JPH02255513A - Production of nitrogen trifluoride - Google Patents

Production of nitrogen trifluoride

Info

Publication number
JPH02255513A
JPH02255513A JP7410789A JP7410789A JPH02255513A JP H02255513 A JPH02255513 A JP H02255513A JP 7410789 A JP7410789 A JP 7410789A JP 7410789 A JP7410789 A JP 7410789A JP H02255513 A JPH02255513 A JP H02255513A
Authority
JP
Japan
Prior art keywords
reaction
gas
reactor
gaseous
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7410789A
Other languages
Japanese (ja)
Inventor
Masaaki Shimizu
清水 雅朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP7410789A priority Critical patent/JPH02255513A/en
Publication of JPH02255513A publication Critical patent/JPH02255513A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/083Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms
    • C01B21/0832Binary compounds of nitrogen with halogens
    • C01B21/0835Nitrogen trifluoride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To efficiently remove reaction heat and to improve yield by bringing NH3 diluted with a specific diluting gas and F2 into reaction in a gaseous phase. CONSTITUTION:A gaseous mixture is obtd. by mixing 1mol NH3 and 5 to 100mol >=1 kinds of the diluting gases selected from SF6, hexafluoroethane and tetrafluoromethane. This gaseous mixture and the F2 is supplied at 5 to 800cm/s flow velocity into the reactor installed in a heat medium kept at 80 to 250 deg.C from the uppermost part thereof in such a manner as to attain 3 to 20mol F2 per 1mol NH3, by which NF3 and the liquid or solid by-product are formed. The by-product is captured in a capturing vessel. The diluting gas is recovered through a condenser. The gaseous NF3 is then scrubbed in an alkali scrubbing column, and recovered in a recovering container.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、F3とNH,を気相状で反応させて三フッ化
窒素(NFs)を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing nitrogen trifluoride (NFs) by reacting F3 and NH in a gas phase.

(従来の技術) N F sは、沸点が約−129℃、融点が約−208
℃の化合物であり、フッ素源または高エネルギー燃料の
酸化剤またはドライエツチング剤などに使用されている
。製造方法としては、従来以下のような気相法によるも
のが知られている。
(Prior art) NFs has a boiling point of about -129°C and a melting point of about -208°C.
℃ compound and is used as a fluorine source or as an oxidizing agent or dry etching agent for high-energy fuels. As a manufacturing method, the following gas phase method is conventionally known.

Ruffらは、NHIとF、を気相状で反応させて、5
%以下の収率ではあるが化学的にNFSを合成した。(
Z、Anorg、A11g、Chem、、197;39
5゜1931) Morrowらも同様に気相法による
合成を報告しているe  (J、Aa+er、Chea
+、Soc、、82,5301゜(発明が解決しようと
する課題) しかしながら、この反応は発熱が大きく、反応器内の温
度が上昇しすぎて、−旦生成したN F sが分解して
しまうという問題点がある。
Ruff et al. reacted NHI and F in the gas phase to produce 5
NFS was chemically synthesized, although the yield was less than %. (
Z, Anorg, A11g, Chem, 197;39
5゜1931) Morrow et al. also reported the synthesis by the gas phase method.
+, Soc,, 82,5301° (Problem to be solved by the invention) However, this reaction generates a large amount of heat, and the temperature inside the reactor rises too much, causing the NF s produced to decompose. There is a problem.

しかも、この反応は副生成物としてNH,FやN、が生
成し、特にNH,Fは凝固して反応器および配管を閉塞
するという問題点があるため、反応器内の温度を下げる
ために冷却を行なうことが困難であった。
Moreover, this reaction produces NH, F, and N as byproducts, and there is a problem that NH and F in particular solidify and block the reactor and piping, so it is necessary to lower the temperature inside the reactor. Cooling was difficult to achieve.

気相反応においでこのような過熱を押える目的で希釈ガ
スを用いることがあるが、NH,とF2とからNF、を
合成する反応においては通常よく用いられる窒素、アル
ゴン、ヘリウムのような希釈ガスを用いた場合過熱を防
止するに充分なだけ希釈ガスを加えると、反応が充分進
まず収率が高くならない。
In gas phase reactions, diluent gases are sometimes used to suppress such overheating, but diluent gases such as nitrogen, argon, and helium, which are commonly used in the reaction to synthesize NF from NH and F2, are often used. If sufficient diluent gas is added to prevent overheating, the reaction will not proceed sufficiently and the yield will not be high.

