JPH0225290A - Consumable welding rod and usage thereof - Google Patents

Consumable welding rod and usage thereof

Info

Publication number
JPH0225290A
JPH0225290A JP63329525A JP32952588A JPH0225290A JP H0225290 A JPH0225290 A JP H0225290A JP 63329525 A JP63329525 A JP 63329525A JP 32952588 A JP32952588 A JP 32952588A JP H0225290 A JPH0225290 A JP H0225290A
Authority
JP
Japan
Prior art keywords
welding rod
weight
aluminum
total
consumable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63329525A
Other languages
Japanese (ja)
Other versions
JPH0741435B2 (en
Inventor
Dennis D Crockett
デニス デル クロケツト
Robert P Munz
ロバート フイリツプ マンズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincoln Electric Co
Original Assignee
Lincoln Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lincoln Electric Co filed Critical Lincoln Electric Co
Publication of JPH0225290A publication Critical patent/JPH0225290A/en
Publication of JPH0741435B2 publication Critical patent/JPH0741435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/14Arc welding or cutting making use of insulated electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3093Fe as the principal constituent with other elements as next major constituents

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE: To obtain a self-shielding and consumable electrode by making an electrode have compressed granular filling material and a concentric coating of metal containing iron which are used for the welding of steel having specific tensile strength and elongation, and making the filling material have specific concentration of Al, Ni, Mn and limiting C. CONSTITUTION: This is an electric arc welding electrode which has an outer coating of metal containing iron formed around a concentric core of compressed granular filling material which is used for depositing weld metal of a steel of multiple passes having a minimum elongation of about 22% and a minimum tensile strength of about 5040 kg/cm<2> . This filling material contains Al the weight of which is bigger than about 1.50% of the weight of a whole welding rod. This filling material has a combination of Ni and Mn in the range of 2.5-4.0 wt.% of a whole welding rod, and Ni is greater than about 0.5% and Mn is in the range of 0.7-2.0%. In the welding rod, the C in its filling material makes a weld metal, deposited when the coating and the core are melted and deposited, which has C of less than 0.12%. A self-shield and cored consumable electrode can be supplied by using filler of high Al content hereby.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気アーク溶接の技術に関しそしてさらに改
良された溶接棒そして自己シールドの消耗可能な溶接棒
を用いる大気中の電気アーク溶接法に関する。本発明は
、スラグ・スラックス及びシールド材料とともに合金金
属を生成する粒状の充填物として、フラックス材料が管
の内側に含まれた裸の管状溶接棒を用いる、大気中のア
ーク溶接K特に適用可能である。このような消耗可能な
溶接棒は、自己シールド溶接棒として当業者に周知であ
り、それにより低炭素鋼の形の管状シート金属により囲
まれた窓中の充填材料が、合金要素を生成して、それが
アーク溶接法で溶融するに従って溶接棒により沈積され
た溶接金属の機械的性質をもたらす。本発明は、溶接棒
の外方の管状の被覆内の芯の粒状充填物内の合金材料の
組成物に関し、そしてそれはそれK特に関連して記載さ
れるだろう。本発明は、芯の他の粒状材料が7ラツクス
及びシールド効果を生ずる自己シールドの有芯の消耗可
能な溶接棒な含むことは、埋屏されるだろ5゜この他の
材料は本発明の一部ではな(、そして溶接棒分野の標準
の技術である。従来の溶接棒の基本的なスラグ系は、本
発明により改良された溶接棒な生成するのに変化しない
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the art of electric arc welding and further to improved welding rods and atmospheric electric arc welding methods using self-shielded consumable welding rods. . The present invention is particularly applicable to atmospheric arc welding using a bare tubular welding rod in which the flux material is contained inside the tube as a granular filling which together with the slag slack and shielding material produces an alloy metal. be. Such consumable welding rods are well known to those skilled in the art as self-shielded welding rods, whereby the filling material in a window surrounded by a tubular sheet metal in the form of low carbon steel produces alloying elements. , resulting in mechanical properties of the weld metal deposited by the welding rod as it melts in the arc welding process. The present invention relates to the composition of an alloy material within the granular filling of the core within the outer tubular covering of a welding rod, and it will be described with particular reference to it. The present invention may include other particulate materials of the core such as self-shielding cored consumable welding rods that produce a shielding effect. The basic slag system of conventional welding rods remains unchanged to produce the improved welding rods of the present invention.

〔従来の技術〕[Conventional technology]

従来の技術の情報として、バーバーストロウ(H8!−
デーstraw)の米国特許用3,767.891号が
引例として引用されて、本発明が改良としている一般的
なタイプの溶接棒で経験する冶金学上の現象を説明する
。これは本発明により特に改良された電極ではない。
As information on the conventional technology, Barber Straw (H8!-
U.S. Pat. This is not a particularly improved electrode according to the invention.

〔発明の概要〕[Summary of the invention]

ビーズを形成するためのマルチプル浴接パスに用いられ
るタイプの自己シールドの消耗可能な有芯の溶接棒を製
造するのに、粒状の充填材料は、沈積工程中に溶接金属
内に取り込まれる酸素及び窒素の有害な作用を減少する
のに十分なアルミニウムを含まねばならないことは、本
発明者は確めそして現在良(知られている。比較的多量
のアルミニウムを混入することにより、溶接棒は容易に
利用される。
In producing self-shielded, consumable, cored welding rods of the type used in multiple bath welding passes to form beads, the granular filler material eliminates the oxygen and It has been established by the inventors and is now well known that sufficient aluminum must be included to reduce the deleterious effects of nitrogen. By incorporating relatively large amounts of aluminum, welding rods can be easily used for.

