JPH0225545A - Ni-cr austenitic stainless steel having excellent high temperature long time stability - Google Patents

Ni-cr austenitic stainless steel having excellent high temperature long time stability

Info

Publication number
JPH0225545A
JPH0225545A JP17487788A JP17487788A JPH0225545A JP H0225545 A JPH0225545 A JP H0225545A JP 17487788 A JP17487788 A JP 17487788A JP 17487788 A JP17487788 A JP 17487788A JP H0225545 A JPH0225545 A JP H0225545A
Authority
JP
Japan
Prior art keywords
stainless steel
creep rupture
less
long time
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17487788A
Other languages
Japanese (ja)
Inventor
Takanori Nakazawa
中澤 崇徳
Hidetaka Kimura
英隆 木村
Hajime Komatsu
肇 小松
Mitsuru Yano
谷野 満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17487788A priority Critical patent/JPH0225545A/en
Publication of JPH0225545A publication Critical patent/JPH0225545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To hold the excellent creep rupture characteristics of the title steel even after the use at a high temp. for a long time by specifying the content of Ni and Co and their relationship in an Ni-Cr austenitic stainless steel. CONSTITUTION:A stainless steel having the compsn. constituted of, by weight, <=0.060% C, <=3.0% Si, <=3.0% Mn, 0.02 to 0.08% P and <=0.15% N, in which the amounts of Ni and Cr are regulated to the range of A-B-C-D in the Figure showing the relationship between the Ni equivalent and the Cr equivalent, and the balance substantial Fe. If required, either or both of <=3.0% Mo and <=5.0% W are furthermore incorporated thereto. By this compsn., excellent creep rupture strength can be obtd. even after the use at a high temp. for a long time even by saving the Ni amt.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高温長時間安定性のすぐれたNi−Crオース
テナイト系ステンレス鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a Ni--Cr austenitic stainless steel having excellent long-term stability at high temperatures.

(従来の技術) 最近、化学装置の高温化あるいは高速増殖炉の開発に伴
い、クリープ領域で使用される高温構造物においては材
1番のクリープ変形が無視できない。
(Prior Art) Recently, with the rise in temperature of chemical equipment and the development of fast breeder reactors, creep deformation of the material No. 1 cannot be ignored in high-temperature structures used in creep regions.

このような高温構造材料としては、高温で長時間使用し
ても材質が安定していることが必要となる。
Such high-temperature structural materials need to be stable even when used at high temperatures for long periods of time.

従ってこのような高温構造物B目4料としCは、たとえ
ばステンレス鋼便覧(昭和48年8B30 [−]発行
)の173頁r2.5.1オーステナイトステンレス鋼
Jに示され°ζいるように、これまで主としてオーステ
ナイ]・系ステンレス鋼が使用されζいる。
Therefore, such high-temperature structures B, 4th material, and C are, for example, as shown in Stainless Steel Handbook (Published 8B30 [-], 1973), page 173 r2.5.1 Austenitic Stainless Steel J. Until now, mainly austenite-based stainless steels have been used.

しかしながらたとえば代表的なオーステ→−・イト系ス
テンレス鋼である5US304 鋼あるいは5O531
6鋼では高温使用中に炭化物、金属間化合物の析出を生
じ、クリープ破断強度あるいはクリープ破断延性の劣化
等の材質変化は避けられない。このような高温中での使
用にともなう材質劣化は高温構造物の寿命に制限を加え
る要因となる。
However, for example, 5US304 steel or 5O531, which is a typical auste→-ite stainless steel,
In steel No. 6, carbides and intermetallic compounds precipitate during high-temperature use, and material changes such as deterioration of creep rupture strength or creep rupture ductility are unavoidable. Material deterioration due to use at such high temperatures is a factor that limits the lifespan of high-temperature structures.