(課題を解決するための手段) 本発明者は、これら従来法が有している欠点を排除し、
気相法によりN F sを効率的に合成することを目的
として種々研究、検討した結果、特定の希釈ガスを用い
ることによりこの目的が達成されることを見出した。
(Means for Solving the Problems) The present inventor eliminates the drawbacks of these conventional methods,
As a result of various studies and examinations aimed at efficiently synthesizing N F s by a gas phase method, it has been found that this purpose can be achieved by using a specific diluent gas.

かくして本発明は、F8とN Hsを気相状で反応させ
てNFsを製造する方法において、NHs 1モルに対
して六フッ化イオウ、ヘキサフルオロエタン、テトラフ
ルオロメタンからなる群より選ばれた1種以上の希釈ガ
スを5〜100モルの比率で加えることを特徴とする三
フッ化窒素の製造方法を提供するものである。
Thus, the present invention provides a method for producing NFs by reacting F8 and NHs in a gas phase, in which 1 mole of NHs is reacted with 1 sulfur hexafluoride, hexafluoroethane, and tetrafluoromethane. The present invention provides a method for producing nitrogen trifluoride, characterized in that at least one diluent gas is added at a ratio of 5 to 100 moles.

本発明の希釈ガスは、窒素のような通常よ(用いられる
ものに比べると単位体積あたりの比熱が大きく反応を太
きパ<抑制することなく反応熱を吸収して反応器内の過
熱を防ぐことができる。このため、NF、を高い収率で
製造することができる。
The diluent gas used in the present invention has a large specific heat per unit volume compared to normally used gases such as nitrogen, and is capable of absorbing reaction heat without suppressing the reaction and preventing overheating in the reactor. Therefore, NF can be produced in high yield.

希釈の方法としては、F、および/またはNH,に予め
希釈ガスを加えておきこれを反応器内で混合しても良く
、反応器にNHl、F!、希釈ガスを別々に注入するこ
ともできる。特にNHaだけを希釈しておき、これに高
濃度のF2ガスを注入して反応させる場合は、さらに収
率が向上するので好ましい。この理由は、NF3の反応
機構に関係があるものと思われるが、あまり明らかでは
ない。
As a dilution method, a diluent gas may be added to F and/or NH in advance and mixed in the reactor, or NHL, F! , dilution gas can also be injected separately. In particular, it is preferable to dilute only NHa and inject high-concentration F2 gas into the diluted solution to cause the reaction, since this further improves the yield. The reason for this seems to be related to the reaction mechanism of NF3, but it is not very clear.

六フッ化イオウ、ヘキサフルオロエタン、テトラフルオ
ロメタンのうち六フッ化イオウとヘキサフルオロエタン
はNF、に比べて沸点が大きく異なるので1反応の後で
回収が容易であるので特に好ましい。
Among sulfur hexafluoride, hexafluoroethane, and tetrafluoromethane, sulfur hexafluoride and hexafluoroethane are particularly preferred because their boiling points are significantly different from that of NF, and therefore they can be easily recovered after one reaction.

希釈ガスの注入割合はNHs 1モルに対して5〜10
0モルが適・切である。5モル未満の場合は反応熱の除
去が不充分になり反応器内の温度が上昇しNHlの分解
が促進されて収率が低下するので不適当である。100
モルを超える場合はF8とNHIの反応が充分進行しな
いので不適当である。より好ましい範囲は10〜30モ
ルである。
The injection ratio of diluent gas is 5 to 10 per mole of NHs.
0 mol is appropriate. If the amount is less than 5 moles, the reaction heat will not be removed sufficiently, the temperature in the reactor will rise, the decomposition of NHL will be promoted, and the yield will decrease, which is unsuitable. 100
If the amount exceeds the molar amount, the reaction between F8 and NHI will not proceed sufficiently, which is inappropriate. A more preferable range is 10 to 30 moles.

F、とN Hsの注入比率は、NHs 1モルに対して
F3が3〜20モルであるのが好ましい。この比率が3
未満の場合はNHIが完全に反応しない場合があるので
好ましくない、F3が過剰にあるほうがNH3を基準と
したN F sの収率が向上するが、上記比率が20を
超える場合は反応に寄与しないF2が多(なりすぎるの
で好ましくないeFtが過剰にある場合は、閉塞の原因
である副生成物をフッ素化してこれを液体あるいは気体
にして閉塞を防止する働きもあるものと考えられる。
The injection ratio of F and NHs is preferably 3 to 20 moles of F3 to 1 mole of NHs. This ratio is 3
If the ratio is less than 20, it is not preferable because NHI may not react completely.If F3 is in excess, the yield of NFs based on NH3 will improve, but if the above ratio exceeds 20, it will not contribute to the reaction. If there is an excessive amount of eFt, which is undesirable because there is too much F2, it is thought that it also works to prevent blockages by fluorinating by-products that cause blockages and converting them into liquid or gas.