それは、それが溶接される鋼のきれいさ及び用いられる
溶接工程により影響されないからである。溶接ビーズは
、優れた外観並に多孔性に対する大きな抵抗性を有する
。七〇理由のため、合金アルミニウムが充填材料に加え
られて、アルミニウムが全溶接金属の沈積物の1.20
%を実質的に越える全溶接金属を生成する。しかし、こ
のような高いアルミニウム含量は、溶接沈積物の構造の
変態を防止勝ちであり、そのため溶接金属の延性を実質
的に低下させる大きなグフィンを形成する。事実、アル
ミニウムは延性を低下させて、砕は易い溶接金属が沈積
し、それは容易に砕けてしまう。その結果、合金炭素を
充填材料に加えて変態を細いグフィンの延性の構造にす
ることは、大体標準のやり方である。本発明が関するタ
イプの溶接棒は、それ故炭素・アルミニウム系を利用し
、それKよりアルミニウムは可能な最大の程度付近即ち
全溶接金属の約1.8%に増大し、そしてアルミニウム
によりさもなければ生成される低い延性は、全溶接金属
の炭素を通常0.2〜0.3重′tht%のレベルに増
大することにより避けられる。アルミニウムと炭素との
バランスをとることは、延性の点から満足しうる溶接金
属の沈積物を生成する。当該技術において、充填材料中
のアルミニウム含量は、二つの理由のため上限の値を一
般に越えることができない。このアルミニウム・炭素系
の限界は、全溶接金属の延性の許容しうるレベルの必要
性によりコントロールされ、その性質は、炭素の過剰の
レベル及び高い引張強さにより低下する。従って、炭素
・アルミニウム系におゆる満足できる結果は、全溶接金
属において約2.0%を越えるアルミニウム含量につい
て通常得ることができない。このタイプの合金系の延性
の限界を越えて、米国溶接協会(AWfl)は、このタ
イプの溶接棒により生成される全溶接金属の沈積物にお
いて168チアルミニウムの上限をきめている。全溶接
金属の沈積物におけるこのアルミニウム金貨ま、溶接棒
の以を形成する粒状材料における合金アルミニウムの一
般に対応する量により帰られる。等しい条件では、鉄又
は鋼の被覆を含む溶接棒のチとして芯材料のアルミニウ
ムと、全溶接金属のアルミニウムの−との間には直接的
な関係がある。アルミニウムのチの表示は、成る一般的
な適用性を有する。全溶接棒中の約2.0重量%のアル
ミニウムは、概して全溶接金属中の約1.6重量%のア
ルミニウムを生成する。この同一の一般的な比は、アル
ミニウムの他の%に適用できる。同様な関係は、本発明
の溶接棒材料に用いられるアルミニウム・炭素系中の炭
素に適用できる。
This is because it is not affected by the cleanliness of the steel being welded and the welding process used. Weld beads have excellent appearance as well as great resistance to porosity. For 70 reasons, alloyed aluminum is added to the filler material so that aluminum accounts for 1.20% of the total weld metal deposit.
% total weld metal. However, such high aluminum content tends to prevent structural transformation of the weld deposit, thus forming large guffins that substantially reduce the ductility of the weld metal. In fact, aluminum reduces ductility and deposits brittle weld metal, which easily fractures. As a result, it is largely standard practice to add alloying carbon to the filler material to transform into a thin guffine ductile structure. Welding rods of the type to which the present invention relates therefore utilize a carbon-aluminum system, in which the aluminum increases to near the maximum possible extent, i.e. about 1.8% of the total weld metal, and the aluminum increases otherwise. The low ductility produced by the weld metal is avoided by increasing the carbon content of the total weld metal, typically to a level of 0.2 to 0.3 weight percent. Balancing aluminum and carbon produces weld metal deposits that are satisfactory from a ductility standpoint. In the art, the aluminum content in the filling material generally cannot exceed an upper limit value for two reasons. The limits of this aluminum-carbon system are controlled by the need for an acceptable level of ductility in the total weld metal, a property degraded by excessive levels of carbon and high tensile strength. Therefore, no satisfactory results with carbon-aluminum systems are usually obtained for aluminum contents greater than about 2.0% in the total weld metal. Beyond the ductility limitations of this type of alloy system, the American Welding Institute (AWfl) has set an upper limit of 168 thialuminum on the total weld metal deposit produced by this type of welding rod. This aluminum gold in the total weld metal deposit is returned by a generally corresponding amount of alloyed aluminum in the granular material forming the welding rod mass. Under equal conditions, there is a direct relationship between the aluminum of the core material and the aluminum of the total weld metal as a welding rod containing an iron or steel coating. The designation of aluminum has general applicability. About 2.0% aluminum by weight in the total weld rod generally yields about 1.6% aluminum by weight in the total weld metal. This same general ratio can be applied to other percentages of aluminum. A similar relationship can be applied to carbon in the aluminum-carbon system used in the welding rod material of the present invention.

米国溶接協会は、軟鋼をマルチプルパスに沈積するため
の種々の自己シールドの消耗可能な溶接棒に関する要件
を特定している。より一般的な溶接棒の分類の一つは、
E70T−7であり、それは約4200#/m”  (
60000psi)の最低降伏強さ、約50408/信
”  (72000psi)の最低引張強さ及び22%
の量低伸びに適合する溶接沈積物を溶接棒が生成するこ
とを要求している。これは、本発明が関するタイプの溶
接棒に関するやや標準の仕様である。これらの要件を満
す溶接棒を生成するために、アルミニウム及び炭素系は
、今迄所望の延性を生じさせるために適切なレベル概し
て全溶接金属の0.24〜0.28%の炭素を有ししか
も全溶接金属の約1.45%そして好ましくは約1,5
0%より高いが約1.8%より低い多量のアルミニウム
の所望の利点を生ずるやり方で調節されてきた。この粒
状のタイプの自己シールドの消耗可能な有芯の溶接棒の
不利は、炭素が増大して延性を増すく従って、ノツチの
靭性が、明らかにグレインの境界におけるカーバイドに
より、全く低(なることである。さらに、AWS仕様E
70T−7に適合するように従来も方された有芯の溶接
棒の沈積速度は、比較的早い。早い沈積速度では、代表
的な溶接を形成する次のパスからのグレインの精製の低
下したチ及び個有の密な溶接ビーズにより、沈積された
全溶接金属の実質的なノツチの靭性を得ることは、さら
に4しい。この状態を考慮して、AWS仕様は、E70
T−7仕様に適合する溶接棒についで特別なレベルのノ
ツチの靭性を要求していない。その結果、E70T−7
型の溶接棒の使用は、最低のノツチのタフネスの値が要
件ではない適用に概して従来制限されてきている。
The American Welding Society has specified requirements for various self-shielded consumable welding rods for multiple pass deposition of mild steel. One of the more common classifications of welding rods is
E70T-7, which is about 4200#/m” (
60,000 psi) minimum yield strength, approximately 50,408/cm (72,000 psi) minimum tensile strength and 22%
The amount of welding required that the welding rod produce weld deposits compatible with low elongation. This is a somewhat standard specification for welding rods of the type to which this invention relates. In order to produce welding rods that meet these requirements, aluminum and carbon systems have until now been used with appropriate levels of carbon, typically 0.24-0.28% of the total weld metal, to produce the desired ductility. but about 1.45% and preferably about 1.5% of the total weld metal.
Large amounts of aluminum above 0% but below about 1.8% have been adjusted in a manner that produces the desired benefits. The disadvantage of this granular type of self-shielding consumable cored welding rod is that as the carbon increases and becomes more ductile, the notch toughness becomes quite low (apparently due to the carbide at the grain boundaries). In addition, AWS specification E
The deposition rate of cored welding rods conventionally adapted to 70T-7 is relatively fast. At high deposition rates, substantial notch toughness of the total weld metal deposited is obtained due to the reduced refining of grains from subsequent passes forming a typical weld and the uniquely dense weld beads. is 4 more. Considering this situation, the AWS specification is E70
No special level of notch toughness is required for welding rods meeting the T-7 specification. As a result, E70T-7
The use of type welding rods has generally been traditionally limited to applications where a minimum notch toughness value is not a requirement.

本発明は、アルミニウムに基づく脱酸比差に窒素スキャ
ベンジング系を用いる自己シールドの有芯の消耗可能な
溶接棒における改良に関し、それは良好な延性及びノツ
チタフネスの顕著な増大即ちチャーピーVノッチスケー
ルテ。
The present invention relates to an improvement in a self-shielded cored consumable welding rod using a nitrogen scavenging system to an aluminum-based deoxidation ratio, which provides good ductility and a significant increase in notch toughness, i.e., chirpy V-notch scale. .

