持
したものが数多く開発され提供されている。
Recently, instead of the conventionally well-known titanium trichloride catalyst component as a solid catalyst component in catalysts for polymerizing olefins such as propylene, a new type of catalyst component has been developed in which the active component titanium is supported on magnesium chloride together with an electron donor. Many things have been developed and provided.

これらの中で最も初期に開発されたものとしては電子供
与体としての有機モノカルボン酸工ステルと四塩化チタ
ンとの錯体を塩化マグネシウムと共粉砕したものがあり
、あるいは電子供与体としての有機モノカルボン酸エス
テルと塩化マグネシウムとの共粉砕生成物を四塩化チタ
ンで処理したものがある。
Among these, the earliest developed one was a complex of an organic monocarboxylic acid engineered ester and titanium tetrachloride as an electron donor, which was co-pulverized with magnesium chloride; There is a co-pulverized product of carboxylic acid ester and magnesium chloride treated with titanium tetrachloride.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、これらは有機アルミニウム化合物と組合せて用
いてオレフィン類の重合、特にプロピレン、1−ブテン
等の立体規則性重合を工業的に行なう場合、重合反応を
行なう際に電子供与体として有機モノカルボン酸エステ
ルを用いることが必須とされており、しかもこの場合有
機モノカルボン酸エステルを極めて多量に用いることが
必要であるため、生成重合体に特有のエステル臭を付与
するという問題点が存在した。
However, when these are used in combination with organoaluminum compounds for industrial polymerization of olefins, especially stereoregular polymerization of propylene, 1-butene, etc., organic monocarboxylic acids are used as electron donors during the polymerization reaction. Since it is essential to use an ester, and in this case it is necessary to use an extremely large amount of an organic monocarboxylic acid ester, there is a problem in that the produced polymer has a characteristic ester odor.

さらに、これらの触媒においては、重合初期の活性は高
いものの経時的失活が大きくプロセス操作上問題となる
と共に、ブロック共重合等の重合時間をより長くする場
合、実質上それを使用することは不可能であった。
Furthermore, although these catalysts have high activity at the initial stage of polymerization, their deactivation over time poses a problem in process operation, and when the polymerization time is longer, such as in block copolymerization, it is virtually impossible to use them. It was impossible.

この点を改良するものとして特開昭54−94590号
公報では、マグネシウムジハロゲン化物を出発原料とし
て触媒成分を調製し、有機アルミニウム化合物、有機カ
ルボン酸エステルおよびM−0−R基を有する化合物な
どを組合せてオレフィン類の重合に用いる方法が開示さ
れているが、同公報の記載からも明らかなようにこの場
合、触媒調製時ならびに重合時にも有機カルボン酸エス
テルを用いることが必要とされている。一般に、触媒中
に含まれる有機カルボン酸エステルは、チタンハロゲン
化物による処理あるいは有機溶媒による洗浄などにより
、生成重合体の臭いの問題を無視し得る程度の量となっ
ている。しかし、重合時に用いる有機カルボン酸エステ
ルは前述のように触媒中に含まれる量に比して極めて多
量であり、なおかつ液体あるいは気体の千ツマー中で重
合を行なった場合、その殆んど全てが生成重合体中に含
まれてしまうのが現状であり、従って、生成重合体の臭
いの問題は重合時に有機カルボン酸エステルを用いる限
り解決し得ないものといえる。また同公報に開示されて
いる方法は、その実施例からも判るように、非常に煩雑
な操作を必要とすると共に得られた触媒は件能的にも活
性の持続性においても実用上充分なものとはいえないの
が実状である。
In order to improve this point, JP-A-54-94590 discloses that a catalyst component is prepared using magnesium dihalide as a starting material, and organic aluminum compounds, organic carboxylic acid esters, compounds having an M-0-R group, etc. A method is disclosed in which the combination is used for the polymerization of olefins, but as is clear from the description in the same publication, in this case it is necessary to use an organic carboxylic acid ester both during catalyst preparation and during polymerization. Generally, the amount of organic carboxylic acid ester contained in the catalyst is reduced to such an extent that the odor problem of the produced polymer can be ignored by treatment with a titanium halide or washing with an organic solvent. However, as mentioned above, the amount of organic carboxylic acid ester used during polymerization is extremely large compared to the amount contained in the catalyst, and when polymerization is carried out in a liquid or gaseous atmosphere, almost all of it is At present, it is contained in the produced polymer, and therefore, it can be said that the problem of odor in the produced polymer cannot be solved as long as an organic carboxylic acid ester is used during polymerization. Furthermore, as can be seen from the examples, the method disclosed in the same publication requires very complicated operations, and the resulting catalyst is insufficient for practical use both in terms of performance and sustainability of activity. The reality is that it cannot be called a reality.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記の如き従来技術における種々の問題
点を解決するため、鋭意研究を行ったところ、本発明に
より高度の立体規則性を有する重合体かえられる高性能
触媒を提供することに成功した。
The present inventors have conducted extensive research to solve the various problems in the prior art as described above, and have found that the present invention provides a high-performance catalyst that can produce polymers with a high degree of stereoregularity. Successful.

