JPH02254247A - Predicting device for pattern of occupied room - Google Patents
Predicting device for pattern of occupied roomInfo
- Publication number
- JPH02254247A JPH02254247A JP1075358A JP7535889A JPH02254247A JP H02254247 A JPH02254247 A JP H02254247A JP 1075358 A JP1075358 A JP 1075358A JP 7535889 A JP7535889 A JP 7535889A JP H02254247 A JPH02254247 A JP H02254247A
- Authority
- JP
- Japan
- Prior art keywords
- room
- occupancy
- time
- pattern
- prediction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000694 effects Effects 0.000 claims abstract description 21
- 230000007704 transition Effects 0.000 claims description 12
- 238000000605 extraction Methods 0.000 claims description 10
- 230000007774 longterm Effects 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 6
- 230000001052 transient effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 230000002618 waking effect Effects 0.000 description 4
- 239000000284 extract Substances 0.000 description 2
- 230000036578 sleeping time Effects 0.000 description 2
- 208000022249 Sleep-Wake Transition disease Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004622 sleep time Effects 0.000 description 1
- 208000005809 status epilepticus Diseases 0.000 description 1
Landscapes
- Air Conditioning Control Device (AREA)
- Feedback Control In General (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、おもに家庭内の空気調和機(以下空調機と記
す)やエネルギー供給設備の自動運転制御に用いられる
在室パターン予測装置である。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a room occupancy pattern prediction device used primarily for automatic operation control of domestic air conditioners (hereinafter referred to as air conditioners) and energy supply equipment.
従来の技術
従来、空調機を人の不在時や睡眠時などの直接機器を操
作することができないときに操作させるためにはタイマ
ー予約や電話回線を利用したリモートコントロールで行
っていた。また、空調機の運転を停止させるためには、
空調機利用者が空調機の操作パネルやリモコン装置によ
り操作していた。Conventional Technology Conventionally, in order to operate an air conditioner when it is not possible to operate the device directly, such as when a person is absent or asleep, it has been done by setting a timer or by remote control using a telephone line. In addition, to stop the operation of the air conditioner,
Air conditioner users were operating the air conditioner using the control panel or remote control device.
また、予測に関しては、在宅における在室パター7を予
測する装置は、従来からなかった。Regarding prediction, there has been no device for predicting the putter 7 at home.
発明が解決しようとする課題
しかし、従来の空調機では、ある程度起床、就寝、外出
、帰宅といった生活習慣が存在しても、いちいちタイマ
ー設定を行わねばならず、またタイマー設定も面倒で機
能としては空調機に付加されているにもかかわらず、使
用頻度は低かった。Problems to be Solved by the Invention However, with conventional air conditioners, even if there is a certain degree of lifestyle such as waking up, going to bed, going out, and returning home, the timer must be set every time, and setting the timer is also troublesome and has limited functionality. Despite being attached to air conditioners, it was rarely used.
また、空調機のオンオフの操作についても、たとえ室内
が温熱的に悪環境でも、在室者が操作しない限シ空調機
は動作しないという課題があった。Additionally, there is a problem with turning on and off the air conditioner, even if the room is in a poor thermal environment, the air conditioner will not operate unless operated by a person in the room.
本発明は、以上のような利用者に対する空調機の利便性
の悪さに鑑みなされたもので、第1の目的は、空調機の
オンオフの動作をさせるための利用者の操作回数を最低
限に減らすことである。第2の目的は、過去の部屋の使
用パターンの特徴を抽出し、不在時には入室時刻を予測
し、睡眠時忙は起床時刻を予測することにより、空調機
を予測運転させるための情報を作シ出すことである。The present invention was developed in view of the inconvenience of air conditioners for users as described above, and the first purpose is to minimize the number of operations required by the user to turn on and off the air conditioner. It is about reducing. The second purpose is to extract the characteristics of past room usage patterns, predict the time of entry when the room is not occupied, and the wake-up time when the user is busy sleeping, thereby creating information for predictive operation of the air conditioner. It is to put it out.