℃(32°F)で約484clR−kg(約35ft−
tb)以上を達成しつつ窓中に比較的多量のアルミニウ
ムを含む溶接棒の多孔性への良好な抵抗性差に電圧の範
囲の特徴を得る。高アルミニウム含量及びノツチ靭性に
おける顕著な増大とともにマルチプルパスに鋼を沈積す
る有芯の溶接棒の有利な結果を得ることに加えて、本発
明は又早い沈積速度を維持する。本発明が関する自己シ
ールドの系のAWS最犬最左アルミニウム全溶接金属の
1.8%であり、それは金属被覆を含む溶接棒の最大的
2.391に達する充填材料中のアルミニウムにより越
えられない。従って、本発明が関する合金系中の多いア
ルミニウムは、1.1EJ以下のアルミニウムの全溶接
金属中のアルミニウム含量を生ずる。こりような高いア
ルミニウム自己シールド系の溶接特性及び他の利点を保
持するためには、本発明の合金アルミニウムは、全溶接
棒の約1.50チを越えるノベルに維持されて、全溶接
金属は少くとも約1.20%のアルミニウムを有する。
Approximately 484 clR-kg (approximately 35 ft-
tb) Obtaining the characteristics of a voltage range to a good resistance difference to the porosity of the welding rod containing a relatively large amount of aluminum in the window while achieving the above. In addition to obtaining the advantageous results of a cored welding rod that deposits steel in multiple passes with high aluminum content and a significant increase in notch toughness, the present invention also maintains fast deposition rates. The AWS most dog-left aluminum of the self-shielding system to which this invention relates is 1.8% of the total weld metal, which is not exceeded by the aluminum in the filler material reaching the maximum of 2.391 for welding rods containing metal cladding. . Therefore, high aluminum in the alloy system to which this invention is concerned results in an aluminum content in the total weld metal of aluminum of less than 1.1 EJ. In order to retain the high welding properties and other advantages of aluminum self-shielding systems, the alloy aluminum of the present invention is maintained at a novelty of more than about 1.50 inch of the total weld metal, so that the total weld metal It has at least about 1.20% aluminum.

好ましくは、充填材料中のアルミニウムは、沈積金属中
に少くとも1.50%のアルミニウムを生成するような
ものである。
Preferably, the aluminum in the filler material is such that it produces at least 1.50% aluminum in the deposited metal.

本発明によれば、合金系中の炭素含l家、従来の炭素・
アルミニウムに基づ(合金系で用いられたものからは低
下され、そしてニッケル及びマンガンの組合わせが粒状
の充填材料に加えられて、構造(全溶接金属りノツチ靭
性に有害な作用を有するであろう)を生成することなく
、オーステナイトの形成を促進する。このやり方で、外
部の気体シールドを有しない有芯の消耗可能な溶接棒は
、増大したノツチ靭性を有する一方高いアルミニウム含
量の利点を有する。この結果は、マルチプルパスに鋼の
沈積物を生成する高アルミニウムの自己シールド系では
多年にわたり得ることができなかつ、た。合金系で炭素
を減少させることにより、ダレインの境界におけるカー
バイド形成は、明らかに減少され、それはノツチ靭性を
増大させる。
According to the present invention, the carbon-containing family in the alloy system can be replaced with the conventional carbon-containing family.
Aluminum-based (reduced from that used in alloy systems), and a combination of nickel and manganese are added to the granular filler material, which may have a detrimental effect on the notch toughness of the structure (total weld metal). In this way, a cored consumable welding rod without an external gas shield has the benefit of a high aluminum content while having increased notch toughness. This result could not be obtained for many years in high-aluminum self-shielding systems that produce steel deposits in multiple passes. By reducing carbon in the alloy system, carbide formation at the dalein boundary obviously reduced, it increases the notch toughness.

本発明によれば、充填材料中の合金炭素は通常最低に減
少される。充填材料の合金部分中の炭素を減少させるこ
とKより、全溶接金属は0.12%より少いそして好ま
しくは0.10%より少い炭素含量を有する。
According to the invention, alloying carbon in the filler material is generally reduced to a minimum. By reducing the carbon in the alloy part of the filler material, the total weld metal has a carbon content of less than 0.12% and preferably less than 0.10%.

本発明は、粒状充填物の合金系中の炭素含量が低下され
て、金属被覆中の炭素が溶接金属を合金する溶接棒中の
炭素のみに王としてなる、自己シールド溶接棒の改良で
ある。
The present invention is an improvement in a self-shielded welding rod in which the carbon content in the alloy system of the granular filler is reduced so that the carbon in the metal coating is dominated by the carbon in the welding rod that alloys the weld metal.

ニッケル及びマンガンの組合わせが充填材料の合金系に
加えられて、溶接棒の約2.5〜4.0]iJ1%の範
囲の全#接捧のニッケル及びマンガンの組合わせを生じ
、その際ニッケルは溶接棒の約0.5重量%より多くそ
してマンガンは溶接棒の0.7〜2.0重量%の範囲に
ある。充填材料中の炭素は、通常0.05%より少く、
それは王として充填材料それ自体中の炭素の除去である
A combination of nickel and manganese is added to the alloy system of the filler material to yield a combination of nickel and manganese in the range of about 2.5 to 4.0]iJ1% of the welding rod, where Nickel is greater than about 0.5% by weight of the welding rod and manganese is in the range of 0.7-2.0% by weight of the welding rod. The carbon in the filler material is usually less than 0.05%;
It is the removal of carbon in the filler material itself that is king.

充填材料についてこの合金系に関して溶接棒を生成する
ことにより、沈積された全溶接金属は1.20重量%よ
り大きいそして好ましくは1.50%より大きいアルミ
ニウムのチを有し、そして約0.12重量より少いそし
て好ましくは約o、io%より少い炭素のチを有する。
By producing a welding rod with this alloy system for the filler material, the total weld metal deposited has an aluminum content of greater than 1.20% by weight and preferably greater than 1.50%, and about 0.12% by weight of aluminum. It has a carbon content of less than 0,000% by weight and preferably less than about 0,000%.

充填材料の合金系中の組合わされたニッケル及びマンガ
ン成分の使用&良延性の認めうる増大とともに、従来の
溶接棒の充填材料中の多い炭素含量によっては今迄得る
ことのできなかった溶接金属ノツチ靭性な生成する。こ
れは、このタイプの従来の自己シールドの有芯の溶接棒
に比べて改良された点である。
The use of combined nickel and manganese components in the filler material alloy system & a noticeable increase in ductility as well as weld metal notches hitherto not obtainable by high carbon content in the filler material of conventional welding rods. Produces toughness. This is an improvement over conventional self-shielded cored welding rods of this type.

本発明の王な目的は、0℃(32°F)で少くとも約4
84cWL−4(約35ft・lb)のチャービードノ
ツチタフネスを有する溶接沈積物を生成する、高アルミ
ニウム含量の合金系を有する充填材料を利用して、自己
シールドの有芯の消耗可能な電極を提供することにある
A primary object of the present invention is to provide at least about 4
Provides a self-shielded cored consumable electrode utilizing a filler material having a high aluminum content alloy system that produces a weld deposit with a charred notch toughness of 84 cWL-4 (approximately 35 ft/lb) It's about doing.

本発明の他の目的は、前記のタイプの溶接棒によるマル
チプルパスの溶接法を提供することにある。
Another object of the invention is to provide a multiple pass welding method with a welding rod of the type described above.

