JPH0225559A - Nitriding treatment for ti or ti alloy - Google Patents

Nitriding treatment for ti or ti alloy

Info

Publication number
JPH0225559A
JPH0225559A JP63174600A JP17460088A JPH0225559A JP H0225559 A JPH0225559 A JP H0225559A JP 63174600 A JP63174600 A JP 63174600A JP 17460088 A JP17460088 A JP 17460088A JP H0225559 A JPH0225559 A JP H0225559A
Authority
JP
Japan
Prior art keywords
alloy
gas
nitriding
atmosphere
nitriding treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63174600A
Other languages
Japanese (ja)
Other versions
JPH0663081B2 (en
Inventor
Juichiro Yamaguchi
山口 十一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63174600A priority Critical patent/JPH0663081B2/en
Publication of JPH0225559A publication Critical patent/JPH0225559A/en
Publication of JPH0663081B2 publication Critical patent/JPH0663081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To surely and easily apply nitriding treatment to the surface of Ti or Ti alloy by heating and holding Ti or Ti alloy in an NH3-gas atmosphere at a temp. in a specific range for a specific length of time. CONSTITUTION:At the time of applying nitriding treatment to the surface of Ti or Ti alloy, the Ti or Ti alloy is heated and held in an atmosphere consisting of 20-<100vol.% NH3 gas and the balance inert gas or in an atmosphere consisting of 100vol.% NH3 gas at a temp. in the range of 400 to 850 deg.C for >=1hr. As a result, nitriding treatment can be applied to the surface of a material consisting of Ti or Ti alloy easily with certainty while obviating the necessity of a special chamber.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、TiまたTi合金からなる材料の表面の窒化
処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for nitriding the surface of a material made of Ti or a Ti alloy.

(従来の技術〉 TIまたはT1合金は、耐食性材料として床机に用いら
れており、従来より海水熱交換器用チューブとして用い
られる他、その軽量性から、航空機用材料としても用い
られている。
(Prior Art) TI or T1 alloy has been used as a corrosion-resistant material for floor desks, and has been conventionally used as tubes for seawater heat exchangers, as well as as a material for aircraft due to its light weight.

ところで、近年になってTIまたはTi合金はその耐食
性、特に優れた耐海水性のために海洋構造物用6材料と
しての用途が検討されはじめている。ところが、T1ま
たはTi合金はその靭性が比較的劣っているため海洋構
遺物材料としてこのまま用いると、最も重要な特性であ
る疲労強度が不足してしまうことになる。かかる疲労強
度の不足は、構造物用材料として重大な危険を招来する
恐れがあるものであって、設計変更を含めた早急な対策
が強く望まれている。つまりTiまたはTi合金の疲労
強度を向上させることにより、海洋構造物用材料として
TiまたはTi合金を用いることが望まれているのであ
る。
Incidentally, in recent years, TI or Ti alloys have begun to be considered for use as materials for marine structures because of their corrosion resistance, particularly their excellent seawater resistance. However, T1 or Ti alloys have relatively poor toughness, so if they are used as is as a material for marine structures, they will lack fatigue strength, which is the most important property. Such lack of fatigue strength may pose a serious danger to structural materials, and immediate countermeasures, including design changes, are strongly desired. In other words, it is desired to use Ti or Ti alloys as materials for marine structures by improving the fatigue strength of Ti or Ti alloys.

−m的に金属材料の疲労強度を向上させるには、転位が
すべり線に沿って金属表面に抜けることを抑制するため
金属表面の硬度を上げることが有効であると言われてい
る。
In order to improve the fatigue strength of metal materials in terms of -m, it is said to be effective to increase the hardness of the metal surface in order to suppress dislocations from passing through the metal surface along slip lines.

そこでTiまたはT1合金においてもその表面の硬度を
、Eげることが有効であると考えられ、従来よりTiま
たはTi合金の表面を硬化する方法が種々提案されてお
り、例えば以下に示すような方法がある。
Therefore, it is thought that it is effective to reduce the surface hardness of Ti or T1 alloy, and various methods have been proposed to harden the surface of Ti or Ti alloy. There is a way.