課題を解決するための手段
上記目的を達成するために、本発明の技術的解決手段は
、第1K1室内に在室者の有無または照明の点灯および
消灯状態を検知する在室情報センサを設置することであ
る。第2に、この在室情報センサだけでは短時間の部屋
を空けただけなのか、外出してしまったかの判断がつか
ず、空調機を動作させるには十分なので、在室情報セン
ナの検知した状態の経過時間と過去の状態と現在時刻か
ら、部屋利用者の生活を在室状態として推定する在室状
態・生活行為推定手段を有することである。第3に不在
時や睡眠時に起床時刻や入室時刻を予測する手段を有す
ることである。第4に、上記第3の目的を達成するため
に過去の部屋の利用状況の特徴を抽出する生活パターン
抽出手段を有することである。Means for Solving the Problems In order to achieve the above object, the technical solution of the present invention is to install a room occupancy information sensor in the 1st K1 room that detects the presence or absence of a person in the room or whether the lights are on or off. That's true. Secondly, this occupancy information sensor alone cannot determine whether you have left the room for a short time or whether you have gone out, and this is sufficient to operate the air conditioner, so the state detected by the occupancy information sensor is insufficient. The object of the present invention is to have a room occupancy state/living activity estimation means for estimating the room user's life as the room occupancy state from the elapsed time, past state, and current time. Thirdly, it is necessary to have means for predicting the wake-up time and room entry time when the user is absent or sleeping. Fourthly, in order to achieve the third objective, there is provided a lifestyle pattern extraction means for extracting characteristics of past room usage situations.
作用
在室情報センサからのデジタル情報を基に、在室状態・
生活行為推定手段では、あらかじめ定めた複数の在室状
態とその遷移条件に基づいて、現在がどの在室状態かを
推定する。また、在室状態の変化を生活行為として推定
する。予測を行うだめに、対象住戸の部屋の使用状況の
特徴を生活パターン抽出手段により抽出し、生活パター
ン記憶手段で抽出結果を記憶する。入室・起床予測手段
では、現在の在室状態と抽出した生活パターンから長期
の不在室と推定されたとき入室時刻を予測し、睡眠と推
定されたときは起床時刻を予測する。Based on the digital information from the occupancy information sensor, the occupancy status and
The living activity estimation means estimates which occupancy state the user is currently in based on a plurality of predetermined occupancy states and their transition conditions. In addition, changes in the state of being in the room are estimated as daily activities. In order to make a prediction, the lifestyle pattern extraction means extracts the characteristics of the usage status of the room in the target dwelling unit, and the lifestyle pattern storage means stores the extraction results. The room entry/wake-up prediction means predicts the entry time when the room is presumed to be absent for a long time from the current room occupancy state and the extracted lifestyle pattern, and predicts the wake-up time when the room is estimated to be asleep.
また、予測纜は確からしさが伴うので、予測結果の有効
時間も同時に出力する。Furthermore, since the prediction accuracy is accompanied by certainty, the effective time of the prediction result is also output at the same time.
実施例
以下、図面を参照しながら本発明の一実施例について説
明する。第1図は、本発明の一実施例における、空調機
の制御に使用するための在室パターン予測装置の機能構
成を示すブロック図である。Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the functional configuration of a room occupancy pattern prediction device for use in controlling an air conditioner in an embodiment of the present invention.
第1図において、1は利用者からの部屋使用に関する入
力を受け付け、パラメータを設定する在室モード設定手
段で、居間や寝室などの部屋の用途の入力を受け付ける
部屋モード設定部2および家族旅行など長期の不在状態
を受け付ける長期不在設定部より成る。4は室内の在室
者の状態を検知する在室情報センサで、照明の点灯・消
灯状態をデジタル情報として検知する光センサ5および
在室者の活動時に1、不在または静止時にOとなるよう
に設定した赤外在室センサよ)成る。7は在室モード設
定手段1および在室情報センサ4からの測定結果をもと
に、あらかじめ条件を定めた複数の在室状態の中から一
つを同定する在室状態・生活行為推定手段で、在室状態
およびその遷移条件を定めたアルゴリズムに従い状態を
同定する在室状態・生活行為推定部8および在室状態・
生活行為推定部8の内部で推定した在室状態に従って生
活パターン抽出を行うか、予測を行うかなどのチエツク
をするイベントチエツク部9より成る。In FIG. 1, reference numeral 1 denotes an occupancy mode setting unit that accepts input from the user regarding the use of the room and sets parameters; a room mode setting unit 2 that accepts input of the purpose of the room such as a living room or a bedroom; and a family trip, etc. It consists of a long-term absence setting section that accepts long-term absence status. Reference numeral 4 denotes a presence information sensor that detects the status of people in the room, an optical sensor 5 that detects the on/off status of lights as digital information, and a sensor that changes to 1 when the person in the room is active and O when the person is absent or stationary. It consists of an infrared occupancy sensor set to Reference numeral 7 denotes a room occupancy state/living activity estimation means for identifying one of a plurality of room occupancy states with predetermined conditions based on the measurement results from the room occupancy mode setting means 1 and the room occupancy information sensor 4. , an occupancy state/life activity estimator 8 that identifies the occupancy state and the state according to an algorithm that determines the transition conditions thereof;
It consists of an event check section 9 that checks whether to perform lifestyle pattern extraction or prediction according to the occupancy state estimated within the daily activity estimation section 8.