本発明の改良された溶接棒は、それを種々のプレートの
厚さの建築溶接に用いさせる、実質的な操作者への魅力
及び操作上の特性を有する。溶接棒は、良好な浸透、良
好なビーズの形、良好なスラグの除去及び輝くビーズの
表面を宵し、それらはそれを多くのアーク溶接の適用に
良好な選択とする。改良された溶接棒は、AWSE70
T−7fll接棒と操作において同様であるが、しかし
それは充填材料中の炭素・アルミニウム合金系に基づ(
従来用いられてきた冶金では得ることのできなかった衝
撃性を有する溶接金属を生成することにより、このタイ
プの従来の溶接棒とは異る。このような系において、金
属性アルミニウムは、主要な有利な成分であり、そして
溶接棒に用いられて、アーク及び溶接パラドル中の窒素
及び酸素についてスキャベンジャ−を提供することによ
り、溶接棒の自己シールド特性を発展させる。多量のア
ルミニウムを含む本発明の溶接棒は、より大きな電圧の
範囲、より良好な操作特性及びより良好なビーズの形及
びビーズの外見を有し勝ちである。本発明は、非常に低
下した炭素の量により、従来の炭素・アルミニウム合金
系の良好な操作特性を保持する。従来の炭素・アルミニ
ウム合金系と同様な降伏強さのレベルとともに、適度の
チャーピーYノツチ性が、本発明により達成されるばか
りでなく、追加の利点として、本発明は、延性を増大す
るための炭素の添加により従来得られたのより、約1.
28cm(0,505“)の引張テストのサンプルにお
いてより大きな伸びを生成する。
The improved welding rod of the present invention has substantial operator appeal and operational characteristics that make it useful for architectural welding of a variety of plate thicknesses. The welding rod has good penetration, good bead shape, good slag removal and shiny bead surface, which make it a good choice for many arc welding applications. The improved welding rod is AWSE70
Similar in operation to the T-7fll contact rod, but it is based on a carbon-aluminum alloy system in the filling material (
This type of welding rod differs from conventional welding rods by producing a weld metal with impact properties that could not be obtained with conventional metallurgy. In such systems, metallic aluminum is a major advantageous component and is used in the welding rod to improve the self-efficiency of the welding rod by providing a scavenger for nitrogen and oxygen in the arc and welding paradle. Develop shield properties. Welding rods of the present invention that contain large amounts of aluminum tend to have a larger voltage range, better operating characteristics and better bead shape and bead appearance. The present invention retains the good operating properties of conventional carbon-aluminum alloy systems due to the greatly reduced carbon content. Not only is moderate chirpy Y-notch properties achieved with the present invention, along with yield strength levels similar to conventional carbon-aluminum alloy systems, but as an additional advantage, the present invention provides Approximately 1.
It produces a greater elongation in the tensile test sample of 28 cm (0,505").

本発明は、本発明が関するタイプの溶接棒に充填材料を
経て導入されるユニークな合金系に関する。過去におい
て、良好なノツチ靭性を生成することを目的とした、自
己シールドの7ラツクスの有芯の溶接棒の溶接沈積アル
ミニウム含量は、一般に1.20%より少かった。本発
明を用いることにより、全溶接金属中の2.01以内の
多いアルミニウムは用いられて、アーク移動及びビーズ
の形を改良し、スパッターを低下させ、そして広い電圧
の範囲を生成し一方溶接ビーズの多孔性に対する抵抗を
改良する。
The present invention relates to a unique alloy system that is introduced via a filler material into welding rods of the type to which the present invention relates. In the past, the weld deposit aluminum content of self-shielded 7 lux cored welding rods intended to produce good notch toughness was generally less than 1.20%. By using the present invention, up to 2.01% aluminum in the total weld metal is used to improve arc travel and bead shape, reduce spatter, and produce a wide voltage range while welding beads. Improves resistance to porosity.

〔実施例〕〔Example〕

本発明による数種の溶接棒は、実施例I、実施例I及び
実施例■に示されるように処方された。
Several welding rods according to the present invention were formulated as shown in Example I, Example I and Example II.

実施例! 充填材料が全溶接棒の重量の18.5チでありそして被
覆が残りである、圧縮した粒状の充填材料の芯の回りに
軟鋼の被覆を用いて、消耗可能な溶接棒を製造した。被
覆41被覆の約0.05%の炭素含量及び被覆の約0.
35%のマンガン含量を有しそして充填材料は次の通り
であった。
Example! A consumable welding rod was fabricated using a mild steel sheath around a core of compressed granular filler material, with the filler being 18.5 inches of the total rod weight and the sheath remaining. Coating 41 The carbon content of the coating is about 0.05% and the carbon content of the coating is about 0.05%.
It had a manganese content of 35% and the filling material was as follows:

マンガン金属粉末 鉄粉宋 アルミニタム金属粉禾 ニッケル金部粉末 フラックス及びシールド成分 5.50    1.02 37.00    6.85 11.00    2.04 8.10    1.50 38.40    7.10 この溶接棒を直径約0.24cII@(”4インチ)の
消耗可能な棒に成形し、そして厚さ約1.9m(馨イン
チ)の平らな炭素鋼の平らな位置にマルチプルパスの突
合ぜ溶接を作るのに用いた。用いた溶接のパラメーター
は、毎分約381m(150インチ)のワイヤ供給速度
、325アンペア、直流溶接棒負、25アークボルト、
約3.8鋼(1%インチ)の電気スティックアウト及び
約148.9℃(300°F)のインターパス温度であ
った。沈積速度は、毎時約5.184(約11.4ボン
ド)であった。
Manganese metal powder Iron powder Song Aluminum metal powder Nickel metal powder Flux and shielding components 5.50 1.02 37.00 6.85 11.00 2.04 8.10 1.50 38.40 7.10 This welding The bar was formed into a consumable rod approximately 4 inches in diameter and multiple pass butt welded into a flat piece of flat carbon steel approximately 1.9 inches thick. The welding parameters used were: wire feed rate of approximately 381 m (150 inches) per minute, 325 amperes, negative DC welding rod, 25 arc volts,
The electrical stickout was about 3.8 steel (1% inch) and the interpass temperature was about 300°F. The deposition rate was approximately 5.184 (approximately 11.4 bonds) per hour.

このテストにより得られた全溶接金属の機械的性質及び
沈積の化学的分析は、次の通りであった。
The mechanical properties and chemical deposition chemical analysis of the total weld metal obtained from this test were as follows.

降伏強さ:約4.865#/cm2(69,500ps
i)引張強さ:約5,929 #/箔”  (84,7
00pai)チ伸び:26チ チヤーピーVノツチ衝撃強さ:約635cpn−Jc9
C46ft・lb)実 〔0℃(32°F)) 約428cmkg(31ft−16) [−17,8℃(0°F)] 沈積物の化学分析:0.088%  炭素1.33% 
 マンガン 0.09%  珪素 1.63チ  アルミニウム 1.41%  ニッケル 施例■ 実施例■の消耗可能な溶接棒を次の如(変化した。
Yield strength: Approximately 4.865#/cm2 (69,500ps
i) Tensile strength: approx. 5,929 #/foil” (84,7
00pai) Chi elongation: 26 chia P V notch impact strength: approx. 635cpn-Jc9
C46ft・lb) Fruit [0°C (32°F)) Approximately 428cmkg (31ft-16) [-17.8°C (0°F)] Chemical analysis of sediment: 0.088% Carbon 1.33%
Manganese 0.09% Silicon 1.63% Aluminum 1.41% Nickel Example ■ The consumable welding rod of Example ■ was changed as follows.

マンガン金属粉末 酸化マンガン 鉄粉末 アルミニウム金属粉床 ニッケル金属粉末 フラックス及びシールド成分 充填物のチ 3.40 4.05 11.30 8.10 38.05 溶接棒の慢 0.68 0.81 7.02 2.26 1.62 7.61 実施例醒の溶接棒の充填材料t’3全溶接棒重量の20
.0チでありそして被覆は残りであった。
Manganese metal powder Manganese iron oxide powder Aluminum metal powder bed Nickel metal powder Flux and shield component filling 3.40 4.05 11.30 8.10 38.05 Welding rod arrogance 0.68 0.81 7.02 2.26 1.62 7.61 Filling material t'3 of the welding rod in Example 20 of the total welding rod weight
.. 0 and the coating remained.