(i)イオン注入法 イオン注入法は、真空中でイオンを加速し、金属材料の
表面に打ち込む方法である。この方法において用いるイ
オン注入装置の概略図を第3図に示す。イオン発生部で
注入すべきイオンは、イオン化され、数10KV程度の
電圧で引き出されて、質量分析部に導かれる。質量分析
部ではイオン発生部で作られたイオンのうち、一定の(
質量/電青)比をもったイオンだけが選ばれ、加速部で
イオンは高エネルギーに加速され、エンドステーション
で試料の原子と衝突しながら表面層を形成する方法であ
る。
(i) Ion implantation method The ion implantation method is a method in which ions are accelerated in a vacuum and implanted into the surface of a metal material. A schematic diagram of the ion implantation apparatus used in this method is shown in FIG. The ions to be injected in the ion generator are ionized, extracted with a voltage of approximately several tens of kilovolts, and guided to the mass spectrometer. In the mass spectrometer, a certain number of ions (
In this method, only ions with a high mass/electronic energy ratio are selected, and the ions are accelerated to high energy in the acceleration section, and then collide with the atoms of the sample at the end station, forming a surface layer.

(ii )イオン窒化法 イオン窒化法は、第4図にこの方法において用いるイオ
ン窒化装置の概略図を示したように通常直流グロー放電
を用いて、真空中でグロー放電によるプラズマを発生さ
せ、プラズマ内のガス(ここではN、)をイオン化した
上で、陰極降下現象により該イオンを加速して金属材料
の表面に衝突させて窒化を行う方法である(Pi誌「熱
処理」27巻6号P335〜P341) 。
(ii) Ion nitriding method The ion nitriding method normally uses direct current glow discharge to generate plasma by glow discharge in a vacuum, as shown in Figure 4, which is a schematic diagram of the ion nitriding apparatus used in this method. This is a method of nitriding by ionizing the gas (in this case, N) inside the metal material, accelerating the ions using a cathode fall phenomenon, and causing them to collide with the surface of the metal material (Pi magazine, "Heat Treatment" Vol. 27, No. 6, p. 335). ~P341).

(iii )窒素ガスによる窒化性 上に述べたイオン注入法、イオン窒化法による方法に代
わり最近では、窒素ガスによるTI製品の窒化も実用化
されている(特開昭62〜196365号、同63−4
052号等)、この方法は、スポンジチタンに接触させ
た窒素ガスをTi製部材に接触させて窒化を行う方法で
ある。
(iii) Nitriding properties using nitrogen gas Instead of the above-mentioned ion implantation method and ion nitriding method, nitriding of TI products using nitrogen gas has recently been put into practical use (JP-A-62-196365, JP-A-1963-63). -4
052, etc.), this method is a method in which nitrogen gas brought into contact with a titanium sponge is brought into contact with a Ti member to perform nitriding.

(発明が解決しようとする謀H) しかしながら、これらの方法を用いて海洋構造物用とい
った大型の丁1またはTi合金からなる材料の表面の窒
化処理を行うには、これらの方法に共通ずる次のような
問題があった。すなわちいずれの方法にしても (+) 処理用チャンバーを用いて該チャンバー内での
バンチ処理により窒化を行う方法であるので、Ttまた
はTi合金からなる大型の被処理材を収容することがで
きるチャンバーが必要となり、多大な設備費を要するこ
と (ii )処理用チャンバー内を真空にする必要があり
、処理時間が極めて長大となってしまうため処理費用が
大幅に上昇すること といった問題があり%TIまたはTi合金からなる大型
材料の表面を窒化処理するに際してどの方法も容易には
採用することができなかったのである。
(Plot H to be solved by the invention) However, in order to perform nitriding treatment on the surface of a large-sized material made of Ti alloy or Ti alloy for marine structures using these methods, there are certain steps common to these methods. There was a problem like this. In other words, either method is a method in which nitriding is performed by bunching using a (+) processing chamber, so a chamber capable of accommodating a large-sized material to be processed made of Tt or Ti alloy is required. %TI Furthermore, it has not been possible to easily employ any method when nitriding the surface of a large material made of a Ti alloy.

ここに、本発明の目的は、TiまたはTi合金からなる
大型の金属材料の表面を容易にかつ確実に窒化処理する
方法を提供することにある。
An object of the present invention is to provide a method for easily and reliably nitriding the surface of a large-sized metal material made of Ti or a Ti alloy.

(課題を解決するための手段) 本発明者は、上記課題を解決するためTiまたはTi合
金の表面の窒化処理について種々検討した結果、Nhガ
ス雰囲気でTIまたはTi合金を特定した温度範囲で特
定した時間の間、加熱保持をすることによりTiまたは
Ti合金の表面を容易にかつ確実に窒化処理することが
できるとともにTiまたはTi合金の熱処理をも兼ねる
ことができることを知り、本発明を完成した。
(Means for Solving the Problems) In order to solve the above problems, the present inventors have conducted various studies on nitriding the surface of Ti or Ti alloys, and as a result, they have determined that Ti or Ti alloys can be processed in a specified temperature range in an Nh gas atmosphere. The present invention was completed based on the knowledge that the surface of Ti or Ti alloy can be easily and reliably nitrided by heating and holding for a certain period of time, and can also serve as a heat treatment for Ti or Ti alloy. .