(発明が解決しようとする課題) このように従来鋼は高温で長時間使用中にクリープ破断
強度、クリープ破断延性が低[する四回を示す、この原
因は例えば、鋼中に存在するCが高温での使用中に結晶
粒界および粒内に炭化物とし°C析出・粗大化すること
に関係している。すなわち、粒界に析出する炭化物は粒
界脆化を引き起こし、延性低下あるいはクリープ破断強
度の劣化原因となることが知られている。また高温使用
中に析出するσ相、χ相も脆化を引き起こし、クリープ
破断特性を劣化さゼることも良く知られている0発明者
は長時間クリープ試験をした材料について、電子顕微鏡
を用いた詳細な組織観察を行い新たな脆化原因を発見し
た。ずなわら、第2図に示したようにG相が粒界に析出
しその近傍にフェライト相が生成するが、このフェライ
ト相はクリープ変形に対する抵抗力がオーステナイト相
に比べ著しく低いため、この部分に変形が集中する結果
早期破断を生じ、破断延性および破断強度が低下する。
(Problems to be Solved by the Invention) As described above, conventional steels exhibit low creep rupture strength and creep rupture ductility during long-term use at high temperatures. It is related to the precipitation and coarsening of carbides at grain boundaries and within grains during use at high temperatures. That is, it is known that carbides precipitated at grain boundaries cause grain boundary embrittlement, which causes a decrease in ductility or a deterioration in creep rupture strength. It is also well known that the σ and χ phases that precipitate during high-temperature use cause embrittlement and deteriorate creep rupture properties. A new cause of embrittlement was discovered through detailed microstructural observation. However, as shown in Figure 2, the G phase precipitates at the grain boundaries and a ferrite phase is formed in the vicinity, but this ferrite phase has significantly lower resistance to creep deformation than the austenite phase, so this region As a result of concentrated deformation, early fracture occurs and fracture ductility and fracture strength decrease.

クリープ破断特性劣化の直接的な原因であるフェライト
相の生成は、強力なオーステナイト形成元素であるNi
がG相の主要構成元素であるごとに関係しζいる。ずな
わら、1:相の析出によりG相近傍のオースチーJ・・
イト形成元素である旧濃度が低下する結果、フェライト
が生成することになる。したがってこのフェラ・イト相
の析出を抑制することがクリープ破断特性の劣化を防止
する、にで重要であるという全く新たな知見を得るに至
った。
The formation of ferrite phase, which is the direct cause of the deterioration of creep rupture properties, is caused by Ni, a strong austenite-forming element.
is a major constituent element of the G phase. Zunawara, 1: Due to phase precipitation, Austi J near the G phase...
As a result of the decrease in the prior concentration of ferrite-forming elements, ferrite is produced. Therefore, we have obtained completely new knowledge that suppressing the precipitation of this ferrite phase is important for preventing the deterioration of creep rupture properties.

(課題を解決するための手段および作用)本発明は以上
のような知見に基づいζなされたものであってその要旨
とする所は、重環%で(二〇、060%以下、Sl 3
.0%以下、Mn 3.0%以下、)農0.02−0.
08%、N 0.15%以下を含有し、かつNiとCr
の量が第1図に示す領域^−B−C−n内にあり、又は
これにさらに−o 3.0%以下、W 5.OX以下の
いずれかあるいは双方を含有し、残部がPe及び不可避
不純物からなる高温長時間室定性のすぐれたNi−Cr
オーステナイト系ステンレス鋼にある。
(Means and effects for solving the problems) The present invention has been made based on the above findings, and its gist is that the percentage of heavy rings (20,060% or less, Sl 3
.. 0% or less, Mn 3.0% or less,) Agriculture 0.02-0.
08%, N 0.15% or less, and Ni and Cr
The amount of is within the region ^-B-C-n shown in FIG. 1, or in addition -o 3.0% or less, W5. Ni-Cr containing either or both of the following OX, with the remainder consisting of Pe and unavoidable impurities, with excellent high-temperature, long-term room stability.
Located in austenitic stainless steel.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

先ず本発明の成分系において、Cは有効な強化元素では
あるが、結晶粒界に炭化物として析出′4るため高温長
時間使用後のクリープ破断特性などの高温の機械的性質
を損なう元素でもある。このような観点からClは0.
060%以下と定めたが、とくに高いクリープ破断延性
が要求される場合は0.030%以下とすることが望ま
しい。
First, in the component system of the present invention, although C is an effective strengthening element, it is also an element that impairs high-temperature mechanical properties such as creep rupture properties after long-term use at high temperatures because it precipitates as carbides at grain boundaries. . From this point of view, Cl is 0.
However, if particularly high creep rupture ductility is required, it is desirable to set it to 0.030% or less.