実施例■のテスト法を用い、下記の全溶接金属の機械的
性質及び沈積物の化学的分析が、実施例国の消耗可能な
溶接棒について得られた。
Using the test method of Example 1, the following total weld metal mechanical properties and deposit chemical analyzes were obtained for the Example Country consumable welding rods.

降伏強さ:約5.047#/m”  (72,1001
a4)引張強さ:約6,013Jtl/an” (85
,9001ai)チ伸び=28% チャートドノツチ衝撃強さ:約593.4c篤・却(4
3ft・lb)〔0℃(32°F)) 約331c1n−kg(24ft−lb)〔約−6,6
7℃(−20’F)) 沈積物の化学分析:0.079%  炭素1.47チ 
 マンガン 0.16%  珪素 1.55%  アルミニウム 1.60チ  ニッケル 実施例逼 実施例■の消耗oT能な溶接棒を下記のよ5に変更し池
(1) fi化ラマンガン          4.0
5   0.84(2)鉄粉末          3
8.50  7.97(3)アルミニウム金団粉末  
     11.30    2.34(4)ニッケル
金属粉末        8.10   1.68(5
)フラックス及びシールド成分  38.05   7
.88実施例■の溶接棒の充填材料は、全溶接棒の重量
の20.7チでありそして被覆が残りであった。
Yield strength: approx. 5.047 #/m” (72,1001
a4) Tensile strength: Approximately 6,013 Jtl/an” (85
, 9001ai) Chi elongation = 28% Charted notch impact strength: approx. 593.4c
3ft・lb) [0℃ (32°F)) Approximately 331c1n-kg (24ft-lb) [Approx. -6,6
7°C (-20'F) Chemical analysis of sediment: 0.079% carbon 1.47%
Manganese 0.16% Silicon 1.55% Aluminum 1.60cm Nickel Example 〼Example ■The consumable OOT capable welding rod in Example ■ was changed to 5 as shown below (1) Fi-formed Ramangan 4.0
5 0.84 (2) Iron powder 3
8.50 7.97 (3) Aluminum metal powder
11.30 2.34 (4) Nickel metal powder 8.10 1.68 (5
) Flux and shielding components 38.05 7
.. The filler material in the welding rod of Example 88 was 20.7 inches of the total rod weight and the coating was the remainder.

実施例Iのテスト法を用い、下記の全溶接金属の機械的
性質及び沈積物の化学分析が、実施例■の消耗可能な溶
接棒について得られた。
Using the test method of Example I, the following total weld metal mechanical properties and deposit chemical analyzes were obtained for the consumable welding rod of Example II.

降伏強さ二約4,452H/cm2(63,6001s
i)約5,488 kl/an” (78,4001a
t)チ伸び224% チャー2−vノツチ衝撃強さ:約704c1n・kg(
51/iJり〔0℃(32°F)) 約4691・klc34ft−16> (−17,8℃(0°F)〕 沈積物の化学分析: 0.082% 炭素0.98% 
 マンガン 0.16係  珪素 1.76%  アルミニウム 1.63%  ニッケル これらの三つの実施例及び他のテストから、ニッケルが
溶接棒の0.5重量%より多くそしてマンガンが溶接棒
の0.7〜2.0重′!!に%の範囲内であるニッケル
及びマンガンの組合わせが溶接棒の2.5〜4.0重量
%の範囲内にある溶接棒合金系を生成するのく処方され
た粒状の充填材料を用いるとき、さらに溶接棒中の炭素
を制限して全溶接金属の炭素は0.12重量%を越えな
いとき、E70T−7溶接棒に関するAWSの引張及び
伸びの要件が、0℃(32°F)で約483ctn−4
(ft−16)を越えるチャービーYノツチ靭性ととも
に得られた。
Yield strength 2 approximately 4,452H/cm2 (63,6001s
i) Approximately 5,488 kl/an” (78,4001a
t) Chi elongation 224% Char 2-v notch impact strength: Approx. 704c1n・kg (
51/iJ [0°C (32°F)) Approx. 4691・klc34ft-16> (-17.8°C (0°F)) Chemical analysis of sediment: 0.082% Carbon 0.98%
Manganese: 0.16% Silicon: 1.76% Aluminum: 1.63% Nickel From these three examples and other tests, nickel is greater than 0.5% by weight of the welding rod and manganese is greater than 0.7% by weight of the welding rod. 2.0 weight'! ! When using a granular filler material formulated to produce a welding rod alloy system in which the combination of nickel and manganese is within the range of 2.5% to 4.0% by weight of the welding rod. , and the AWS tensile and elongation requirements for E70T-7 welding rods at 0°C (32°F) when carbon in the welding rod is limited so that the total weld metal carbon does not exceed 0.12% by weight. Approximately 483ctn-4
(ft-16) with a charvy Y-notch toughness exceeding 16 ft-16.

本発明を用いる全溶接金属における操作可能な元素の好
ましい範囲は次の通りである。
The preferred ranges of operable elements in the total weld metal using the present invention are as follows.

チ全溶接金属 ((1)  炭素       0.06〜0.1kg
(&)  マンガン       1.0〜1.5(1
)  アルミニウム    1.40〜1.75(d)
  ニッケル       1.4〜2.0もち論、他
の金属の残渣例えば最大0.02の燐及び最大0.01
の硫黄が又溶接沈積物中に存在する。それは、それらが
スラグ系の成る還元可能な化合物中とともに系の回りの
鋼から出るからである。
All welded metal ((1) Carbon 0.06-0.1kg
(&) Manganese 1.0~1.5 (1
) Aluminum 1.40-1.75(d)
Nickel 1.4-2.0%, residues of other metals e.g. max. 0.02 phosphorus and max. 0.01
of sulfur is also present in the weld deposits. This is because they exit from the steel surrounding the system along with the reducible compounds that make up the slag system.

実施例において、マンガンは充填材料中の酸化マンガン
から部分的に得られ、それは粉末の形で容易に入手しう
る。
In embodiments, the manganese is partially obtained from manganese oxide in the filler material, which is readily available in powder form.

モチ論、ニッケル及びマンガンは、アルミニタムにより
還元可能な任意の形で含まれて、溶接金属における合金
化のために元素状ニッケル及びマンガンを生成する。本
発明によれば、溶接棒、充填材料及び鋼の被覆中の炭素
はコントロールされて、全溶接金属沈積物の炭素含量が
、全溶接金属の0.12重量%を越えずそして好ましく
は0.10]iiチより少い。充填材料中のアルミニ9
ムは、粉本状のアルミニウムにより提供され、セして溶
接棒の1.50iJl膚ヨリ多くそして溶接棒の2.5
重量%より少いチで存在する。このやり方で、全溶接金
属は、全溶接金属の1.23i量鳴〜2.0重量%の一
般的な範囲でアルミニウムを含む。
In theory, nickel and manganese are included in any form reducible by the aluminum to produce elemental nickel and manganese for alloying in the weld metal. According to the invention, the carbon in the welding rod, filler material and coating of the steel is controlled such that the carbon content of the total weld metal deposit does not exceed 0.12% by weight of the total weld metal and preferably 0.12% by weight of the total weld metal. 10] Less than ii. Aluminum 9 in filling material
The load is provided by powdered aluminum, with a welding rod of 1.50 iJl and a welding rod of 2.5 iJl.
Present in less than % by weight. In this manner, the total weld metal contains aluminum in the general range of 1.23 to 2.0% by weight of the total weld metal.