ここに本発明の要旨とするところは、TiまたはTi合
金の表面を窒化処理するのに際して、NHsガス:20
体積%以上100体積%未満残部 不活性ガス である雰囲気中かまたは N)Iffガス=100体積% である雰囲気中で、400℃以上850℃以下の温度範
囲で1時間以上加熱・保持することを特徴とする、Ti
またばTi合金の窒化処理法である。
The gist of the present invention is that when nitriding the surface of Ti or Ti alloy, NHs gas: 20
Heating and holding in a temperature range of 400°C or more and 850°C or less for 1 hour or more in an atmosphere with an inert gas or an atmosphere where N) If gas = 100% by volume or more with the remainder less than 100% by volume. Features: Ti
Another example is a nitriding method for Ti alloys.

本発明においては、特別なチャンバーは必要とせず、雰
囲気制御が可能な例えば熱処理炉を用いればよく、この
熱処理炉はローラー、ウオーキングビーム等による連続
炉であっても、あるいはバッチ炉であっても良い。
In the present invention, there is no need for a special chamber; for example, a heat treatment furnace that can control the atmosphere may be used, and this heat treatment furnace may be a continuous furnace using rollers, a walking beam, etc., or a batch furnace. good.

また本発明は、TiまたはT1合金であればその形状、
大きさ等には関係なく適用できるものであり、例えば成
形加工された部材、板状材、管状材またはその他の異形
部材といったあらゆる形状の製品に、またあらゆる大き
さの製品に通用することが可能である。
In addition, the present invention also covers the shape of Ti or T1 alloy,
It is applicable regardless of size, and can be applied to products of any shape, such as molded parts, plate materials, tubular materials, or other irregularly shaped parts, and products of any size. It is.

ここにTiとは合金成分を含まない純Tiを意味し、ま
たTi合金とはTiを主成分とする合金材料を意味する
Here, Ti means pure Ti containing no alloy components, and Ti alloy means an alloy material containing Ti as a main component.

また本発明は材料の疲労強度の向上を目的とする窒化処
理だけでなく、単に材料の表面硬化を目的とする材料(
耐摩耗性材料)の処理にも広く適用できることは言うま
でもない。
In addition, the present invention applies not only nitriding treatment for the purpose of improving the fatigue strength of materials, but also nitriding treatment for the purpose of simply surface hardening of materials (
Needless to say, it can also be widely applied to the treatment of wear-resistant materials.

(作用) 次に本発明をその作用とともに詳述する。なお以下本明
細書において「%」は特にことわりがない限り「体積%
」を意味するものとする。
(Function) Next, the present invention will be explained in detail together with its function. In addition, hereinafter in this specification, "%" means "volume %" unless otherwise specified.
” shall mean.

まず窒化処理時に雰囲気条件を883: 20%以上1
00体積%未満および残部不活性ガスかまたはNHsガ
ス:100%と限定した理由について述べる。
First, during the nitriding process, the atmospheric conditions are set to 883: 20% or more1
The reason why it was limited to less than 00% by volume and the remainder being inert gas or NHs gas: 100% will be explained.

雰囲気中のNHiガス量を20%以上と限定した理由は
窒化処理して得られるTiNの皮膜の硬度を確保するた
めである0本発明者の知見によれば、まずNH,ガスは
高温下においてNHs ;: N+3Hという反応によ
り、窒素原子と水素原子に解離する。解離した窒素原子
は直ちにTiまたはTi合金内に拡散し、TiまたはT
i合金表面部において、TiNの皮膜を形成するのであ
るが、雰囲気中のNH,ガス量が20%未満となれば、
Tl又はTi合金の表面で拡散するTi原子の数が少な
すぎて、表面硬化層の厚さが不足し、表面の硬度が不足
してしまう。
The reason why the amount of NHi gas in the atmosphere was limited to 20% or more is to ensure the hardness of the TiN film obtained by nitriding.According to the findings of the present inventors, first, NH gas is NHs;: Dissociates into nitrogen and hydrogen atoms through the reaction N+3H. The dissociated nitrogen atoms immediately diffuse into the Ti or Ti alloy, and the Ti or T
A TiN film is formed on the i-alloy surface, but if the amount of NH and gas in the atmosphere is less than 20%,
If the number of Ti atoms diffusing on the surface of Tl or Ti alloy is too small, the thickness of the hardened surface layer will be insufficient and the hardness of the surface will be insufficient.