すなわち、本発明は下記【1)の固体触媒成分および下
記Ul)のエポキシバラメンクン化合物および下記(8
)の有機アルミニウム化合物よりなることを特徴とする
オレフィン類重合用触媒を提供するものである。
That is, the present invention comprises the following solid catalyst component (1), the epoxy bara mencun compound (Ul) below, and the following (8).
The present invention provides a catalyst for polymerizing olefins, characterized by comprising an organoaluminum compound of the following.

(1)金属マグネシウム粉末と2倍モル以上のアルキル
モノハロゲン化物をヨウ素の存在下で反応して得られる
物質<a)とテトラアルコキシチタン(b)およびフタ
ル酸ジエステル(c)を粉砕した後、得られた生成物に
脂肪族炭化水素(d)の存在下、100℃以上でテトラ
アルコキシチタン(b)、脂肪族アルコール(e)及び
フタル酸ジエステル(c)を順次加えてそれぞれ処理を
行い、得られた生成物に四塩化チタン(f)を加えて、
さらに処理することにより得られる固体触媒成分; fII)  エポキシパラメンタン化合物および (8)有機アルミニウム化合物 よりなるオレフィン類重合用触媒を提供するものである
(1) After pulverizing the substance <a) obtained by reacting metallic magnesium powder and twice or more moles of alkyl monohalide in the presence of iodine, tetraalkoxytitanium (b) and phthalic acid diester (c), Tetraalkoxytitanium (b), aliphatic alcohol (e) and phthalic acid diester (c) are sequentially added to the obtained product in the presence of an aliphatic hydrocarbon (d) at 100°C or higher, and each treatment is carried out, Add titanium tetrachloride (f) to the obtained product,
A solid catalyst component obtained by further treatment; fII) A catalyst for polymerizing olefins comprising an epoxy paramenthane compound and (8) an organoaluminum compound.

以下に本発明のオレフィン類重合用触媒につき、さらに
詳細に説明する。
The catalyst for polymerizing olefins of the present invention will be explained in more detail below.

まず、前記〔1)の固体触媒成分について説明する。First, the solid catalyst component in [1] will be explained.

前記(a)の金属マグネシウム粉末とアルキルモノハロ
ゲン化物をヨウ素の存在下での反応によって得られる物
質(以下単に(a)物質という)を得るには、市販の金
属マグネシウム粉末と、アルキルモノハロゲン化物とを
有機溶媒の不存在下、ヨウ素の存在下で反応させるが、
この際、アルキルモノハロゲン化物は金属マグネシウム
粉末1モルに対して2モル以上用いることが必要である
。また、反応温度及び反応時間は、上記の反応が充分に
進む限り任意であり、特に限定されるものではないが、
通常20℃以上で10分間以上、好ましくは40℃以上
で30分間以上行われる。この反応は、グリニア型の反
応であり、反応によって得られた(a)物質のIRスペ
クトルを測定するとアルキル基の吸収が見られる。
In order to obtain the substance obtained by reacting the metal magnesium powder and the alkyl monohalide in the above (a) in the presence of iodine (hereinafter simply referred to as the substance (a)), commercially available metal magnesium powder and the alkyl monohalide are used. is reacted in the absence of an organic solvent and in the presence of iodine,
At this time, it is necessary to use 2 or more moles of the alkyl monohalide per 1 mole of the metal magnesium powder. In addition, the reaction temperature and reaction time are arbitrary as long as the above reaction proceeds sufficiently, and are not particularly limited.
It is usually carried out at 20°C or higher for 10 minutes or more, preferably at 40°C or higher for 30 minutes or more. This reaction is a Grignard type reaction, and when the IR spectrum of the substance (a) obtained by the reaction is measured, absorption of alkyl groups is observed.