本発明の他の面によれば、本発明により作成されたタイ
プの自己シールドの消耗可能な有芯の溶接棒の単一又は
マルチプルパスによる、大気中(即ち外部の気体シール
ドなし)の電気アーク浴接方法が提供される。この溶接
棒1転0℃(32°F)で少くとも約641cm・kg
(35/l−16)のチャービーンノツチ靭性とともに
毎時約4.54kg(約10ボンド)を越える沈積速度
をもたらす。この方法は、溶接棒の少くとも約0.06
重量1の炭素含量を有する鋼の被覆を提供する工程、被
覆中に充填材料(溶接棒合金系として、溶接棒の2.5
〜4.0重:t%の範囲のニッケル及びマンガンの組合
わせを提供し、ニッケルは溶接棒の0.5重量%より多
くそしてマンガンはM接棒の0.7〜2.0重tチの範
囲にある)を提供する工程を含む。本発明の合金アルミ
ニウムは、全溶接棒の約1.50%を越えるノベルに保
だわ、セして被覆及び充填材料を合わせた炭素含量は、
溶接棒の約0,15重量%より少く、そのため沈積され
た全溶接金属は、溶接棒が溶融し沈積したとき、約1.
2%より多いアルミニウム合金の重量%並に約0.12
1より低い炭素合金の重1に%を有する。方法は、さら
罠溶接棒を経て電流を流して被覆及び芯材料を溶融する
ための電気アークを生成する工程、並に少くとも1.2
0%のアルミニウム及び0.12i量チ以下の炭素を有
する全溶接金属として、素材上に溶接棒の金属を沈積す
る工程を含む。この方法を用いることにより、毎時約4
.s6kg(10ボンド)より実質的に多い沈積速度が
マルチプルパス溶接で得られ、一方AWsE70T−7
の強さ及び延性の要件との適合を維持しセして0℃(3
2°F)で約484a+s・kg(35ft・lb)を
越えるチャーピーVノツチ靭性を得る。
According to another aspect of the invention, an atmospheric (i.e. without external gas shield) electric arc by single or multiple passes of a self-shielded consumable cored welding rod of the type made according to the invention. A method of bathing is provided. At least approximately 641 cm/kg per turn of this welding rod at 0°C (32°F)
(35/l-16) yields a deposition rate in excess of about 4.54 kg (about 10 bonds) per hour along with a chirvine notch toughness of (35/l-16). This method requires at least about 0.06 mm of welding rod
A process of providing a coating of steel with a carbon content of 1 by weight, filling material in the coating (as a welding rod alloy system, 2.5 of the welding rod
Provide a combination of nickel and manganese ranging from ~4.0wt%, with nickel greater than 0.5wt% of the welding rod and manganese ranging from 0.7 to 2.0wt% of the welding rod. ). The aluminum alloy of the present invention has a carbon content of more than about 1.50% of the total welding rod, including the coating and filler materials.
Less than about 0.15% by weight of the welding rod, so the total weld metal deposited is about 1.5% by weight when the welding rod is melted and deposited.
2% by weight of aluminum alloy as well as about 0.12
The weight of the carbon alloy is less than 1%. The method includes passing an electric current through a countersunk welding rod to create an electric arc for melting the coating and core material, and at least 1.2
The process involves depositing the welding rod metal onto the blank as a total weld metal having 0% aluminum and less than or equal to 0.12i of carbon. By using this method, approximately 4
.. Deposition rates substantially higher than s6 kg (10 bonds) were obtained with multiple pass welding, while AWsE70T-7
while maintaining compliance with the strength and ductility requirements of
Chirpy V-notch toughness in excess of about 484 a+s·kg (35 ft·lb) at 2°F).

充填材料は、合金、フラックス及びシールド成分を含み
、その最初のものは本発明により変更される。実施例を
考慮するとき、充填物は鉄扮末を含むことが見い出され
、それ手 続 補 正 書 は溶接物のための鉄の他の源を形成し、そして前記の三
種平成1年2月10日
The filler material includes alloy, flux and shield components, the first of which is modified according to the present invention. When considering the example, it is found that the filling contains iron powder, which the procedural amendment forms another source of iron for the weldment, and the aforementioned three types February 10, 1999

Claims (17)