lOは在室状態・生活行為推定手段7の出力パラメータ
でおる不在開始時刻、入室開始時刻、睡眠開始時刻、起
床開始時刻、不在継続時間と日持性から部屋使用を特徴
付けるようなパラメータを抽出する生活パターン抽出手
段、11は生活パターン抽出手段10の結果を記憶する
生活パターン記憶手段である。生活パターン記憶手段1
1は日持性として平日と休日を持ち、1日を10分単位
の区間に分け、日特性毎に不在の発生頻度を、不在開始
時刻と不在継続時間の2つの次元で、144X144の
二次元配列内に記憶する外出不在テーブル12、日持性
として次の日が平日と、次の日が休日を持ち、睡眠開始
時刻を144の一次元配列の内に頻度として記憶する睡
眠テーブル13、日持性として平日と休日を持ち、起床
開始時刻を144の一次元配列として記憶する起床テー
ブル14および在室開始時刻と不在開始時刻で定められ
る在室していた時間帯と現在までの日数から在室率を、
平日と休日で異なった配列−ヒにプロットする在室テー
ブル15より成る。IO extracts parameters that characterize room use from the output parameters of the room occupancy status/life activity estimation means 7, such as the start time of absence, start time of entering the room, start time of sleep, start time of waking up, duration of absence, and longevity. The lifestyle pattern extraction means 11 is a lifestyle pattern storage means for storing the results of the lifestyle pattern extraction means 10. Life pattern memory means 1
1 has weekdays and holidays as long-term characteristics, divides the day into 10-minute intervals, and calculates the frequency of absence for each day characteristic in two dimensions of absence start time and absence duration, 144 x 144 two-dimensional. Absence of going out table 12 stored in an array; sleep table 13 storing sleep start times as frequencies in a one-dimensional array of 144; the next day is a weekday and the next day is a holiday; The wake-up table 14 stores the wake-up start time as a one-dimensional array of 144, and the time zone in which the user was in the room determined by the start time of being in the room and the start time of being absent, and the number of days until now. room rate,
It consists of a room occupancy table 15 plotted in different arrangements for weekdays and holidays.
16は在室状態・生活行為推定手段7の出力として予測
起動がかかるか、または、過去に予測した結果が外れた
とき予測を行う入室・起床予測手段で、入室時刻を予測
する入室予測部17および起床時刻を予測する起床予測
部18よ、り成る。19は入室・起床予測手段16で予
測した結果と在室状態・生活行為推定手段7で出力され
る在室状態から予測結果の判定を行う予測結果判定手段
、加は本実施例における在室パターン予測装置の応用対
象としての空調機である。Reference numeral 16 denotes a room entry/wake-up prediction unit that predicts when a predictive activation occurs as an output of the room occupancy status/life activity estimation unit 7 or when the previously predicted result is wrong, and a room entry prediction unit 17 that predicts the room entry time. and a wake-up prediction unit 18 that predicts the wake-up time. Reference numeral 19 denotes a prediction result determination means for determining the prediction result from the result predicted by the room entry/wake-up prediction means 16 and the occupancy state outputted by the room occupancy state/life activity estimation means 7; This is an air conditioner to which the prediction device is applied.
次に上記実施例の動作について、第2図および第3図と
ともに説明する。Next, the operation of the above embodiment will be explained with reference to FIGS. 2 and 3.
第2図は、上記実施例の在室状態・生活行為推定手段内
部にあらかじめ定めた在室状態とその遷移関係を表す状
態遷移図であり、はじめに第2図をもとに、在室状態と
生活行為について説明する。FIG. 2 is a state transition diagram showing the occupancy states and their transition relationships predetermined within the occupancy state/life activity estimation means of the above embodiment. First, based on FIG. Explain daily activities.