本発明において、反応器を80〜250℃の温度に維持
された熱媒内に設置する場合は、熱媒を通して反応熱を
効率的に排出できるので反応器内の過熱がさらに起こり
にくくなり、また反応器の内壁が常に副生成物の凝固温
度より高くなるので反応器の閉塞が起こらない。熱媒の
温度はZoo−150℃がより好ましい。
In the present invention, when the reactor is installed in a heating medium maintained at a temperature of 80 to 250°C, the heat of reaction can be efficiently discharged through the heating medium, making overheating in the reactor more difficult to occur. Since the inner wall of the reactor is always higher than the solidification temperature of the by-products, blockage of the reactor does not occur. The temperature of the heating medium is more preferably Zoo-150°C.

熱媒としては、使用温度において安定な液体であれば特
に限定されないが、万一反応器内の気体が漏洩した場合
にそなえて、F2ガスに対して不活性なものが好ましい
。熱媒は、反応器の周囲に設けられた熱媒容器に保持さ
れる。熱媒の温度を制御するために熱媒の加熱あるいは
冷却のための手段を設けることが好ましい。熱媒の撹拌
装置あるいはバブリング装置を設けることにより、熱媒
の温度を均一にし、かつ熱の伝達を良好にすることがで
きる。
The heat medium is not particularly limited as long as it is a liquid that is stable at the operating temperature, but it is preferably inert to F2 gas in case the gas in the reactor leaks. The heating medium is held in a heating medium container provided around the reactor. Preferably, means for heating or cooling the heating medium is provided in order to control the temperature of the heating medium. By providing a heating medium stirring device or bubbling device, the temperature of the heating medium can be made uniform and heat transfer can be improved.

本発明の製造方法においては、内部の気体を上から下の
方向に流すのが好ましく、かつ反応器の下部に副生成物
の凝固物を捕捉するための容器を設けることにより、反
応器の閉塞をさらに発生しにく(することができる。反
応器中の気体の流速としては、反応熱の排出を良好にす
るために5 cm/s以上が好ましい、流速が800c
m/sを超えると圧力損失が増大しすぎるので好ましく
ない。
In the production method of the present invention, it is preferable to flow the internal gas from top to bottom, and by providing a container at the bottom of the reactor to capture the coagulated by-products, the reactor can be blocked. The gas flow rate in the reactor is preferably 5 cm/s or more in order to effectively discharge the reaction heat, and the flow rate is 800 cm/s or more.
If it exceeds m/s, the pressure loss will increase too much, which is not preferable.

(実施例) 実施例 1 第1図に示した反応装置により、F2とN Hsとを気
相状で反応させた。この装置は、内容積的5mlの円筒
型の反応器が、内容積的500m1の熱媒容器中に設置
されている。熱媒としてはフッ素系オイルが用いられて
いる。熱媒は、電熱器により 125℃に保持されてお
り、かつ空気のバブリングにより撹拌されている。反応
器のすぐ下部には内容積的50t)ofの容器が設置さ
れており、液体あるいは固体状の副生成物が生成した場
合にはここに捕捉できる構造になっている。
(Example) Example 1 Using the reaction apparatus shown in FIG. 1, F2 and NHs were reacted in a gas phase. In this device, a cylindrical reactor with an internal volume of 5 ml is installed in a heat medium container with an internal volume of 500 ml. Fluorine oil is used as a heat medium. The heating medium is maintained at 125°C by an electric heater and stirred by air bubbling. A container with an internal volume of 50 tons is installed immediately below the reactor, and the structure is such that liquid or solid by-products, if generated, can be captured there.

この装置では、NH,がSF6で希釈され充分混合され
たあと反応器の最上部から注入される。F2も同様に最
上部から注入される。反応後の気体は、捕捉容器の上部
より取出しまずSF、を回収し、さらにアルカリ洗浄し
た後で回収した。回収したSF、は再度希釈ガスとして
用いた。
In this device, NH, is diluted with SF6, thoroughly mixed, and then injected from the top of the reactor. F2 is similarly injected from the top. The gas after the reaction was taken out from the upper part of the trapping container, and SF was first collected, and then the gas was washed with alkali and then collected. The recovered SF was used again as dilution gas.