上記(a)物質の製造に用いられるアルキルモノハロゲ
ン化物としては、常温で液体の脂肪族炭化水素の塩化物
が好ましく、その例としては、例えばn−プロピルクロ
ライド、イソプロピルクロライド、n−ブチルクロライ
ド、イソブチルクロライド、ペンチルクロライド、ヘキ
シルクロライドおよびオクチルクロライド等があげられ
る。
The alkyl monohalides used in the production of the substance (a) above are preferably chlorides of aliphatic hydrocarbons that are liquid at room temperature, such as n-propyl chloride, isopropyl chloride, n-butyl chloride, Examples include isobutyl chloride, pentyl chloride, hexyl chloride and octyl chloride.

前記(b)のテトラアルコキシチタン(以下単に(b)
物質という)としては、そのアルコキシ基として、炭素
原子数1〜10のアルコキシ基のものが用いられ、特に
炭素原子数3又は4のものが好ましく用いられる。
Tetraalkoxytitanium of (b) above (hereinafter simply referred to as (b)
As the alkoxy group, those having 1 to 10 carbon atoms are used, and those having 3 or 4 carbon atoms are particularly preferably used.

このテトラアルコキシチタンは1種又は2種以上を用い
ることができる。(b)物質の使用量は通常、(a)物
質1gに対し、合計0.1〜10gの範囲である。
One type or two or more types of tetraalkoxytitanium can be used. The amount of the (b) substance used is usually in the range of 0.1 to 10 g in total per 1 g of the (a) substance.

前記(c)のフタル酸ジエステル(以下単に(c)物質
という)としてはジメチルフタレート、ジエチルフタレ
ート、ジイソプロピルフタレート、ジプロピルフタレー
ト、ジブチルフタレート、ジイソブチルフタレート、シ
アミルフタレート、ジイソアミルフタレート、エチルブ
チルフタレート、エチルイソブチルフタレートおよびエ
チルプロピルフタレート等を例としてあげることができ
る。
The phthalic diesters (c) (hereinafter simply referred to as substance (c)) include dimethyl phthalate, diethyl phthalate, diisopropyl phthalate, dipropyl phthalate, dibutyl phthalate, diisobutyl phthalate, cyamyl phthalate, diisoamyl phthalate, ethyl butyl phthalate, Examples include ethyl isobutyl phthalate and ethyl propyl phthalate.

上記の(c)物質は、(a)物質1gに対し0,1d以
上好ましくは、0.2〜1. Orn!、の割合で用い
られる。
The amount of the above substance (c) is 0.1 d or more, preferably 0.2 to 1 d per 1 g of the (a) substance. Orn! , is used at a rate of .

前記(d)の脂肪族炭化水素(以下単に(d)物質とい
う)および前記(e)の脂肪族アルコール(以下単に(
e)物質という)は、いずれも−30℃〜50℃におい
て液体のものである。
The aliphatic hydrocarbon of (d) (hereinafter simply referred to as (d) substance) and the aliphatic alcohol of (e) (hereinafter simply referred to as (d))
e) substances) are all liquid at -30°C to 50°C.