在室状態としてaからhまでの8状態を設定する。Eight states from a to h are set as the occupancy state.
また、1日を一般的に活動在室者が極端に減る午前4時
を起点として考える。aは、室内に動いている在室者が
いる状態で活動在室状態、bは10分以上不在が続いた
状態である短期移動不在状態、Cは不在開始時刻からI
分が経過し照明が点灯している状態で長期移動不在状態
、dは不在開始時刻から(資)分経過し照明が消灯して
いる状態で外出不在状態、eは睡眠のために部屋を移動
することにより不在となる状態で睡眠不在状態、fは外
出不在状態から睡眠時間帯になっても入室者がない状態
で外泊不在状態、gは長期移動不在状態から睡眠時間帯
になっても照明が消されない状態で徹夜不在状態、hは
在室はしているが寝ている状態である睡眠在室状態であ
る。上記の8つの在室状態のなかでの睡眠時間帯は、第
1図における睡眠テーブル13からあるしきい値を基に
求める。上記の8つの在室状態の遷移関係は第2図にお
いてiからyまでの17の状態遷移の可能性を持ち、こ
れを生活行為と呼んでいる。これらの遷移条件は、赤外
在室センサ6の出力と、光センサ5の出力と、不在継続
時間と、現在時刻で定められる。それぞれの遷移条件に
ついての名称は、iは退室、jは短期移動入室、kは長
期移動判定、1は長期移動入室、mは外出判定、nは帰
宅入室、0は睡眠退室、pは起床入室、qは外泊判定、
rは外泊帰宅入室、Sは徹夜判定、tは徹夜入室、Uは
睡眠消灯、■は徹夜睡眠消灯、Wは外出消灯、又は睡眠
、yは起床である。これらの生活行為をもとに、長期移
動判定にと外出判定mと外出消灯Wの時に入室予測を行
い、睡眠退室0と睡眠消灯Uと徹夜睡眠消灯Vと睡眠X
の時に起床予測を行う。In addition, the day is generally considered to start at 4 a.m., when the number of people in the room is extremely low. a is an active occupancy state in which there is a person in the room who is moving; b is a short-term moving absence state in which a person has been absent for more than 10 minutes; and C is an I from the start time of absence.
If minutes have passed and the lights are on, you are in a state of being away from home, d is a long-term absence state, and minutes have passed since the start of your absence, and the lights are off, and you are away from home. e is when you move from room to room to sleep. f is a sleeping absent state when the person is absent from the house, f is a sleeping absent state when there is no one entering the room even when the sleeping time has come from the absentee state, and g is a sleeping absent state when the person is absent from going out and going into the sleeping time. h is a state in which the user stays up all night and is not erased, and h is a state in which the user is in the room but asleep, which is a sleep occupancy state. The sleep time periods in the above eight room occupancy states are determined based on a certain threshold value from the sleep table 13 in FIG. The above-mentioned transition relationships among the eight occupancy states have 17 possible state transitions from i to y in FIG. 2, which are called daily activities. These transition conditions are determined by the output of the infrared occupancy sensor 6, the output of the optical sensor 5, the duration of absence, and the current time. The names of each transition condition are: i for leaving the room, j for short-term move entry, k for long-term move determination, 1 for long-term move entry, m for going out decision, n for return home entry, 0 for sleep exit, and p for wake-up entry. , q is a sleepover judgment,
r is staying out and coming home, S is determining whether to stay up all night, t is staying overnight, U is sleeping, lights off, ■ is sleeping all night, lights are off, W is going out, lights off or sleeping, and y is waking up. Based on these daily activities, we predict entering the room when it is determined to be out for a long period of time (m) and when the lights are turned off when going out (W).
Predicts when you will wake up.
次に第3図を参照しながら予測方法を説明する。Next, the prediction method will be explained with reference to FIG.
第3図は予測方法の概略図である。例として、平日の午
前9時56分に外出判定となったとする。このとき不在
開始時刻は加分前の9時26分である。FIG. 3 is a schematic diagram of the prediction method. As an example, assume that the decision to go out is made at 9:56 a.m. on a weekday. At this time, the absence start time is 9:26, which is before the addition.