この装置を用いて、NH36g/h(標準状態換算、以
下同様)にSF、90℃/hを加えて希釈したガスとF
146j2/hを反応させた。このときNH,を基準と
した反応率は100%で、NF。
Using this device, gas diluted by adding SF and 90°C/h to NH36g/h (converted to standard conditions, the same applies hereinafter) and F
146j2/h was reacted. At this time, the reaction rate was 100% based on NH, and NF.

の選択率は42.7%である。即ちN Hlを基準とし
た収率は42.7%であった。
The selectivity is 42.7%. That is, the yield based on N 2 H1 was 42.7%.

実施例 2〜4 実施例1の装置を用いて、NH,、F、、SF。Examples 2 to 4 Using the apparatus of Example 1, NH,,F,,SF.

の注入量を表1に示したものに変更した以外は実施例1
と同様にしてNF、を合成した。
Example 1 except that the injection amount was changed to that shown in Table 1.
NF was synthesized in the same manner.

NF富を基準とした反応率、N F sの選択率、N 
Hsを基準としたNF、の収率を表1に示す。
Reaction rate based on NF wealth, selectivity of N F s, N
Table 1 shows the yield of NF based on Hs.

比較例 1.2 実施例1の装置を用いて、NH,、F2、の注入量を表
1に示したものに変更し1.SFsに変えて表1に示し
た注入量のN、を用いた以外は実施例1と同様にしてN
 F sを合成した一NHaを基準とした反応率、NF
、の選択率、NH。
Comparative Example 1.2 Using the apparatus of Example 1, the injection amounts of NH, F2 were changed to those shown in Table 1, and 1. N was prepared in the same manner as in Example 1, except that the injection amount of N shown in Table 1 was used instead of SFs.
Reaction rate based on 1NHa synthesized with Fs, NF
, selectivity of NH.

を基準としたNF、の収率を表1に示す。Table 1 shows the yield of NF based on .

(効果) 本発明の製造方法により、気相法でN F sが得られ
る0本発明で用いる希釈ガスは、収率を低下させること
なく反応熱を効率的に除去できN F sが高収率で得
られる。
(Effects) By the production method of the present invention, N F s can be obtained by a gas phase method. The diluent gas used in the present invention can efficiently remove the reaction heat without reducing the yield, and N F obtained at a rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例にて用いたNF、の製造装置の概略図
である。
FIG. 1 is a schematic diagram of a manufacturing apparatus for NF used in Examples.

Claims (1)

【特許請求の範囲】 1、F_2とNH_3を気相状で反応させてNF_3を
製造する方法において、NH_31モルに対して六フッ
化イオウ、ヘキサフルオロエタ ン、テトラフルオロメタンからなる群より選ばれた1種
以上を希釈ガスとして5〜100モルの比率で加えるこ
とを特徴とする三フッ化窒素の製造方法。 2、希釈ガスとNH_3を混合した気体を反応器中でF
_2と混合して反応させる請求項1の製造方法。
[Claims] 1. In a method for producing NF_3 by reacting F_2 and NH_3 in a gas phase, a compound selected from the group consisting of sulfur hexafluoride, hexafluoroethane, and tetrafluoromethane for 1 mole of NH_3 A method for producing nitrogen trifluoride, which comprises adding one or more diluent gases at a ratio of 5 to 100 moles. 2. F
The manufacturing method according to claim 1, wherein the method is mixed with _2 and reacted.
JP7410789A 1989-03-28 1989-03-28 Production of nitrogen trifluoride Pending JPH02255513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7410789A JPH02255513A (en) 1989-03-28 1989-03-28 Production of nitrogen trifluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7410789A JPH02255513A (en) 1989-03-28 1989-03-28 Production of nitrogen trifluoride

Publications (1)

Publication Number Publication Date
JPH02255513A true JPH02255513A (en) 1990-10-16

Family

ID=13537638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7410789A Pending JPH02255513A (en) 1989-03-28 1989-03-28 Production of nitrogen trifluoride

Country Status (1)