NH!ガス量が20%以上であれば、どのような範囲で
もNibガス量に関係なく、材料毎に一定な高硬度の表
面皮膜が得られるのであり、NH3ガス量が増加すれば
、TiまたはTi合金の表面で拡散するTi原子の数が
増加するため、表面硬化層の厚さが増加することとなる
(N)+2ガス量が100%のとき最も厚い皮膜が得ら
れる)、つまり目的とする表面硬化層の厚さによって、
NH,ガス量を決定すればよいのである。
NH! If the gas amount is 20% or more, a uniform high hardness surface film can be obtained for each material regardless of the Nib gas amount in any range, and if the NH3 gas amount increases, Ti or Ti alloy The thickness of the surface hardening layer increases because the number of Ti atoms diffusing on the surface of Depending on the thickness of the hardened layer,
All that is needed is to determine the amount of NH and gas.

また窒化処理時の雰囲気のN)!*ガス量が100%で
ないときの残部は、化学反応による、TiN以外の表面
層の形成を防止するため、不活性ガスすなわち反応性の
ないガスであればよく特にその種類を限定する必要はな
いが、Ntガス、Arガス等が例示される。
Also, the atmosphere during nitriding treatment (N)! *When the gas amount is not 100%, the remaining gas may be an inert gas, that is, a non-reactive gas, and there is no need to limit its type in order to prevent the formation of surface layers other than TiN due to chemical reactions. However, examples include Nt gas and Ar gas.

次に窒化処理時の保持温度を400〜850℃と限定し
た理由について述べる。
Next, the reason why the holding temperature during nitriding treatment was limited to 400 to 850°C will be described.

解離したN原子はTiまたはT1合金内に拡散して吹く
が、この時の拡散速度は雰囲気温度と共に大きくなるの
で、雰囲気温度が高くなればなるほど、N原子がTLま
たはTi合金の表面に拡散する深さは増大し、表面のT
iHの皮膜の厚さが増大する。このとき、400℃未満
であると、TiまたはTi合金内へのN原子の拡散速度
は極めて小さいためTiNの皮膜の生成は極めて少なく
なるので、実用上窒化処理が行えないこととなるからで
ある。また850℃を上限としたのは、880℃近傍で
TiまたはTi合金自体の同業変態が起こるために結晶
構造が変化して、TfまたはTi合金の内部歪が増大し
、またこれに伴う割れ等の問題の発生を回避するためで
あ次に窒化処理時の保持時間を1時間以上と限定した理
由について述べる。
Dissociated N atoms diffuse and blow into the Ti or T1 alloy, but the diffusion rate at this time increases with the ambient temperature, so the higher the ambient temperature, the more N atoms diffuse into the surface of the TL or Ti alloy. The depth increases and the surface T
The thickness of the iH film increases. At this time, if the temperature is less than 400°C, the diffusion rate of N atoms into Ti or Ti alloy is extremely low, and the formation of a TiN film is extremely small, so nitriding treatment cannot be performed in practice. . Furthermore, the upper limit was set at 850°C because at around 880°C Ti or Ti alloy itself undergoes a similar transformation, which changes the crystal structure, increases the internal strain of Tf or Ti alloy, and causes cracks and other problems associated with this. The reason why the holding time during the nitriding treatment was limited to one hour or more will be described next, in order to avoid the occurrence of problems.

TiまたはT1合金の表面に生成するTiNの皮膜の厚
さは、前述したようにNHlより解離してTiまたはT
i合金の表面に拡散するN原子の数により決定されるの
であるから、拡散時間すなわち保持時間が長ければ長い
ほど、TiNの皮膜の厚さも増大することになる0本発
明者の知見によれば1時間未満の保持時間ではN原子の
拡散深さが擺めて小さく実用上子INの皮膜が形成され
ないこととなるからである。また保持時間の上限は特に
限定する必要がなく目標とする皮膜の厚さに応じて決定
すればよいことはいうまでもない。
As mentioned above, the thickness of the TiN film formed on the surface of Ti or T1 alloy is due to the Ti or T1 alloy dissociating from NH1.
Since it is determined by the number of N atoms diffusing onto the surface of the i-alloy, the longer the diffusion time, that is, the retention time, the thicker the TiN film becomes.According to the findings of the present inventors. This is because, if the holding time is less than 1 hour, the diffusion depth of N atoms will be too small, and in practical terms, a film of IN will not be formed. It goes without saying that the upper limit of the holding time does not need to be particularly limited and may be determined depending on the target thickness of the film.