このときの入室予測の方法を説明する。第3図において
、21は平日の外出不在テーブル12の不在開始時刻9
時間分から9時(9)分の区間と、9時IO分から9時
間分の区間と、9時間分から9時40分までの3区間の
不在継続時間ごとの頻度を不在継続時間別に合計した3
区間類度合計である。この家庭では10分未満の不在が
最も多く、10〜20分までが次に多く、領分を過ぎる
不在は少なくなシ、長時間の不在が現れている。乙は、
予測の有効時間を求めるためのしきい値である。23は
しきい値2以上の不在の頻度が現れる最初の時間帯でち
り予測結果である。あはしきい値2以上の不在の発生頻
度が現れる次の時間帯であり予測結果である。A method of predicting room entry at this time will be explained. In FIG. 3, 21 is the absence start time 9 of the weekday outing/absence table 12.
The frequency for each absence duration in the 9:00 (9) minute interval, the 9 hour interval from 9:00 IO, and the 9:00 minute interval from 9:00 to 9:40 is summed up by absence duration.
It is the sum of interval classification degrees. In this household, absences of less than 10 minutes are the most common, followed by periods of 10 to 20 minutes, while absences exceeding that period are rare, and long-term absences are appearing. Party B is
This is the threshold value for determining the effective time of prediction. 23 is the dust prediction result for the first time period in which the frequency of absence equal to or higher than the threshold value 2 appears. A is the next time period in which the occurrence frequency of absences equal to or higher than the threshold value 2 will appear, which is the prediction result.
δは不在の開始区間で不在開始時刻を含む区間プラスマ
イナス1区間であシ、意味合いとしては9時が単項であ
る。がは外出判定時刻であり入室予測の開始時刻である
。rは予測結果nの有効時間、公は予測結果列の予測入
室時刻、四は予測結果列の有効時間である。δ is the start interval of the absence, plus or minus one interval including the start time of the absence, and 9 o'clock is a single term in meaning. is the outing determination time and the start time of entering the room prediction. r is the valid time of the prediction result n, public is the predicted room entry time of the prediction result sequence, and 4 is the valid time of the prediction result sequence.
予測方法としては、あらかじめ3区間類度合計21の全
頻度からある割合でしきい値nを設定する。As a prediction method, a threshold value n is set in advance at a certain ratio from the total frequency of 21 in three interval classifications.
外出判定時刻あに入室予測を行うため3区間類度合計2
1を平日の外出不在テーブルから計算する。In order to predict entering the room at the outing judgment time, the total classification level of 3 sections is 2.
1 is calculated from the weekday outing/absence table.
そこでしきい値2以上の頻度となる最初の時間帯を予測
入室時刻として出力する。予測結果としては入室開始時
刻が現在であるから、有効時間がだけを出力する。この
場合不在継続時間60分であるから、「30分以内に入
室者あり」となる。そこでこの時間内に入室者があれば
いいが、もし入室者がない場合、有効時間τの時点で再
度予測を行う。その結果しきい値2を越える時間帯がま
だあるので予測結果列を出力する。すなわち、入室開始
時刻公と、その有効時間四である。もし、この時間にも
入室者がなければ、第1図の在室テーブル15から現在
時刻以降1.在室率の最も高い時刻を入室予測時刻とし
て出力する。もし、この間またはその後、外泊不在と判
定されれば予測を停止する。Therefore, the first time period in which the frequency is equal to or higher than the threshold value 2 is output as the predicted room entry time. Since the prediction result is the current entry start time, only the effective time is output. In this case, since the duration of the absence is 60 minutes, "someone entered the room within 30 minutes". Therefore, it is sufficient if someone enters the room within this time, but if no one enters the room, the prediction is performed again at the effective time τ. As a result, since there is still a time period in which the threshold value 2 is exceeded, a prediction result sequence is output. That is, the entry start time and its valid time are 4. If no one enters the room at this time, 1. The time with the highest occupancy rate is output as the predicted room entry time. If it is determined that the person will not be staying overnight during or after this time, the prediction will be stopped.
発明の効果
以上のように本発明によれば、現在の在室状態や生活行
為を推定するので空調機にオンオフの指示を出すことが
でき、空調機の自動運転が可能となる。また、不在時や
睡眠時に入室予測や起床予測を出力するので、タイマー
設定は、特別な使用をしたいときだけの必要最低限行う
だけで済む。Effects of the Invention As described above, according to the present invention, since the current occupancy status and daily activities are estimated, it is possible to issue on/off instructions to the air conditioner, and automatic operation of the air conditioner becomes possible. In addition, since it outputs predictions of entering the room and waking up when you are absent or asleep, you only need to set the timer to the bare minimum when you want to use it for a special purpose.