Country Link
JP (1) JPH02255513A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637285A (en) * 1996-01-30 1997-06-10 Air Products And Chemicals, Inc. Process for nitrogen trifluoride synthesis
JP2001322806A (en) * 2000-05-12 2001-11-20 Showa Denko Kk Manufacturing method for nitrogen trifluoride and application therefor
WO2001085603A3 (en) * 2000-05-12 2002-04-18 Showa Denko Kk Process for producing nitrogen trifluoride and use thereof
US6821496B2 (en) 2001-05-08 2004-11-23 Zakrytoe Aktsionernoe Obschestvo Nauchno Proizvodstvennoe Obiedinenie “PiM-Invest” Process for preparing nitrogen trifluoride
WO2007004409A1 (en) * 2005-07-06 2007-01-11 Central Glass Company, Limited Process for synthesis of halogenated nitrogen
JP2007084370A (en) * 2005-09-21 2007-04-05 Showa Denko Kk Method for producing nitrogen trifluoride
US7820127B2 (en) 2005-08-26 2010-10-26 Showa Denko K.K. Method and apparatus for producing nitrogen trifluoride
EP3782969A1 (en) 2019-08-22 2021-02-24 Fujian Yongjing Technology Co., Ltd. Process of fluorinating inorganic or organic compounds by direct fluorination
CN114572944A (en) * 2021-12-23 2022-06-03 西安近代化学研究所 Preparation method of nitrogen trifluoride and nitrogen trifluoride mixed gas

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637285A (en) * 1996-01-30 1997-06-10 Air Products And Chemicals, Inc. Process for nitrogen trifluoride synthesis
JP2001322806A (en) * 2000-05-12 2001-11-20 Showa Denko Kk Manufacturing method for nitrogen trifluoride and application therefor
WO2001085603A3 (en) * 2000-05-12 2002-04-18 Showa Denko Kk Process for producing nitrogen trifluoride and use thereof
US7018598B2 (en) 2000-05-12 2006-03-28 Showa Denko K.K. Process for producing nitrogen trifluoride
US6821496B2 (en) 2001-05-08 2004-11-23 Zakrytoe Aktsionernoe Obschestvo Nauchno Proizvodstvennoe Obiedinenie “PiM-Invest” Process for preparing nitrogen trifluoride
WO2007004409A1 (en) * 2005-07-06 2007-01-11 Central Glass Company, Limited Process for synthesis of halogenated nitrogen
JP2007308357A (en) * 2005-07-06 2007-11-29 Central Glass Co Ltd Process for synthesis of halogenated nitrogen
US7820127B2 (en) 2005-08-26 2010-10-26 Showa Denko K.K. Method and apparatus for producing nitrogen trifluoride
JP2007084370A (en) * 2005-09-21 2007-04-05 Showa Denko Kk Method for producing nitrogen trifluoride
EP3782969A1 (en) 2019-08-22 2021-02-24 Fujian Yongjing Technology Co., Ltd. Process of fluorinating inorganic or organic compounds by direct fluorination
CN114572944A (en) * 2021-12-23 2022-06-03 西安近代化学研究所 Preparation method of nitrogen trifluoride and nitrogen trifluoride mixed gas

Similar Documents

Publication Publication Date Title
US4543242A (en) Process of preparing nitrogen trifluoride by gas-solid reaction
JPH02255513A (en) Production of nitrogen trifluoride
JPS61257949A (en) Manufacture of fluoroxyhalo compound
JP2021508653A (en) Methods and equipment for efficiently preparing trifluoroamine oxides
JP6879312B2 (en) Manufacturing method of sulfur tetrafluoride
JP4791952B2 (en) Process for producing 4-fluoro-1,3-dioxolan-2-one
EP0372635B1 (en) Method of preparing dialkyl and diallyl dicarbonates
JPH05105411A (en) Production of nitrogen trifluoride
JPH02255512A (en) Apparatus for producing nitrogen trifluoride
US4499024A (en) Continuous process for preparing bisfluoroxydifluoromethane
KR100961587B1 (en) Process for synthesis of halogenated nitrogen
KR100340211B1 (en) Continuous process for preparing perfluoroethyliodide using liquid catalyst
JP4166025B2 (en) Method for producing carbonyl difluoride
JPH02255511A (en) Reactor for producing nitrogen trifluoride
JPS6261572B2 (en)
KR100340212B1 (en) Continuous process for preparing perfluoroethyliodide using solid catalyst
RU2041194C1 (en) Method of synthesis of octafluoropropane and a reactor for its realization
JP2755530B2 (en) Method for producing fluorinated alcohol
CN210764338U (en) Carbon tetrafluoride synthesis device
JPH09263559A (en) Production of fluorine-containing alkyl ether
US4332939A (en) Process for the preparation of fluorinated s-triazines
US5545776A (en) Synthesis of n-perfluorooctyl bromide
KR100591101B1 (en) Method for nitrogen trifluoride production
US5283380A (en) Process for preparing an active telogen
JP2010116395A (en) Manufacturing method of decafluorocyclohexene