(d)物質の好ましい例としては炭素原子数5〜12の
脂肪族炭化水素例えばペンタン、ヘキサン、ヘプタン、
オクタン、ノナン、デカン、ドデカンおよびこれらの異
性体などがあげられ、(e)物質の好ましい例としては
炭素原子数2〜10の脂肪族アルコール、例えばエタノ
ール、プロパツール、ブタノール、ペンタノール、ヘキ
サノール、オクタツールおよびこれらの異性体などがあ
げられる。
(d) Preferred examples of the substance include aliphatic hydrocarbons having 5 to 12 carbon atoms, such as pentane, hexane, heptane,
Examples include octane, nonane, decane, dodecane, and isomers thereof, and preferred examples of the substance (e) include aliphatic alcohols having 2 to 10 carbon atoms, such as ethanol, propatool, butanol, pentanol, hexanol, Examples include octatool and isomers thereof.

本発明において用いられる四塩化チタン(f)は(a)
物質1gに対して1g以上、好ましくは5g以上の割合
で用いられる。
Titanium tetrachloride (f) used in the present invention is (a)
It is used in a proportion of 1 g or more, preferably 5 g or more per 1 g of the substance.

この際の接触温度は、通常は0℃以上130℃以下であ
る。接触時間は10分間以上、好ましくは30分間以上
である。
The contact temperature at this time is usually 0°C or higher and 130°C or lower. The contact time is at least 10 minutes, preferably at least 30 minutes.

得られた固体触媒成分(I)は必要に応じn−へブタン
、トルエン等の有機溶媒を用いて洗浄してもよく、また
、繰り返し四塩化チタン(f)で処理してもよい。
The obtained solid catalyst component (I) may be washed with an organic solvent such as n-hebutane or toluene, if necessary, or may be repeatedly treated with titanium tetrachloride (f).

これらの態様は、いずれも本発明の実施における一態様
に包含される。
All of these aspects are included in one aspect of implementing the present invention.

本発明における上記f1)の固体触媒成分の調製に関す
る一連の操作は酸素および水分等の不存在下に行われる
The series of operations related to the preparation of the solid catalyst component f1) in the present invention is performed in the absence of oxygen, moisture, and the like.

以上の如くして調製された前記(1)の固体触媒成分は
、前記(■)のエポキシパラメンクン化合物および前記
(8)の有機アルミニウム化合物と組合わされ、本発明
に係るオレフィン類重合用触媒を構成するが、前記(n
)のエポキシパラメンタン化合物としては1.4−エポ
キシパラメンタンまたは1,8〜エポキシパラメンタン
が好ましいが、これらにアルキル基やハロゲンなどの置
換基のついたものを用いることも可能である。
The solid catalyst component (1) prepared as described above is combined with the epoxy paramencune compound (■) and the organoaluminum compound (8), and the solid catalyst component of (1) is combined with the olefin polymerization catalyst according to the present invention. , but the above (n
1,4-epoxyparamenthane or 1,8-epoxyparamenthane is preferred as the epoxyparamenthane compound, but it is also possible to use compounds with substituents such as alkyl groups and halogens.

前記(III)の有機アルミニウム化合物としては、ト
リアルキルアルミニウム、ジアルキルアルミニウムハラ
イド、アルキルアルミニウムシバライド、アルキルアル
ミニウムセスキハライドおよびこれ等の混合物をあげる
ことができるが、中でも、トリアルキルアルミニウムが
好ましく、さらに、トリエチルアルミニウムおよびトリ
イソブチルアルミニウムが特に好ましい。
Examples of the organoaluminum compound (III) include trialkylaluminum, dialkylaluminum halide, alkyl aluminum civalide, alkylaluminum sesquihalide, and mixtures thereof, and among these, trialkylaluminum is preferred, and further, Particularly preferred are triethylaluminum and triisobutylaluminum.

前記(III)の有機アルミニウム化合物は、固体触媒
成分中のチタンg原子当り1〜1000モルで用いられ
、該エポキシパラメンタン化合物は有機アルミニウム化
合物に対するモル比において1以下、好ましくは0.0
05〜1.0の範囲で用いられる。
The organoaluminum compound (III) is used in an amount of 1 to 1000 mol per g atom of titanium in the solid catalyst component, and the epoxy paramenthane compound has a molar ratio of 1 or less, preferably 0.0 to the organoaluminum compound.
It is used in the range of 05 to 1.0.