前述の雰囲気条件を満足する熱処理炉にTiまたはTi
合金を挿入して1時間以上、400〜850℃の温度範
囲に加熱・保持することにより容易にかつ確実に窒化処
理することが可能になるのである。
Ti or Ti is placed in a heat treatment furnace that satisfies the above atmospheric conditions.
By inserting the alloy and heating and maintaining it at a temperature in the range of 400 to 850° C. for one hour or more, it becomes possible to perform the nitriding process easily and reliably.

ところで本発明において用いる雰囲気においては、NH
sを高温下で解離させるためN原子のみならず、H原子
も発生する。このH原子がTiまたはTi合金の内部へ
拡散するとTiまたはTi合金内にTiLという水素化
物を形成することがある。 TIH。
By the way, in the atmosphere used in the present invention, NH
Since s is dissociated at high temperature, not only N atoms but also H atoms are generated. When these H atoms diffuse into the Ti or Ti alloy, a hydride called TiL may be formed within the Ti or Ti alloy. T.I.H.

ば脆く、応力等により容易にクランクを発生し、窒化処
理したTiまたはTi合金からなる材料にいわゆる水素
脆性をもたらすことがある。よってこのTiH,の形成
を防ぐには、−旦窒化処理したTiまたはT1合金から
なる被処理材を不活性ガスの雰囲気中で加熱保持し、水
素をTiまたはTi合金からなる被処理材から外部に拡
散させておくことが望ましい、その場合の加5!8温度
、加熱保持時間は特に限定する必要がないが、水素の完
全な除去という観点からは、400℃以上、1時間以上
であることが望ましい、上記不活性雰囲気としても前述
のようにNいArガス等のガス雰囲気が例示される。
It is brittle, easily cracks due to stress, etc., and may cause so-called hydrogen embrittlement in materials made of nitrided Ti or Ti alloys. Therefore, in order to prevent the formation of TiH, the first nitrided material made of Ti or T1 alloy is heated and maintained in an inert gas atmosphere to remove hydrogen from the material made of Ti or Ti alloy. In that case, there is no need to particularly limit the heating temperature and heating holding time, but from the viewpoint of complete hydrogen removal, the temperature should be 400°C or more and 1 hour or more. The above-mentioned inert atmosphere is preferably a gas atmosphere such as N or Ar gas as described above.

次に本発明を実施例を用いて詳細に説明するが、これは
あくまでも本発明の例示であり、これにより本発明が不
当に制限されろものではない。
Next, the present invention will be explained in detail using Examples, but these are merely illustrative of the present invention, and the present invention should not be unduly limited thereby.

(実施例1) 純Tiおよび第1表に成分組成を示すT1合金それぞれ
からなる棒塊(直径230a+m)を第2表に示す条件
下で窒化処理を行い(PII(3ガスと混合したガスば
Atであった)、冷却後棒塊をN2雰囲気の炉内に入れ
て500℃、1時間加熱保持して試料Nilないし試料
磁20を得た。
(Example 1) A rod ingot (diameter 230a+m) made of pure Ti and a T1 alloy whose composition is shown in Table 1 was nitrided under the conditions shown in Table 2 (PII (gas mixture mixed with three gases)). After cooling, the bar ingots were placed in a furnace with an N2 atmosphere and heated and held at 500° C. for 1 hour to obtain Samples Nil to Sample Magnet 20.

第1表 得られた試料について、TiN層の厚さをミクロ検鏡で
、表層部硬度(Hv)をビッカース硬度計で、さらにシ
ャルピー衝撃試験により材料の衝撃特性を調査し、結果
を純T!、Ti合金のそれぞれに分けて第2表にまとめ
た。
For the samples obtained in Table 1, the thickness of the TiN layer was measured using a microscopic microscope, the surface layer hardness (Hv) was measured using a Vickers hardness tester, and the impact properties of the material were investigated using a Charpy impact test. , Ti alloys are summarized in Table 2.

試料魚1ないし試料阻12は本発明にかかる方法に得ら
れた窒化処理試料であるが、皮膜の厚さ、皮膜硬度さら
にシャルピー衝撃試験値ともに優れた値を示しており、
本発明にかかる方法により疲労強度、耐食性および靭性
に優れた窒化処理TiまたはTi合金が得られたことが
わかる。
Sample fish 1 to sample 12 are nitrided samples obtained by the method according to the present invention, and they show excellent values in film thickness, film hardness, and Charpy impact test value.
It can be seen that a nitrided Ti or Ti alloy with excellent fatigue strength, corrosion resistance, and toughness was obtained by the method according to the present invention.

海洋構造物用材料としての目標とする皮膜厚さ、皮膜硬
度およびシャルピー衝撃試験値はそれぞれ254s 、
[lv 800.2kgmであり、本発明にかかる方法
により得られた試料Nllないし試料階12はこれらの
値をすべて満足している。
The target film thickness, film hardness, and Charpy impact test value as a material for marine structures are 254 s, respectively.
[lv] is 800.2 kgm, and Samples N11 to 12 obtained by the method according to the present invention satisfy all of these values.

これに対し、試料嵐13ないし試料磁20は、比較例の
方法で得た試料である。
On the other hand, Sample Arashi 13 to Sample Magnet 20 are samples obtained by the method of the comparative example.

試料Na13および試料磁17は、窒化処理時の雰囲気
中のN1.量が15%と本発明の範囲より少ない条件、
で窒化処理した試料であるが、得られた皮膜の厚さが2
5μ−に達さず、目標とする皮膜特性を有していないた
め、海洋構造物材料として適していないことがわかる。
Sample Na13 and sample magnet 17 were exposed to N1. Conditions where the amount is 15%, which is less than the scope of the present invention,
This is a sample nitrided with
It can be seen that it is not suitable as a material for marine structures because it does not reach 5 μ- and does not have the target film characteristics.

また、試料患14、試料患15、試料阻18および試F
41’k19は、窒化処理時の保持時間が0.5時間と
本発明の範囲よりも少ない時間で窒化処理した試料であ
るが、得られた皮膜の厚さが5μ鋼以下となっているた
め実用上耐食性が不足し、やはり目標とする皮膜特性を
有していないため、海洋構造物材料として適していない
ことがわかる。
In addition, sample 14, sample 15, sample 18, and sample F
41'k19 is a sample that was nitrided with a holding time of 0.5 hours, which is shorter than the range of the present invention, but the thickness of the obtained film was less than 5μ steel. It can be seen that it is not suitable as a material for marine structures because it lacks practical corrosion resistance and does not have the desired film properties.

また試料阻16および試料隠20は、窒化処理時の保持
温度が本発明の範囲より低い条件で窒化処理した試料で
あるが、得られた皮膜の厚さが5μ−以下となり、やは
り目標とする皮膜特性を有していないことがわかる。
In addition, although Sample No. 16 and Sample No. 20 were nitrided under conditions in which the holding temperature during nitriding was lower than the range of the present invention, the thickness of the obtained film was 5μ or less, which still meets the target. It can be seen that it does not have film characteristics.

(実施例2) 純Ttおよび第1表に示す組成を有するTi合金からな
る捧塊(直径230 m)を5水準の雰囲気(NHs量
:20.40.60.80.100体積%)中で500
℃で3時間加熱保持して窒化処理を行って、冷却後被処
理材をHz雰囲気の炉内に入れて500℃、1時間加熱
保持して試料11m1ないし試料阻10を得た。
(Example 2) An ingot (diameter 230 m) made of pure Tt and a Ti alloy having the composition shown in Table 1 was prepared in five levels of atmosphere (NHs amount: 20.40.60.80.100% by volume). 500
The material was heated and held at .degree. C. for 3 hours for nitriding treatment, and after cooling, the material to be treated was placed in a furnace in a Hz atmosphere and heated and held at 500.degree. C. for 1 hour to obtain samples 11ml to 10.

得られた試料の皮膜の厚さをミクロ検鏡で、表面硬度を
ビッカース硬度計により測定し結果を第3表にまとめた
The thickness of the film of the obtained sample was measured using a microscopic microscope, and the surface hardness was measured using a Vickers hardness meter, and the results are summarized in Table 3.

第3表に示す結果から明らかなように (+)雰囲気中のNHiガス量が増加するにつれて皮膜
の厚さは増加する ( ii )雰囲気中のNH,ガス量が本発明の範囲内
である209A以上であれば、皮膜の硬度は用いる材料
毎に一定であり、極めて高い値を示す ことがわかる。つまり (i)および(ii )より本
発明によって目標とする皮膜およびその厚さを得るには
、雰囲気中のNH3ガス量を調節すればよいことがわか
る。
As is clear from the results shown in Table 3, (+) the film thickness increases as the amount of NHi gas in the atmosphere increases (ii) 209A where the amount of NH and gas in the atmosphere is within the range of the present invention If it is above, it can be seen that the hardness of the film is constant depending on the material used and exhibits an extremely high value. In other words, from (i) and (ii) it can be seen that in order to obtain the target film and its thickness according to the present invention, it is sufficient to adjust the amount of NH3 gas in the atmosphere.

(実施例3) (i)純T+および第1表に示す成分組成を有するTi
合金からなる棒塊(直径230 fi)を雰囲気温度5
00℃、NH3ガスWt60体積%および処理時間を4
水準(3,5、IO230時間)として窒化処理した時
の表面皮膜の厚さと窒化処理時間の関係を第1図に、ま
た (ii)NHzガス量60体積%、処理時間3時間およ
び雰囲気温度を4水準(500,600,700,80
0℃)として窒化処理した時の表面皮膜の厚さと゛望イ
φ処理温度の関係を第2図に示す。
(Example 3) (i) Pure T+ and Ti having the component composition shown in Table 1
A bar block (diameter 230 fi) made of an alloy is heated to an ambient temperature of 5.
00℃, NH3 gas Wt 60% by volume and treatment time 4
Figure 1 shows the relationship between the thickness of the surface film and the nitriding time when nitriding was performed at levels (3, 5, IO230 hours), and (ii) the NHz gas amount was 60% by volume, the treatment time was 3 hours, and the ambient temperature was 4 levels (500, 600, 700, 80
FIG. 2 shows the relationship between the thickness of the surface film when nitriding is performed at a temperature of 0° C. and the desired φ treatment temperature.

第1図または第2図より明らかなように、本発明により
生成皮膜の厚さは、窒化処理時間または窒化処理温度を
決定することにより、容易にかつ確実に所望の値とする
ことが出来ることがわかる。
As is clear from FIG. 1 or 2, the thickness of the film produced according to the present invention can be easily and reliably set to a desired value by determining the nitriding treatment time or nitriding treatment temperature. I understand.

(発明の効果) 以上詳述してきたように、本発明は、TiまたはTi合
金からなる被処理材を、特に被処理材が大型であっても
、特定した体積%のNH2ガスの雰囲気中で、特定した
温度域および時間で加熱・保持することとしたため、特
別なチャンバーを必要とせず容易にかつ確実にTtまた
はTi合金からなる材料の表面の窒化処理を行うことが
可能となった。また本発明で用いる窒化処理温度は、T
tまたはTi合金の焼鈍温度に近(、窒化処理と焼鈍と
を併せて実施できるという効果もある。かかる効果を有
する本発明の実用上の意義は著しい。
(Effects of the Invention) As described in detail above, the present invention enables processing of a material to be treated made of Ti or a Ti alloy in an atmosphere of NH2 gas of a specified volume percent, even if the material to be treated is particularly large. By heating and holding in a specified temperature range and for a specified time, it became possible to easily and reliably perform nitriding treatment on the surface of a material made of Tt or Ti alloy without the need for a special chamber. Further, the nitriding temperature used in the present invention is T
There is also the effect that nitriding treatment and annealing can be carried out together at temperatures close to the annealing temperature of Ti or Ti alloys.The practical significance of the present invention having such an effect is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかかる方法により生成するTiN皮
膜の厚さに及ぼす処理時間の関係をあられすグラフ; 第3図は、従来法であるイオン注入法において用いるイ
オン注入装置の概略図;および第4図は、従来法である
イオン窒化法において用いるイオン窒化装置の概略図で
ある。 ネ1 図
FIG. 1 is a graph showing the relationship between the processing time and the thickness of the TiN film produced by the method according to the present invention; FIG. 3 is a schematic diagram of an ion implantation apparatus used in the conventional ion implantation method; FIG. 4 is a schematic diagram of an ion nitriding apparatus used in the conventional ion nitriding method. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)TiまたはTi合金の表面を窒化処理するのに際
して、 NH_3ガス:20体積%以上100体積%未満残部不
活性ガスである雰囲気中かまたはNH_3ガス:100
体積% である雰囲気中で、400℃以上850℃以下の温度範
囲で1時間以上加熱・保持することを特徴とする、Ti
またはTi合金の窒化処理法。
(1) When nitriding the surface of Ti or Ti alloy, NH_3 gas: 20% by volume or more and less than 100% by volume in an atmosphere where the balance is an inert gas or NH_3 gas: 100% by volume.
% by volume, heating and holding in a temperature range of 400°C or more and 850°C or less for 1 hour or more.
Or Ti alloy nitriding method.
(2)請求項1記載の窒化処理法により得た被処理材を
引き続き不活性ガスの雰囲気中で加熱保持することを特
徴とする、TiまたはTi合金の窒化処理法。
(2) A method for nitriding Ti or Ti alloy, characterized in that the material to be treated obtained by the nitriding method according to claim 1 is subsequently heated and held in an inert gas atmosphere.
JP63174600A 1988-07-13 1988-07-13 Ni or Ti alloy nitriding method Expired - Lifetime JPH0663081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63174600A JPH0663081B2 (en) 1988-07-13 1988-07-13 Ni or Ti alloy nitriding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174600A JPH0663081B2 (en) 1988-07-13 1988-07-13 Ni or Ti alloy nitriding method

Publications (2)

Publication Number Publication Date
JPH0225559A true JPH0225559A (en) 1990-01-29
JPH0663081B2 JPH0663081B2 (en) 1994-08-17

Family

ID=15981409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174600A Expired - Lifetime JPH0663081B2 (en) 1988-07-13 1988-07-13 Ni or Ti alloy nitriding method

Country Status (1)

Country Link
JP (1) JPH0663081B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080958A (en) * 2000-09-11 2002-03-22 Kiyotaka Matsuura Method for forming carbonitride layer on surface of metallic material and titanium based metallic material provided with carbonitride layer on surface
KR100594998B1 (en) * 2004-05-14 2006-06-30 주식회사 케이피티 Method for nitriding of Ti and Ti alloy
US20100210117A1 (en) * 2009-02-13 2010-08-19 Asm International N.V. Selective removal of oxygen from metal-containing materials
US9127340B2 (en) 2009-02-13 2015-09-08 Asm International N.V. Selective oxidation process
WO2022184812A1 (en) * 2021-03-03 2022-09-09 Elos Medtech Pinol A/S Surface hardening of group iv metals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5060437A (en) * 1973-10-01 1975-05-24
JPS5060438A (en) * 1973-10-01 1975-05-24

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5060437A (en) * 1973-10-01 1975-05-24
JPS5060438A (en) * 1973-10-01 1975-05-24

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080958A (en) * 2000-09-11 2002-03-22 Kiyotaka Matsuura Method for forming carbonitride layer on surface of metallic material and titanium based metallic material provided with carbonitride layer on surface
JP4641091B2 (en) * 2000-09-11 2011-03-02 清隆 松浦 Method of forming carbonitride layer on metal material surface and titanium-based metal material having carbonitride layer on surface
KR100594998B1 (en) * 2004-05-14 2006-06-30 주식회사 케이피티 Method for nitriding of Ti and Ti alloy
US20100210117A1 (en) * 2009-02-13 2010-08-19 Asm International N.V. Selective removal of oxygen from metal-containing materials
US8889565B2 (en) * 2009-02-13 2014-11-18 Asm International N.V. Selective removal of oxygen from metal-containing materials
US9127340B2 (en) 2009-02-13 2015-09-08 Asm International N.V. Selective oxidation process
WO2022184812A1 (en) * 2021-03-03 2022-09-09 Elos Medtech Pinol A/S Surface hardening of group iv metals

Also Published As

Publication number Publication date
JPH0663081B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
US11072847B2 (en) Cast product having alumina barrier layer
Kimura et al. Hydrogen embrittlement in high purity iron single crystals
Çelik et al. Investigation of compound layer formed during ion nitriding of AISI 4140 steel
US4264380A (en) Nitride casehardening process and the nitrided product thereof
JPH0225559A (en) Nitriding treatment for ti or ti alloy
US4704168A (en) Ion-beam nitriding of steels
Roliński Isothermal and cyclic plasma nitriding of titanium alloys
JP4512603B2 (en) Halogen gas resistant semiconductor processing equipment components
Koyama et al. Intrinsic Factors that Trigger the Coaxing Effect in Binary Fe–C Ferritic Alloys with a Focus on Strain Aging
KR101866754B1 (en) Carburizing Method in Low-Pressure Range
Cohen et al. The influence of ion nitriding parameters on the hardness layer of 15-5 PH stainless steel
JPS63166957A (en) Surface coated steel product
EP1291445A1 (en) Steel material production method
US3236684A (en) Alloy diffusion coating process
JP2003286561A (en) Method for nitriding steel plate and steel product
KR100594998B1 (en) Method for nitriding of Ti and Ti alloy
US3481769A (en) Alloy diffusion coating process
Cai et al. Effects of warm rolling reduction on the microstructure, texture and magnetic properties of Fe–6.5 wt% Si steel
Agzamov et al. Effect of low-temperature ion nitriding on microhardness, roughness and residual stresses in the surface layer of Ti-6Al-4V
RU2812924C1 (en) Ion nitriding method for aluminium alloy parts
Dearnley et al. Crafting the surface with glow discharge plasmas
JPH0681113A (en) Surface hardening method for aluminum material or aluminum alloy material
US3256818A (en) Method of reducing barrel wear
Peterson et al. Stress-cracking in the Uranium-10 w/o Molybdenum Alloy
Bryant High-temperature strength stability of three forms of chemically vapor deposited tungsten