第1図は本発明の一実施例における空調機の制御に使用
するための在室パターン予測装置の構成を示すブロック
図、第2図は第1図の在室状態・生活行為推定手段内部
にあらかじめ定めた在室状態とその遷移関係を表わす状
態遷移図、第3図は外出不在時において外出不在テーブ
ルを用いて入室予測を行う予測方法を説明するための概
略図である。
1・・・在室モード設定手段、2・・・部屋モード設定
部、吐・・長期不在設定部、4・・・在室情報センサ、
5・・・光センサ、6・・・赤外在室センサ、7・・・
在室状態・生活行為推定手段、8・・・生活状態生活行
為推定部、9・・・イベントチエツク部、10・・・生
活パターン抽出手段、11・・・生活パターン記憶手段
、12・・・外出不在チーフル、13・・・睡眠テーブ
ル、14・・・起床テーブル、15・・・在室テーブル
、16・・・入室・起床予測手段、17・・・入室予測
部、18・・・起床予測部、19・・・予測結果判定手
段、加・・・空調機。
代理人の氏名 弁理士 粟野重孝 ほか1名第
囚
第
図FIG. 1 is a block diagram showing the configuration of a room occupancy pattern prediction device for use in controlling an air conditioner according to an embodiment of the present invention, and FIG. FIG. 3 is a state transition diagram showing predetermined room presence states and their transition relationships. FIG. 3 is a schematic diagram for explaining a prediction method for predicting room entry using an out-of-office table when a person is out of the house. DESCRIPTION OF SYMBOLS 1... Room occupancy mode setting means, 2... Room mode setting section, Exit... Long-term absence setting section, 4... Room occupancy information sensor,
5... Optical sensor, 6... Infrared room occupancy sensor, 7...
Room presence/living activity estimation means, 8... Living status/living activity estimation section, 9... Event check section, 10... Life pattern extraction means, 11... Life pattern storage means, 12... Chiful who does not go out, 13...Sleep table, 14...Wake up table, 15... Room presence table, 16... Room entry/wake up prediction means, 17... Room entry prediction unit, 18... Wake up prediction Section 19: Prediction result determination means; Addition: Air conditioner. Name of agent: Patent attorney Shigetaka Awano and one other person
Claims (8)
る場合の登録を受け付ける在室モード設定手段と、部屋
内の在室者の有無を検知する在室情報センサと、前記在
室情報センサおよび在室モード設定手段からの設定内容
をもとにあらかじめ複数の遷移条件を定めた室内状態を
同定する在室状態および生活行為推定手段と、前記在室
状態および生活行為推定手段からの在室状態の遷移状況
を基に対象住戸の入退室にかかわる生活パターンを抽出
する生活パターン抽出手段と、前記生活パターン抽出手
段により抽出された結果を記憶する生活パターン記憶手
段と、現在の在室状態と生活パターン記憶手段に蓄積さ
れている情報を基に入室時刻または起床時刻を予測する
入室・起床予測手段と、前記入室・起床予測手段より出
力された情報と前記在室状態および生活行為推定手段の
出力である現在の在室状態から予測結果が外れたかどう
かを判定する予測結果判定手段を有する在室パターン予
測装置。(1) A room occupancy mode setting means that accepts registration from a room user in the case of being absent from the room for a long period of time, a room occupancy information sensor that detects the presence or absence of a person in the room, the room occupancy information sensor; occupancy state and living activity estimation means for identifying an indoor state for which a plurality of transition conditions are predetermined based on settings from the room occupancy mode setting means; and occupancy state and living activity estimation means from the room occupancy state and living activity estimation means. a lifestyle pattern extraction means for extracting a lifestyle pattern related to entering and exiting the target dwelling unit based on the transition status of the living unit; a lifestyle pattern storage unit for storing the results extracted by the lifestyle pattern extraction unit; room entry/wake-up prediction means for predicting room entry time or wake-up time based on information stored in the pattern storage means; A room occupancy pattern prediction device having a prediction result determination means for determining whether a prediction result deviates from a current room occupancy state that is an output.
サと、照明の点灯・消灯を検知するための光センサを有
する請求項1記載の在室パターン予測装置。(2) The room occupancy pattern prediction device according to claim 1, further comprising, as the room occupancy information sensor, a sensor for detecting presence or absence of a room occupancy, and an optical sensor for detecting turning on/off of lighting.