本発明に係る重合用触媒を用いての重合反応は有機溶媒
の存在下でもあるいは不存在下でも行なうことができ、
また、使用するオレフィン単量体は気体および液体のい
ずれの状態でも用いることができる。重合温度は200
℃以下好ましくは100℃以下であり、重合圧力は10
0Kg/cm2・G以下好ましくは50 Kg/cm”
 6 G以下である。
The polymerization reaction using the polymerization catalyst according to the present invention can be carried out in the presence or absence of an organic solvent,
Further, the olefin monomer used can be used in either gas or liquid state. Polymerization temperature is 200
℃ or less, preferably 100℃ or less, and the polymerization pressure is 10
0 Kg/cm2・G or less, preferably 50 Kg/cm”
6G or less.

本発明に係るオレフィン類重合用触媒を用いて単独重合
または共重合されるオレフィン類はエチレン、プロピレ
ン、1−ブテン等である。
Olefins to be homopolymerized or copolymerized using the olefin polymerization catalyst according to the present invention include ethylene, propylene, 1-butene, and the like.

〔発明の作用と効果〕[Functions and effects of the invention]

本発明に係るオシノフィン類重合用触媒は、これを用い
て、オレフィン類の重合を行なった場合、従来予期し得
ない程の高い活性を示すため生成重合体中に存在する触
媒残渣量を極めて低くおさえることができ、しかも残留
塩素が極めて微量であるために生成物については脱灰工
程を全く必要としない程度にまで塩素の影響を低減する
ことができる。
When the osinofin polymerization catalyst of the present invention is used to polymerize olefins, it exhibits a previously unexpected high activity, thereby minimizing the amount of catalyst residue present in the resulting polymer. In addition, since the amount of residual chlorine is extremely small, the influence of chlorine can be reduced to such an extent that no deashing process is required for the product.

生成重合体中に残存する塩素は造粒、成形などの工程に
用いる機器の腐食の原因となると共に生成重合体そのも
のの劣化、黄変等の原因ともなるものであるので、この
課題を解決し得ることは当該技術分野に対し大きな利益
をもたらすものである。
Chlorine remaining in the produced polymer causes corrosion of equipment used in processes such as granulation and molding, as well as deterioration and yellowing of the produced polymer itself. The results obtained will be of great benefit to the field of technology.

また、本発明の触媒によれば重合時に有機カルボン酸エ
ステルを添加しないことにより生成重合体に対するエス
テル臭の付着という大きな問題をも解決することができ
る。
In addition, according to the catalyst of the present invention, by not adding an organic carboxylic acid ester during polymerization, it is possible to solve the major problem of adhesion of ester odor to the produced polymer.

さらに、従来、触媒の単位時間当りの活性が、重合の経
過に伴なって大幅に低下するという、いわゆる高活性担
持型触媒における共通の欠点が存在したが、本発明に係
る触媒においては、重合時間の経過に伴なう活性の低下
が、従来公知の触媒に比較し、極めて小さいため、共重
合等重合時間をより長くする場合にも有用であり、かつ
、より高い重合圧力を採用した場合における活性の増加
が大きいため、最近注目されているバルク重合および気
相重合にも幅広く用いることができる。
Furthermore, conventionally, there was a common drawback in so-called high-activity supported catalysts in that the activity per unit time of the catalyst decreased significantly as the polymerization progressed, but the catalyst according to the present invention The decrease in activity over time is extremely small compared to conventionally known catalysts, making it useful for longer polymerization times such as copolymerization, and when using higher polymerization pressures. Since the increase in activity is large, it can be widely used in bulk polymerization and gas phase polymerization, which have recently been attracting attention.

しかも、本発明に係る触媒によれば、形状の整った高度
の立体規則性を有する重合体が得られる。
Moreover, according to the catalyst according to the present invention, a polymer having a well-shaped structure and a high degree of stereoregularity can be obtained.