【特許請求の範囲】[Claims] (1)約22%の最低伸び及び約5040kg/cm^
2(約72,000psi)の最低引張強さを有するマ
ルチプルパスの鋼のすべての溶接金属を沈積するのに用
いられる、圧縮された粒状の充填材料の一般に同心の芯
の回りに形成された外方の含鉄金属の被覆を有し、該充
填材料が全溶接棒の重量の約1.50%より多い量のア
ルミニウムを含む自己シールドの消耗可能な電気アーク
溶接棒において、該粒状充填材料が全溶接棒の2.5〜
4.0重量%の範囲の含量のニッケル及びマンガンの組
合わせを有し、該ニッケルは約0.5%より多く、該マ
ンガンは0.7〜2.0%の範囲にあり、そして該充填
材料中の炭素は制限され、それにより前記の被覆及び芯
が溶融且沈積するとき沈積したすべての溶接金属が0.
12%以下の炭素の重量%を有する溶接棒。
(1) Minimum elongation of approximately 22% and approximately 5040 kg/cm^
An outer layer formed around a generally concentric core of compressed granular filler material used to deposit all weld metal in multiple pass steels having a minimum tensile strength of 2 (approximately 72,000 psi) in a self-shielded consumable electric arc welding rod having a coating of a ferrous metal, the filler material comprising aluminum in an amount greater than about 1.50% of the weight of the total welding rod; Welding rod 2.5~
having a combination of nickel and manganese content in the range of 4.0% by weight, the nickel being greater than about 0.5%, the manganese being in the range of 0.7-2.0%, and the loading The carbon in the material is limited so that when the coating and core are melted and deposited, all weld metal deposited is 0.
A welding rod having a weight percentage of carbon of 12% or less.
(2)該粒状充填材料中の該ニッケルが、少くとも部分
的にNiX(式中Xは電気アーク中でアルミニウムによ
り還元可能な1種以上の元素である)の形である請求項
1記載の改良された芯を有する消耗可能な溶接棒。
2. The nickel in the granular filler material is at least partially in the form of NiX, where X is one or more elements reducible by aluminum in an electric arc. A consumable welding rod with an improved core.
(3)該粒状充填材料中の該マンガンが、少くとも部分
的にMnX(式中Xは電気アーク中でアルミニウムによ
り還元可能な1種以上の元素である)の形である請求項
2記載の改良された芯を有する消耗可能な溶接棒。
3. The manganese in the granular fill material is at least partially in the form of MnX, where X is one or more elements reducible by aluminum in an electric arc. A consumable welding rod with an improved core.
(4)前記のすべての溶接金属の該チヤーピー(Cha
rpy)V−ノツチ靭性が、0℃(32°F)で少くと
も約484cmkg(35ft・lb)である請求項3
記載の改良された芯を有する消耗可能な溶接棒。
(4) The Cha of all the above weld metals
claim 3, wherein the V-notch toughness is at least about 484 cm kg (35 ft·lb) at 0°C (32°F).
A consumable welding rod having an improved core as described.
(5)該充填材料中の該アルミニウムが、全溶接棒の重
量の1.50%より多くしかも約2.5%より少い請求
項4記載の改良された芯を有する消耗可能な溶接棒。
5. The improved core consumable welding rod of claim 4, wherein said aluminum in said filler material is greater than 1.50% and less than about 2.5% of the total welding rod weight.
(6)前記の被覆及び充填材料の該炭素が、全溶接金属
の0.12重量%より少い炭素含量を有する全溶接材料
をもたらすように選択される量で含まれる請求項5記載
の改良された芯を有する消耗可能な溶接棒。
6. The improvement of claim 5, wherein said carbon of said coating and filler material is included in an amount selected to result in a total weld material having a carbon content of less than 0.12% by weight of the total weld metal. A consumable welding rod with a solid core.
(7)全溶接金属の該炭素が、全溶接金属の0.10重
量%より少い%を有する請求項6記載の改良された芯を
有する消耗可能な溶接棒。
7. The improved core consumable welding rod of claim 6, wherein said carbon comprises less than 0.10% by weight of total weld metal.
(8)前記の粒状の充填材料の該マンガンが、少くとも
部分的にMnX(式中Xは電気アーク中のアルミニウム
により還元可能な1種以上の元素である)の形である請
求項1記載の改良された芯を有する消耗可能な溶接棒。
8. The manganese of the particulate filler material is at least partially in the form of MnX, where X is one or more elements reducible by aluminum in an electric arc. A consumable welding rod with an improved core.
(9)前記の全溶接金属の該チヤーピーV−ノッチ靭性
が、0℃(32゜F)で少くとも約484cm・kg(
35ft・lb)である請求項8記載の改良された芯を
有する消耗可能な溶接棒。
(9) The chirp V-notch toughness of all said weld metals is at least about 484 cm·kg (484 cm·kg) at 0°C (32°F).
9. The improved core consumable welding rod of claim 8, wherein the welding rod is 35 ft.lb.
(10)前記の全溶接金属の該チヤーピーV−ノッチ靭
性が、0℃(32°F)で少くとも約484cm・kg
(35ft・lb)である請求項2記載の改良された芯
を有する消耗可能な溶接棒。
(10) said chirp V-notch toughness of said total weld metal is at least about 484 cm·kg at 0°C (32°F);
(35 ft.lb). A consumable welding rod with an improved core according to claim 2.
(11)前記の全溶接金属の該チヤーピーV−ノッチ靭
性が、0℃(32°F)で少くとも約484cm・kg
(35ft・lb)である請求項1記載の改良された芯
を有する消耗可能な溶接棒。
(11) The chirp V-notch toughness of all of the weld metal is at least about 484 cm·kg at 0°C (32°F).
(35 ft.lb). A consumable welding rod with an improved core according to claim 1.
(12)該充填材料中の該アルミニウムが、全溶接棒の
1.50重量%より多くしかも約2.5重量%より少い
請求項8記載の改良された芯を有する消耗可能な溶接棒
12. The improved core consumable welding rod of claim 8, wherein the aluminum in the filler material is greater than 1.50% and less than about 2.5% by weight of the total welding rod.
(13)該充填材料中の該アルミニウムが全溶接棒の1
.50重量%より多くしかも約2.5重量%より少い請
求項2記載の改良された芯を有する消耗可能な溶接棒。
(13) The aluminum in the filling material is 1 of the total welding rod.
.. 3. A consumable welding rod having an improved core as claimed in claim 2, greater than 50% by weight and less than about 2.5% by weight.
(14)該充填材料中の該アルミニウムが、全溶接棒の
1.50重量%より多くしかも約2.5重量%より少い
請求項1記載の改良された芯を有する消耗可能な溶接棒
14. The improved core consumable welding rod of claim 1, wherein the aluminum in the filler material is greater than 1.50% and less than about 2.5% by weight of the total welding rod.
(15)前記の被覆及び充填材料の該炭素が、全溶接材
料の0.12重量%以下の炭素含量を有する全溶接材料
をもたらすように選択された量で含まれる請求項8記載
の改良された芯を有する消耗可能な溶接棒。
15. The improved method of claim 8, wherein said carbon of said coating and filler material is included in an amount selected to provide a total welding material having a carbon content of no more than 0.12% by weight of the total welding material. A consumable welding rod with a solid core.
(16)前記の被覆及び充填材料の該炭素が、全溶接材
料の0.12重量%より少い炭素含量を有する全溶接材
料をもたらすように選択された量で含まれる請求項2記
載の改良された芯を有する消耗可能な溶接棒。
16. The improvement of claim 2, wherein said carbon of said coating and filler material is included in an amount selected to provide a total welding material having a carbon content of less than 0.12% by weight of the total welding material. A consumable welding rod with a solid core.
(17)0℃(32°F)で少くとも約484cm・k
g(35ft・lb)のノッチ靭性で毎時約4.54k
g(10ポンド)を越える沈積速度で自己シールドの消
耗可能な芯を有する溶接棒のマルチプルパスにより大気
中で電気アーク溶接を行う方法において、該方法が (a)全溶接棒の少くとも約0.06重量%の炭素含量
を有する被覆をもたらす工程; (b)全溶接棒の2.5〜4.0重量%の範囲の含量の
ニッケル及びマンガンの組合わせを生成する該被覆に充
填材料をもたらし、該ニッケルが約0.5%より多く、
該マンガンが0.7〜2.0%の範囲にありそして該溶
接棒中の該炭素が0.12重量%以下の炭素含量を有す
る全溶接金属をもたらすように選択された量で含まれ、
さらに該充填材料中の該アルミニウムが全溶接棒の約1
.50重量%より多い工程;(c)該溶接棒を経て電流
を流して該被覆及び芯材料を溶融するための電気アーク
を生成させ、そして少くとも1.20%のアルミニウム
及び約0.12重量%より少い炭素を有する全溶接金属
として素材上に該被覆及び芯材料の金属を沈積させる工
程 よりなる方法。
(17) At least about 484 cm・k at 0°C (32°F)
Approximately 4.54k/hr with notch toughness of g (35ft・lb)
A method of performing electric arc welding in air by multiple passes of a welding rod having a self-shielded consumable core at a deposition rate in excess of 10 lbs. (b) providing a filler material in the coating producing a combination of nickel and manganese with a content ranging from 2.5 to 4.0% by weight of the total welding rod; providing, the nickel is greater than about 0.5%;
the manganese is in the range of 0.7-2.0% and the carbon in the welding rod is included in an amount selected to result in a total weld metal having a carbon content of 0.12% by weight or less;
Furthermore, the aluminum in the filling material is about 1% of the total welding rod.
.. (c) passing a current through the welding rod to create an electric arc to melt the coating and core material; and at least 1.20% aluminum and about 0.12% by weight; % of the total weld metal having less than % carbon on the blank.
JP63329525A 1987-12-29 1988-12-28 Consumable welding rod Expired - Lifetime JPH0741435B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/138,880 US4833296A (en) 1987-12-29 1987-12-29 Consumable welding electrode and method of using same
US138880 1987-12-29

Publications (2)

Publication Number Publication Date
JPH0225290A true JPH0225290A (en) 1990-01-26
JPH0741435B2 JPH0741435B2 (en) 1995-05-10

Family

ID=22484075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63329525A Expired - Lifetime JPH0741435B2 (en) 1987-12-29 1988-12-28 Consumable welding rod

Country Status (8)

Country Link
US (1) US4833296A (en)
EP (1) EP0322878A1 (en)
JP (1) JPH0741435B2 (en)
KR (1) KR910009158B1 (en)
AU (1) AU598164B2 (en)
BR (1) BR8806979A (en)
CA (1) CA1312123C (en)
MX (1) MX165103B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301633A (en) * 2006-05-08 2007-11-22 Lincoln Global Inc Gas-less process and system for girth welding in high strength application

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233160A (en) * 1992-06-22 1993-08-03 The Lincoln Electric Company Cored electrode with fume reduction
US5365036A (en) * 1992-06-22 1994-11-15 The Lincoln Electric Company Flux cored gas shielded electrode
US6933468B2 (en) 2000-10-10 2005-08-23 Hobart Brothers Company Aluminum metal-core weld wire and method for forming the same
US6784401B2 (en) * 2001-01-30 2004-08-31 Illinois Tool Works Inc. Welding electrode and method for reducing manganese in fume
US7053334B2 (en) * 2004-03-01 2006-05-30 Lincoln Global, Inc. Electric arc welder system with waveform profile control
US7842903B2 (en) 2005-10-31 2010-11-30 Lincoln Global, Inc. Short arc welding system
US8704135B2 (en) * 2006-01-20 2014-04-22 Lincoln Global, Inc. Synergistic welding system
US7166817B2 (en) * 2004-04-29 2007-01-23 Lincoln Global, Inc. Electric ARC welder system with waveform profile control for cored electrodes
US8759715B2 (en) 2004-10-06 2014-06-24 Lincoln Global, Inc. Method of AC welding with cored electrode
US20070221643A1 (en) * 2004-04-29 2007-09-27 Lincoln Global, Inc. Gas-less process and system for girth welding in high strength applications including liquefied natural gas storage tanks
US7807948B2 (en) * 2005-05-16 2010-10-05 Lincoln Global, Inc. Cored welding electrode and method of manufacturing the same
US20060261053A1 (en) * 2005-05-18 2006-11-23 Lincoln Global, Inc. Flux cored, gas shielded welding electrode
US8519303B2 (en) 2005-05-19 2013-08-27 Lincoln Global, Inc. Cored welding electrode and methods for manufacturing the same
US20060266799A1 (en) * 2005-05-31 2006-11-30 Lincoln Global, Inc. Slag detachability
US7884305B2 (en) 2005-06-01 2011-02-08 Lincoln Global, Inc. Weld bead shape control
US7989732B2 (en) * 2005-06-15 2011-08-02 Lincoln Global, Inc. Method of AC welding using a flux cored electrode
US7812284B2 (en) 2005-07-12 2010-10-12 Lincoln Global, Inc. Barium and lithium ratio for flux cored electrode
US20070051716A1 (en) * 2005-09-06 2007-03-08 Lincoln Global, Inc. Process for manufacturing packaged cored welding electrode
CA2561271C (en) 2005-10-31 2010-06-01 Lincoln Global, Inc. Synergistic welding system
US20100084388A1 (en) * 2008-10-06 2010-04-08 Lincoln Global, Inc. Welding electrode and method of manufacture
US8395071B2 (en) 2010-04-02 2013-03-12 Lincoln Global, Inc. Feeding lubricant for cored welding electrode
US10906135B2 (en) * 2012-05-24 2021-02-02 Hobart Brothers Llc Systems and methods for low-manganese welding wire
US10898966B2 (en) 2012-05-24 2021-01-26 Hobart Brothers Llc Systems and methods for low-manganese welding wire
US10421160B2 (en) 2013-03-11 2019-09-24 The Esab Group, Inc. Alloying composition for self-shielded FCAW wires with low diffusible hydrogen and high Charpy V-notch impact toughness
US9844838B2 (en) 2013-05-08 2017-12-19 Hobart Brothers Company Systems and methods for low-manganese welding alloys
US9895774B2 (en) 2013-05-08 2018-02-20 Hobart Brothers Company Systems and methods for low-manganese welding alloys
US11285559B2 (en) 2015-11-30 2022-03-29 Illinois Tool Works Inc. Welding system and method for shielded welding wires
US10722986B2 (en) 2015-12-11 2020-07-28 Hobart Brothers Llc Systems and methods for low-manganese welding wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124595A (en) * 1981-01-26 1982-08-03 Kobe Steel Ltd Flux-cored wire for self shielded arc welding
JPS58148095A (en) * 1982-02-27 1983-09-03 Kobe Steel Ltd Wire for self-shielded arc welding

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1090049A (en) * 1965-10-06 1967-11-08 Murex Welding Processes Ltd Improvements in arc welding electrodes
US3415976A (en) * 1966-07-27 1968-12-10 Harnischfeger Corp Arc welding electrode
GB1374577A (en) * 1970-10-26 1974-11-20 British Oxygen Co Ltd Welding electrodes
DE2164892A1 (en) * 1970-12-30 1972-07-13 Nippon Steel Corp Electrode wire with flux core for arc welding without air exclusion
US3875363A (en) * 1971-03-29 1975-04-01 Kobe Steel Ltd Composite electrode wire for electro-slag welding
US3767891A (en) * 1971-05-07 1973-10-23 Lincoln Electric Co Electrode for arc welding in air
US3778589A (en) * 1972-07-31 1973-12-11 Union Carbide Corp Air operating cored wire
CA1052869A (en) * 1975-03-18 1979-04-17 Kobe Steel Vertical welding methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124595A (en) * 1981-01-26 1982-08-03 Kobe Steel Ltd Flux-cored wire for self shielded arc welding
JPS58148095A (en) * 1982-02-27 1983-09-03 Kobe Steel Ltd Wire for self-shielded arc welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301633A (en) * 2006-05-08 2007-11-22 Lincoln Global Inc Gas-less process and system for girth welding in high strength application

Also Published As

Publication number Publication date
KR910009158B1 (en) 1991-10-31
KR890009525A (en) 1989-08-02
JPH0741435B2 (en) 1995-05-10
US4833296A (en) 1989-05-23
MX165103B (en) 1992-10-23
AU2650188A (en) 1989-07-27
BR8806979A (en) 1989-09-05
CA1312123C (en) 1992-12-29
EP0322878A1 (en) 1989-07-05
AU598164B2 (en) 1990-06-14

Similar Documents

Publication Publication Date Title
JPH0225290A (en) Consumable welding rod and usage thereof
CN1846927B (en) Flux cored electrode comprising moisture-proof compound and method for forming welding seam with a little diffusible hydrogen
US5225661A (en) Basic metal cored electrode
US8664569B2 (en) Low carbon, high speed metal core wire
US8258432B2 (en) Welding trip steels
US11426824B2 (en) Aluminum-containing welding electrode
CA2531990C (en) Flux cored, gas shielded welding electrode
US3223818A (en) Method of welding
EP3444063A2 (en) Electrodes for forming austenitic and duplex steel weld metal
JP2007136547A (en) Method for producing metallic flux cored wire with little slag and welded joint having high fatigue strength
JP2011245519A (en) Weld metal excellent in hot crack resistance
CN113784815A (en) Flux-cored wire and welding method
EP3974097A2 (en) Covered electrode for arc welding high strength steel background
US3875363A (en) Composite electrode wire for electro-slag welding
JP2524774B2 (en) Submerged arc welding method for stainless steel
JPH08257791A (en) Low hydrogen covered electrode
JP2018039024A (en) Flux-cored wire for gas shield arc welding, and weld metal
JP2001219291A (en) Weld zone of ferritic stainless steel and welding method
JPH10272594A (en) Low hydrogen type coated electrode
US3590211A (en) Method of making high strength welds in hy-110 to hy-150 steel
JP3203527B2 (en) Flux-cored wire for gas shielded arc welding
JPH10180488A (en) Flux cored wire for electro gas arc welding
JPS59150695A (en) Composite wire for arc welding
JPH0542386A (en) Cu-al composite wire for build-up welding to surface of al base material
JPH0246994A (en) Solid wire for gas shielded arc welding