不在開始時刻とその不在継続時間と、就寝時刻と、起床
時刻と、在室開始時刻と、不在開始時刻までの在室率を
日特性を判断して出力し、生活パターン記憶手段に記憶
する請求項1記載の在室パターン予測装置。(3) The lifestyle pattern extraction means calculates daily characteristics such as the start time of going out, the duration of the absence, the bedtime, the wake-up time, the start time of being in the room, and the occupancy rate up to the start time of the absence, in units of one day. 2. The room occupancy pattern prediction device according to claim 1, wherein the device determines and outputs the determined result and stores it in a lifestyle pattern storage means.
ターン予測装置。(4) The occupancy pattern prediction device according to claim 3, wherein the day characteristics are weekdays and holidays.
予測装置。(5) The occupancy pattern prediction device according to claim 3, wherein the day characteristic is a day of the week.
求項3記載の在室パターン予測装置。(6) The occupancy pattern prediction device according to claim 3, wherein the day characteristic is that the next day is a weekday and the next day is a holiday.
は起床予測時刻と、入室または起床予測の有効時間であ
る請求項1記載の在室パターン予測装置。(7) The room occupancy pattern prediction device according to claim 1, wherein the output of the room entry/wake-up prediction means is a predicted room entry time or a predicted wake-up time, and a valid time of the room entry or wake-up prediction.
の用途を設定する手段を有する請求項1記載の在室パタ
ーン予測装置。(8) The room occupancy pattern prediction device according to claim 1, wherein the room occupancy mode setting means includes means for setting long-term absence and setting the purpose of the room.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1075358A JP2578972B2 (en) | 1989-03-27 | 1989-03-27 | Occupancy pattern prediction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1075358A JP2578972B2 (en) | 1989-03-27 | 1989-03-27 | Occupancy pattern prediction device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02254247A true JPH02254247A (en) | 1990-10-15 |
JP2578972B2 JP2578972B2 (en) | 1997-02-05 |
Family
ID=13573926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1075358A Expired - Fee Related JP2578972B2 (en) | 1989-03-27 | 1989-03-27 | Occupancy pattern prediction device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2578972B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05118613A (en) * | 1991-10-30 | 1993-05-14 | Matsushita Electric Ind Co Ltd | Life scene inferring device and air conditioner |
JPH09170797A (en) * | 1995-12-20 | 1997-06-30 | Sharp Corp | Air conditioner |
WO2004010232A1 (en) * | 2002-07-19 | 2004-01-29 | Matsushita Electric Industrial Co., Ltd. | Device linkage control apparatus |
JP2005009823A (en) * | 2003-06-20 | 2005-01-13 | Matsushita Electric Ind Co Ltd | Air cleaner |
JP2011109432A (en) * | 2009-11-18 | 2011-06-02 | Nec Corp | Mobile terminal with alarm, and method of operating the same |
JP2012047398A (en) * | 2010-08-26 | 2012-03-08 | Panasonic Electric Works Co Ltd | Energy-saving support device |
KR20150115389A (en) * | 2014-04-04 | 2015-10-14 | 삼성전자주식회사 | of heating, ventilation and air conditioning system |
WO2018008118A1 (en) * | 2016-07-07 | 2018-01-11 | 三菱電機株式会社 | Air-conditioning control apparatus, air-conditioing control method, air-conditioning system, and house with air conditioner |
JP2021099203A (en) * | 2019-12-23 | 2021-07-01 | シャープ株式会社 | Air conditioning system, server, method for controlling air conditioner, and air conditioner |
JP2022063138A (en) * | 2020-10-09 | 2022-04-21 | 株式会社富士通ゼネラル | Air conditioner |
JP2022063195A (en) * | 2020-10-09 | 2022-04-21 | 株式会社富士通ゼネラル | Air conditioner |
JP2022063263A (en) * | 2020-10-09 | 2022-04-21 | 株式会社富士通ゼネラル | Air conditioner |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009027657A (en) * | 2007-07-24 | 2009-02-05 | Nec Access Technica Ltd | Cordless master/slave unit telephone apparatus and call arrival tone control method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62117452U (en) * | 1986-01-14 | 1987-07-25 | ||