さらに付言すると、工業的なオレフィン重合体の製造に
おいては重合時に水素を共存させることがM!制御など
の点から一般的とされているが、従来の塩化マグネシウ
ムを担体とし、有機カルボン酸エステルを用いた触媒は
水素共存下では活性および立体規則性が大幅に低下する
という欠点を有していた。しかし、本発明に係る触媒を
用いて水素共存下にオレフィンの重合を行なった場合、
生成重合体のMIが極めて高い場合においても、活性お
よび立体規則性は低下しない。かかる効果は、当業者に
とって強く望まれていたものであった。
Furthermore, in the production of industrial olefin polymers, it is important to allow hydrogen to coexist during polymerization! Although it is common from the viewpoint of control, etc., conventional catalysts using magnesium chloride as a carrier and organic carboxylic acid esters have the disadvantage that their activity and stereoregularity are significantly reduced in the coexistence of hydrogen. Ta. However, when olefin polymerization is carried out in the presence of hydrogen using the catalyst according to the present invention,
Even when the MI of the resulting polymer is very high, the activity and stereoregularity are not reduced. Such an effect was strongly desired by those skilled in the art.

また、ポリオレフィンの製造工程に好ましくない微粉状
重合体が生成せず、最近注目されている気相重合にも適
し、また流動性に優れているためポンプ輸送や遠心分離
などのいわゆる重合後処理工程を容易にすると共に、粒
子形状が優れているため造粒工程をも省略できるなど種
々の効果を奏することができる。
In addition, it does not produce fine powder polymers that are undesirable in the polyolefin manufacturing process, and is suitable for gas phase polymerization, which has been attracting attention recently, and has excellent fluidity, so it is suitable for so-called post-polymerization treatment processes such as pumping and centrifugation. In addition to making it easier to process, it also has various effects such as the ability to omit the granulation process due to its excellent particle shape.

〔実施例〕〔Example〕

以下に、本発明を実施例によりさらに具体的に説明する
EXAMPLES Below, the present invention will be explained in more detail with reference to Examples.

実施例1 (1)  (a)物質の調製 攪拌機を具備した容量2.01の丸底フラスコを用い、
これを窒素ガスで充分に置換した後、金属マグネシウム
粉末30g、ヨウ素1.0gおよびn−ブチルクロラン
ド1.21を装入し、n−ブチルクロライドの沸点下で
5時間反応させた。反応終了後上澄液を除去し、生成物
を500dのn−ブチルクロライドで3回洗浄した後、
減圧乾燥して粉末状の物質を得た。
Example 1 (1) (a) Preparation of substances Using a 2.01 volume round bottom flask equipped with a stirrer,
After sufficiently replacing this with nitrogen gas, 30 g of metal magnesium powder, 1.0 g of iodine, and 1.21 g of n-butyl chloride were charged, and the mixture was reacted for 5 hours at the boiling point of n-butyl chloride. After the reaction was completed, the supernatant was removed, and the product was washed three times with 500 d of n-butyl chloride.
A powdery substance was obtained by drying under reduced pressure.

(III)固体触媒成分の調製 上記〔1)で得られた粉末状物質30g及びテトラブト
キシチタン1.0mlおよびn−ジブチルフタレート1
.5−を窒素ガス雰囲気下で、25mmφのステンレス
ポールを全容積の475充填した容量1.Olの振動ミ
ルポットに装入し、振動数1430v、p、m 、、振
巾3.5 mmで17時間粉砕した。
(III) Preparation of solid catalyst component 30 g of the powdery substance obtained in the above [1], 1.0 ml of tetrabutoxytitanium, and 1 ml of n-dibutyl phthalate
.. 5- in a nitrogen gas atmosphere, the total volume of 475 stainless steel poles of 25 mmφ was filled. The mixture was placed in a vibrating mill pot of Ol, and pulverized for 17 hours at a vibration frequency of 1430 V, p, m, and a shaking width of 3.5 mm.

攪拌機を具備した容量500rdの丸底フラスコに窒素
ガス雰囲気下で上記粉砕生成物10g1n−デカン75
−およびテトラブトキシチタン10m1を装入し、12
5℃に昇温しで攪拌下で1時間の処理を行なった。次い
でこれにn−へブタン25rnlと2−エチルヘキシル
アルコール6、8 mfを混合した溶液を30分間の時
間を要して滴下し、125℃の温度を保ちつつ1時間反
応させた。その後70℃まで冷却し、更にn−へブタン
25rnlとn−プチルフタレー) 1.5 mlの混
合溶液を30分間の時間を要して滴下し、90℃に昇温
しで1時間処理した。得られた生成物を200rn1.
のヘプタンで5回洗浄し、その後TlC1475mj!
を加えて115℃で3時間反応させた。反応終了後20
0m1のへブタンで10回洗浄して固体触媒成分を得た
In a 500rd capacity round bottom flask equipped with a stirrer, 10 g of the above pulverized product was placed in a nitrogen gas atmosphere, and 75 g of n-decane was added.
- and 10 ml of tetrabutoxy titanium, 12
The temperature was raised to 5° C. and treatment was carried out for 1 hour while stirring. Next, a solution of 25 rnl of n-hebutane and 6.8 mf of 2-ethylhexyl alcohol was added dropwise to the mixture over a period of 30 minutes, and the mixture was reacted for 1 hour while maintaining the temperature at 125°C. Thereafter, the mixture was cooled to 70° C., and a mixed solution of 25 rnl of n-hebutane and 1.5 ml of n-butyl phthalate was added dropwise over a period of 30 minutes, and the mixture was heated to 90° C. and treated for 1 hour. The obtained product was heated to 200rn1.
of heptane five times, then TlC1475mj!
was added and reacted at 115°C for 3 hours. 20 minutes after completion of reaction
A solid catalyst component was obtained by washing 10 times with 0 ml of hebutane.

なお、この際、該固体触媒成分中のチタン含有率を測定
したところ4.76重量%であった。
At this time, the titanium content in the solid catalyst component was measured and found to be 4.76% by weight.

(3)  プロピレンの重合 内容積2.Olの攪拌装置付オートクレーブを用い、こ
れを窒素ガスで完全に置換した後、トリエチルアルミニ
ウム200mg、  1. 8−エポキシパラメンクン
70mgおよび前記固体触媒成分3.0 mgを装入し
た。その後、水素ガス1,8β、液化プロピレン1.4
1を装入し、70℃で1時間重合反応を行なった。重合
反応終了後、生成した重合体を80℃で減圧乾燥し、得
られたものの量を(A)とする。またこのものを沸騰n
−へブタンで6時間抽出してn−へブタンに不溶解の重
合体を得、このものの量を(B)とする。
(3) Polymerization internal volume of propylene2. After completely replacing the autoclave with nitrogen gas using an OL autoclave equipped with a stirring device, add 200 mg of triethylaluminum; 1. 70 mg of 8-epoxy paramencune and 3.0 mg of the solid catalyst component were charged. After that, hydrogen gas 1.8β, liquefied propylene 1.4
1 was charged, and a polymerization reaction was carried out at 70°C for 1 hour. After the polymerization reaction is completed, the produced polymer is dried under reduced pressure at 80° C., and the amount of the obtained product is referred to as (A). Boil this again
-Extract with hebutane for 6 hours to obtain a polymer insoluble in n-hebutane, the amount of which is designated as (B).

使用した固体触媒成分当りの重合活性(c)を以下の式
で表わす。
The polymerization activity (c) per solid catalyst component used is expressed by the following formula.

生成重合体のMIを(F)で表わし、得られた結果を第
1表に示す。
The MI of the produced polymer is represented by (F), and the results obtained are shown in Table 1.

実施例2 重合時間を30分間とした以外は実施例1と同様にして
実験を行なった。得られた結果は、第1表に示す通りで
ある。
Example 2 An experiment was conducted in the same manner as in Example 1 except that the polymerization time was 30 minutes. The results obtained are shown in Table 1.

実施例3 ジブチルフタレートの代りに同量のジプロピルフタレー
トを用いた以外は実施例1と同様にして実験を行なった
。なお、この際の固体触媒成分中のチタン含有率は4.
87重量%であった。
Example 3 An experiment was carried out in the same manner as in Example 1 except that the same amount of dipropylphthalate was used instead of dibutyl phthalate. Note that the titanium content in the solid catalyst component at this time was 4.
It was 87% by weight.

重合に際しては実施例1と同様にして実験を行なった。During polymerization, an experiment was conducted in the same manner as in Example 1.

得られた結果は第1表に示す通りである。The results obtained are shown in Table 1.

また全結晶性重合体の収率(D)を下記の式さらに生成
重合体中の残留塩素量を(B)第 表
In addition, the yield (D) of the total crystalline polymer can be calculated using the following formula, and the amount of residual chlorine in the produced polymer can be calculated using the following table (B).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の理解を助けるための模式的図面である
FIG. 1 is a schematic drawing to help understand the present invention.

Claims (1)

【特許請求の範囲】 1)( I )金属マグネシウム粉末と2倍モル以上のア
ルキルモノハロゲン化物をヨウ素の存 在下で反応して得られる物質(a)とテトラアルコキシ
チタン(b)およびフタル酸ジエステル(c)を粉砕し
た後、得られた生成物に脂肪族炭化水素(d)の存在下
、100℃以上でテトラアルコキシチタン(b)、脂肪
族アルコール(e)及びフタル酸ジエステル(c)を順
次加えてそれぞれ処理を行い、得られた生成物に四塩化
チタン(f)を加えて、さらに処理することにより得ら
れる固体触 媒成分; (II)エポキシパラメンタン化合物 および (III)有機アルミニウム化合物 よりなることを特徴とするオレフィン類重合用触媒。
[Scope of Claims] 1) (I) Substance (a) obtained by reacting metallic magnesium powder and at least twice the mole of alkyl monohalide in the presence of iodine, tetraalkoxytitanium (b) and phthalic acid diester After pulverizing (c), the obtained product is treated with tetraalkoxytitanium (b), aliphatic alcohol (e) and phthalic acid diester (c) at 100°C or higher in the presence of aliphatic hydrocarbon (d). A solid catalyst component obtained by adding titanium tetrachloride (f) to the obtained product and further processing; from (II) an epoxy paramenthane compound and (III) an organoaluminum compound. A catalyst for polymerizing olefins, which is characterized by:
JP7516389A 1989-03-29 1989-03-29 Catalyst for polymerizing olefins Pending JPH02255707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7516389A JPH02255707A (en) 1989-03-29 1989-03-29 Catalyst for polymerizing olefins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7516389A JPH02255707A (en) 1989-03-29 1989-03-29 Catalyst for polymerizing olefins

Publications (1)

Publication Number Publication Date
JPH02255707A true JPH02255707A (en) 1990-10-16

Family

ID=13568262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7516389A Pending JPH02255707A (en) 1989-03-29 1989-03-29 Catalyst for polymerizing olefins

Country Status (1)

Country Link
JP (1) JPH02255707A (en)

Similar Documents

Publication Publication Date Title
JPH02255707A (en) Catalyst for polymerizing olefins
JP2630626B2 (en) Catalyst for polymerization of olefins
JPH02251505A (en) Catalyst for polymerizing olefins
JPH0273807A (en) Catalyst for polymerizing olefins
JP2715112B2 (en) Catalyst for polymerization of olefins
JPH02258804A (en) Catalyst for polymerizing olefins
JP2715106B2 (en) Catalyst for polymerization of olefins
JP2715105B2 (en) Catalyst for polymerization of olefins
JP2630625B2 (en) Catalyst for polymerization of olefins
JP2715108B2 (en) Catalyst for polymerization of olefins
JP2715103B2 (en) Catalyst for polymerization of olefins
JPH02196805A (en) Catalyst for olefin polymerization
JP2630629B2 (en) Catalyst for polymerization of olefins
JPH02145605A (en) Catalyst for olefins polymerization
JPH02232206A (en) Catalyst for polymerization of olefin
JPH0694487B2 (en) Catalyst for olefin polymerization
JP2673531B2 (en) Catalyst for polymerization of olefins
JP2630621B2 (en) Catalyst for polymerization of olefins
JPH02169605A (en) Catalyst for olefin polymerization
JPS62207305A (en) Catalyst for polymerization of olefin
JPS6327507A (en) Catalyst for polymerizing olefins
JPH02170804A (en) Catalyst for olefin polymerization
JPH01229006A (en) Catalyst for polymerization of olefins
JPS62218404A (en) Catalyst for polymerization of olefin
JPS6341510A (en) Catalyst for polymerizing olefins