次にSiおよびMnはいずれも脱酸+A’ 、!: L
−r必要であるが、3.0%を趨えて過剰に存在すると
熱間加工性を…なうことからいずれも3.0%以下とし
た。
Next, both Si and Mn are deoxidized +A',! : L
-r is necessary, but if it exists in excess of 3.0%, the hot workability will be impaired, so both amounts were set at 3.0% or less.

Pは高温保持中にリン化物として結晶粒内に析出し強化
作用を有し、さらに結晶粒界を強化する作用もあること
から、とくにクリープ破断特性の点から効果的な元素で
あるが、その効果は0.02%より生じることから下限
を0.02%とした。しかし過剰の添加は溶接性および
熱間加工性を著しく…なうことから、その上限を0.0
8%とした。
P precipitates within crystal grains as a phosphide during high-temperature storage and has a strengthening effect, and also has the effect of strengthening grain boundaries, so it is an effective element, especially from the viewpoint of creep rupture properties. Since the effect occurs from 0.02%, the lower limit was set at 0.02%. However, excessive addition significantly impairs weldability and hot workability, so the upper limit is set at 0.0.
It was set at 8%.

Niはオーステナイト生成元素として必須の元素である
が、高温長時間使用中に析出するG相の主要構成元素で
もある。したがっ°ζ、G相が析出することによりG相
の近傍のオーステナイト生成元素であるN t tI度
が低下する結果フェラ・イト用が生成することになる。
Ni is an essential austenite-forming element, but it is also a main constituent element of the G phase that precipitates during long-term use at high temperatures. Therefore, as the G phase precipitates, the degree of N t tI, which is an austenite forming element in the vicinity of the G phase, decreases, resulting in the formation of ferrite.

そこで本発明者らは、Nilのフェラ・イト用析出に対
する影響を調べるため次のような実験を行った。すなわ
ち供試鋼としてco、ois%、Si 1.2%、Mn
 1.4%、P 0.035%、Cr18.5%、N 
0.07%の鋼をNiの範囲を種々変えて溶解し、これ
を熱間圧延によりIV、さ12關の鋼板とした後、10
50℃で溶体化処理を行った。この鋼板を550℃で5
000時間時効処理した後、平行部径6ms、I1点間
距離30鰭のクリープ破断試験片を作成し、月S Z 
2272に準拠してクリープ破断試験を実施した。その
結果を第3図に示す。すなわち第3図はクリープ破断強
度およびクリープ破断延性に対するNi1lの影響を示
したもので、同図に見られるように、Ni看とともにク
リープ破断強度およびクリープ破断延性が向上し、Ni
1t0.5%以−にで飽和する傾向が認められる。第3
図には同時にフェライト相の析出状況も併記したが、フ
ヱラ・イト用はNijill0.0%以下で観察されC
おり、上記のクリープ破断強度、クリープ破断延性の同
士がフェライト相の消滅に対応していることがわかる。
Therefore, the present inventors conducted the following experiment in order to investigate the influence of Nil on the precipitation for ferrite. That is, as the test steel, co, ois%, Si 1.2%, Mn
1.4%, P 0.035%, Cr18.5%, N
After melting 0.07% steel with various Ni content and hot rolling it into a steel plate of IV, size 12,
Solution treatment was performed at 50°C. This steel plate was heated to 550℃ for 5
After aging for 000 hours, a creep rupture test piece was prepared with a parallel part diameter of 6 ms and a distance between I1 points of 30 fins, and
A creep rupture test was conducted in accordance with 2272. The results are shown in FIG. In other words, Figure 3 shows the influence of Ni1L on creep rupture strength and creep rupture ductility.As seen in the figure, creep rupture strength and creep rupture ductility improve as Ni increases;
A tendency to saturate at 1t 0.5% or more is observed. Third
The figure also shows the state of precipitation of the ferrite phase, but for ferrite, C
It can be seen that the above creep rupture strength and creep rupture ductility correspond to the disappearance of the ferrite phase.

このような1量の影響はフェライト形成元素であるCr
量に依存することから、Cr量を変化させ゛C同様な調
査を行い限界Ni、lを求めた。このようにして得られ
た成分の境界値が第1図に示され°Cいる線分BCであ
る。線分^旧よマルテンサイトへの変態を防止するため
の境界であり、線分CDは穐いσ相の析出を防止するだ
めの制限であり、さらに線分へ〇は通常考えられる高温
使用条件ではフェライト相が生成しない境界線であり、
かつNiは高渦な元素であることから必要以上の添加を
避ける目的で決定したものである。なお、第1図におい
゛(Ni当蓋よりCを除外しCr当贋で16.6xCを
減じているのは、高温使用中にC!、tCrrsC4と
し゛ζ析出することを考慮したものである。
This effect of a single amount of Cr, which is a ferrite-forming element,
Since it depends on the amount of Cr, the limits of Ni and l were determined by changing the amount of Cr and conducting a similar investigation. The boundary value of the component thus obtained is the line segment BC shown in FIG. The line segment ^Old is a boundary to prevent transformation to martensite, the line segment CD is a limit to prevent the precipitation of the gray σ phase, and the line 〇 indicates the normally considered high-temperature usage conditions. This is the boundary line where no ferrite phase is generated.
In addition, since Ni is a highly vortex element, it was determined to avoid adding more than necessary. In addition, in FIG. 1, C is excluded from Ni and 16.6xC is reduced from Cr to take into account that C!, tCrrsC4, and ζ precipitate during high-temperature use.

またCrは耐酸化性を向」−さ・1!る元素であり、そ
のためには15.0%以」二を必要表するが、25.0
%を超えると高温長時間加熱による脆化が生じることか
ら上限を25,0%とした。
Cr also improves oxidation resistance - Sa・1! This element requires 15.0% or more, but 25.0% or more is required.
If it exceeds 25.0%, embrittlement will occur due to long-term heating at high temperatures, so the upper limit was set at 25.0%.

NはCとともにオーステナイト系ステンレス鋼の強化元
素である。NはCに比べ溶解度が大きいことから、高温
保持中に固溶状態で安定し°C存在できる。したかっ”
ζ、Nを溶解度の範囲内で使用すれば、高温長時間使用
中も安定した強化作用が期待でき、かつ窒化物による粒
界脆化等も生じないことになる。構造材料のような観点
からNlの上限を0.15%とした。なおド限を設けな
い理由は、用途に応じてNilにより強度を1.If御
するためであるが、通常の工業規模溶製でのレベル0.
01%が強いて言えば下限となる。
N, together with C, is a strengthening element for austenitic stainless steel. Since N has a higher solubility than C, it remains stable in a solid solution state during high temperature maintenance and can exist at °C. I wanted to”
If ζ and N are used within their solubility ranges, a stable strengthening effect can be expected even during long-term use at high temperatures, and grain boundary embrittlement due to nitrides will not occur. From the viewpoint of structural materials, the upper limit of Nl was set to 0.15%. The reason for not setting a limit is that the strength can be increased to 1.0% depending on the application. This is to control If, but the level 0.
01% is strictly speaking the lower limit.

以上が本発明における基本成分系ごあるが、本発明にお
いてはさらに高強度化を計るためnoあるいはWを所定
の範囲で含有−トシめることが有効である。Noは固溶
強化作用のある元素ごあリクリー・プ破断強度を高める
元素であるが、3.0 %≦を超えて添加すると熱間変
形抵抗を高めるため圧延あるいは鍛造が困難になる。し
たがって含ffff1は3.0%以下とした。Td 4
)Moと同様の固溶強化元素であるが、5.0%を超え
て添力1目゛ると熱間変形抵抗を高めるため圧延あるい
は鍛造が困難になることから、含有量は5.0%以下と
した。
The above is the basic component system in the present invention, but in the present invention, it is effective to include NO or W within a predetermined range in order to further increase the strength. No is an element that has a solid solution strengthening effect and is an element that increases re-creep rupture strength, but if it is added in an amount exceeding 3.0% or less, it increases hot deformation resistance and makes rolling or forging difficult. Therefore, the content of ffff1 was set to 3.0% or less. Td 4
) It is a solid solution strengthening element similar to Mo, but if the addition exceeds 5.0%, it increases the hot deformation resistance and makes rolling or forging difficult, so the content is 5.0%. % or less.

以上の如き成分組成を有する本発明鋼は、各種電気炉等
による製鋼を行った後、通常の造塊あるいは連続鋳造に
より鋼塊あるいは鋼片とし、ついで圧延あるいは鍛造に
より各種形状の鋼(Aとして使用に供されるものである
The steel of the present invention having the above-mentioned composition is manufactured using various electric furnaces, etc., then made into steel ingots or slabs by ordinary ingot making or continuous casting, and then rolled or forged into steel of various shapes (as A). It is intended for use.

以下に本発明の効果を実施例に基づいてさらに具体的に
示す。
The effects of the present invention will be described in more detail below based on Examples.

(実施例) 第1表に本発明鋼と比較鋼の化学成分を示す。(Example) Table 1 shows the chemical components of the invention steel and comparative steel.

第2表は第1表の鋼につい′ζ550℃5000時間時
効後のクリー時間時効性を示したものである。これら特
性調査結果から明らかなように、本発明鋼は比較鋼に比
べ高温長時間使用後のクリープ破断強化およびクリープ
破断延性がすぐれたものである。
Table 2 shows the Cree time aging properties of the steels in Table 1 after aging at 550° C. for 5000 hours. As is clear from these property investigation results, the steel of the present invention has superior creep rupture strength and creep rupture ductility after long-term use at high temperatures, compared to comparative steels.

(発明の効果) 以上延べた如く本発明鋼は、Nilをできるだけ節約し
ζも従来の同Ni攪の鋼に比して高温長時間使用後もす
ぐれたクリープ破断特性等の高温特性を有する材料とな
っており、クリープ領域で使用される高温構造材料とし
て工業的に極めζf■効なものである。
(Effects of the Invention) As described above, the steel of the present invention is a material that saves Ni as much as possible and has high-temperature properties such as creep rupture properties that are superior even after long-term use at high temperatures compared to conventional Ni-stirred steels. It is industrially extremely effective as a high temperature structural material used in the creep region.

4、図面のfIn’t’な説明 第1図は本発明のNi及びCrff1の特許請求の範囲
を示す図である。また第2図は550″C長時間クリー
プ破断1]の透過電子顕微鏡による金属組織の写真、第
3図は550℃5000時間時効材のクリープ破断特性
に対するNiQlの影響を示す図である。
4. fIn't' Explanation of the Drawings FIG. 1 is a diagram showing the claims of Ni and Crff1 of the present invention. Further, FIG. 2 is a photograph of the metal structure of the 550"C long-term creep rupture 1] obtained by a transmission electron microscope, and FIG. 3 is a diagram showing the influence of NiQl on the creep rupture characteristics of a material aged at 550"C for 5,000 hours.

特許出願人  新日本製錬株式会社Patent applicant: Nippon Smelting Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%でC0.060%以下、Si3.0%以下
、Mn3.0%以下、P0.02−0.08%、N0.
15%以下を含有し、かつNiとCrの量が第1図に示
す領域A−B−C−D内にあり、残部は実質的にFeか
らなる高温長時間安定性のすぐれたNi−Crオーステ
ナイト系ステンレス鋼。
(1) C0.060% or less, Si 3.0% or less, Mn 3.0% or less, P0.02-0.08%, N0.
15% or less, and the amounts of Ni and Cr are within the range A-B-C-D shown in FIG. Austenitic stainless steel.
(2)重量%でC0.060%以下、Si3.0%以下
、Mn3.0%以下、P0.02−0.08%、N0.
15%以下を含有し、かつNiとCrの量が第1図に示
す領域A−B−C−D内にあり、さらにMo3.0%以
下、W5.0%以下のいずれかあるいは双方を含有し、
残部は実質的にFeからなる高温長時間安定性のすぐれ
たNi−Crオーステナイト系ステンレス鋼。
(2) C0.060% or less, Si 3.0% or less, Mn 3.0% or less, P0.02-0.08%, N0.
15% or less, and the amounts of Ni and Cr are within the region A-B-C-D shown in FIG. 1, and further contains Mo3.0% or less, W5.0% or less, or both. death,
The remainder is a Ni-Cr austenitic stainless steel that is essentially Fe and has excellent long-term stability at high temperatures.
JP17487788A 1988-07-15 1988-07-15 Ni-cr austenitic stainless steel having excellent high temperature long time stability Pending JPH0225545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17487788A JPH0225545A (en) 1988-07-15 1988-07-15 Ni-cr austenitic stainless steel having excellent high temperature long time stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17487788A JPH0225545A (en) 1988-07-15 1988-07-15 Ni-cr austenitic stainless steel having excellent high temperature long time stability

Publications (1)

Publication Number Publication Date
JPH0225545A true JPH0225545A (en) 1990-01-29

Family

ID=15986224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17487788A Pending JPH0225545A (en) 1988-07-15 1988-07-15 Ni-cr austenitic stainless steel having excellent high temperature long time stability

Country Status (1)

Country Link
JP (1) JPH0225545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153846A (en) * 1989-11-13 1991-07-01 Nippon Steel Corp Ni-cr austenitic stainless steel having excellent creep rupture property
EP4253591A4 (en) * 2020-11-25 2024-05-01 Posco Co Ltd Austenitic stainless steel for polymer fuel cell separator with improved contact resistance, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153846A (en) * 1989-11-13 1991-07-01 Nippon Steel Corp Ni-cr austenitic stainless steel having excellent creep rupture property
EP4253591A4 (en) * 2020-11-25 2024-05-01 Posco Co Ltd Austenitic stainless steel for polymer fuel cell separator with improved contact resistance, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR900006870B1 (en) Ferrite-austenitic stainless steel
JP2005509751A (en) Super austenitic stainless steel
BR112016000669B1 (en) HIGH STRENGTH STEEL TUBE FOR OIL WELL AND OIL WELL PIPES
JP6980788B2 (en) Austenitic steel with excellent wear resistance and its manufacturing method
JP6742840B2 (en) Method for producing two-phase Ni-Cr-Mo alloy
JP5846076B2 (en) Austenitic heat-resistant alloy
JPS5925960A (en) Heat resistant alloy cast metal
JPS60184665A (en) Low-alloy steel for pressure vessel
JP2019535889A (en) High strength high manganese steel with excellent low temperature toughness and method for producing the same
JP6733211B2 (en) Ni-based superalloy for hot forging
JPH01100241A (en) Ferrite steel alloy
KR102197316B1 (en) Duplex stainless steel for highly corrosive environment and method of manufacturing the same
JPH0114992B2 (en)
JP2021508006A (en) High-strength austenitic high-manganese steel and its manufacturing method
JPH0225545A (en) Ni-cr austenitic stainless steel having excellent high temperature long time stability
KR102531730B1 (en) Austenitic stainless steel with excellent high temperature anti-oxidation and method of manufacturing the same
FI127450B (en) Martensitic stainless steel and method for the manufacture
US3640704A (en) High-temperature-strength precipitation-hardenable austenitic iron-base alloys
JPS62243742A (en) Austenitic stainless steel having superior creep rupture strength
JP2015120956A (en) Austenitic heat resistant casting alloy
JPH03153847A (en) Ni-cr austenitic stainless steel having excellent creep rupture property
JPH1068050A (en) Stainless steel for spring excellent in thermal settling resistance
US3309242A (en) High-carbon precipitation-hardening austenitic steel alloy
JPS647127B2 (en)
JP6720828B2 (en) Austenitic stainless steel sheet and method for producing the same