JPS6341755A (en) * | 1986-08-07 | 1988-02-23 | Matsushita Electric Ind Co Ltd | Air conditioner |
JPS63272759A (en) * | 1987-04-30 | 1988-11-10 | 三菱電機株式会社 | Operation control system at time of leisure of elevator |
-
1989
- 1989-03-27 JP JP1075358A patent/JP2578972B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62117452U (en) * | 1986-01-14 | 1987-07-25 | ||
JPS6341755A (en) * | 1986-08-07 | 1988-02-23 | Matsushita Electric Ind Co Ltd | Air conditioner |
JPS63272759A (en) * | 1987-04-30 | 1988-11-10 | 三菱電機株式会社 | Operation control system at time of leisure of elevator |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05118613A (en) * | 1991-10-30 | 1993-05-14 | Matsushita Electric Ind Co Ltd | Life scene inferring device and air conditioner |
JPH09170797A (en) * | 1995-12-20 | 1997-06-30 | Sharp Corp | Air conditioner |
US8417808B2 (en) | 2002-07-19 | 2013-04-09 | Panasonic Corporation | Device linkage control apparatus |
WO2004010232A1 (en) * | 2002-07-19 | 2004-01-29 | Matsushita Electric Industrial Co., Ltd. | Device linkage control apparatus |
JPWO2004010232A1 (en) * | 2002-07-19 | 2005-11-17 | 松下電器産業株式会社 | Device linkage controller |
JP2005009823A (en) * | 2003-06-20 | 2005-01-13 | Matsushita Electric Ind Co Ltd | Air cleaner |
JP2011109432A (en) * | 2009-11-18 | 2011-06-02 | Nec Corp | Mobile terminal with alarm, and method of operating the same |
JP2012047398A (en) * | 2010-08-26 | 2012-03-08 | Panasonic Electric Works Co Ltd | Energy-saving support device |
KR20150115389A (en) * | 2014-04-04 | 2015-10-14 | 삼성전자주식회사 | of heating, ventilation and air conditioning system |
WO2018008118A1 (en) * | 2016-07-07 | 2018-01-11 | 三菱電機株式会社 | Air-conditioning control apparatus, air-conditioing control method, air-conditioning system, and house with air conditioner |
JPWO2018008118A1 (en) * | 2016-07-07 | 2018-11-22 | 三菱電機株式会社 | Air conditioning control device, air conditioning control method, air conditioning system, and air-conditioned house |
JP2021099203A (en) * | 2019-12-23 | 2021-07-01 | シャープ株式会社 | Air conditioning system, server, method for controlling air conditioner, and air conditioner |
JP2022063138A (en) * | 2020-10-09 | 2022-04-21 | 株式会社富士通ゼネラル | Air conditioner |
JP2022063195A (en) * | 2020-10-09 | 2022-04-21 | 株式会社富士通ゼネラル | Air conditioner |
JP2022063263A (en) * | 2020-10-09 | 2022-04-21 | 株式会社富士通ゼネラル | Air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JP2578972B2 (en) | 1997-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11549706B2 (en) | Control unit with automatic setback capabtility | |
US11874637B2 (en) | Remote device control and energy monitoring by analyzing and applying rules | |
CN103453614B (en) | Air conditioning control device and air conditioning control method | |
US10274914B2 (en) | Smart-home device that self-qualifies for away-state functionality | |
KR102252263B1 (en) | Of heating, ventilation and air conditioning system | |
EP2769277B1 (en) | Smart-home device that self-qualifies for away-state functionality | |
JPH02254247A (en) | Predicting device for pattern of occupied room | |
JP3119082B2 (en) | Occupancy prediction device and applied equipment using the same | |
EP2903217B1 (en) | Building automation method and system | |
JPH02254246A (en) | Controller for air conditioner | |
Verbruggen et al. | Inclusion of window opening habits in a window model based on activity and occupancy patterns | |
JP2012133671A (en) | Home network system | |
JP2973529B2 (en) | Air conditioner | |
CN103081413A (en) | Energy supervision of a room | |
EP3112972B1 (en) | Smart-home device that self-qualifies for away-state functionality | |
US20220026305A1 (en) | Dynamic water leak detection | |
CN115390472A (en) | Intelligent home management method, system, device and storage medium for old people | |
JPS6341755A (en) | Air conditioner | |
CN115435472A (en) | Control method and device of air conditioner, storage medium and electronic equipment | |
JPH0128861B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |