JPH02252762A - Solid polyelectrolyte - Google Patents
Solid polyelectrolyteInfo
- Publication number
- JPH02252762A JPH02252762A JP1075522A JP7552289A JPH02252762A JP H02252762 A JPH02252762 A JP H02252762A JP 1075522 A JP1075522 A JP 1075522A JP 7552289 A JP7552289 A JP 7552289A JP H02252762 A JPH02252762 A JP H02252762A
- Authority
- JP
- Japan
- Prior art keywords
- group
- polymer
- ionic conductivity
- compound
- salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007787 solid Substances 0.000 title claims abstract description 9
- 229920000867 polyelectrolyte Polymers 0.000 title abstract 3
- 229920000642 polymer Polymers 0.000 claims abstract description 27
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 11
- 150000003839 salts Chemical class 0.000 claims abstract description 11
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 10
- 125000003710 aryl alkyl group Chemical group 0.000 claims abstract description 4
- 125000003118 aryl group Chemical group 0.000 claims abstract description 4
- 150000001875 compounds Chemical class 0.000 claims description 39
- 125000005647 linker group Chemical group 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 8
- 239000005518 polymer electrolyte Substances 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 4
- 125000003342 alkenyl group Chemical group 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 9
- 229920002627 poly(phosphazenes) Polymers 0.000 abstract description 6
- 239000002216 antistatic agent Substances 0.000 abstract description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 abstract description 2
- ZNNZYHKDIALBAK-UHFFFAOYSA-M potassium thiocyanate Chemical compound [K+].[S-]C#N ZNNZYHKDIALBAK-UHFFFAOYSA-M 0.000 abstract description 2
- 229910000552 LiCF3SO3 Inorganic materials 0.000 abstract 1
- 125000005741 alkyl alkenyl group Chemical group 0.000 abstract 1
- 238000013329 compounding Methods 0.000 abstract 1
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 abstract 1
- 229910001488 sodium perchlorate Inorganic materials 0.000 abstract 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 12
- 239000007784 solid electrolyte Substances 0.000 description 12
- 125000001424 substituent group Chemical group 0.000 description 10
- 239000010408 film Substances 0.000 description 9
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 125000002947 alkylene group Chemical group 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- -1 alkali metal salts Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910000104 sodium hydride Inorganic materials 0.000 description 2
- 239000012312 sodium hydride Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910013115 LiBFn Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910020808 NaBF Inorganic materials 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000003115 supporting electrolyte Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Elimination Of Static Electricity (AREA)
- Conductive Materials (AREA)
- Primary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は高分子固体電解質に係り、帯電防止材料や電池
及び他の電気化学デバイス用材料として好適な高分子固
体電解質に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a solid polymer electrolyte, which is suitable as an antistatic material and a material for batteries and other electrochemical devices.
固体電解質を帯電防止用材料や電池化学的デバイスに応
用していくためには良好なイオン伝導性を持つのみなら
ず、製膜性に優れていること、保存安定性が良好である
こと、材料の製造が容易であることも必要である。しか
しながらこのような必要性能を総合的に満足する固体電
解質はこれまで全く開発されていなかった。In order to apply solid electrolytes to antistatic materials and battery chemical devices, they must not only have good ionic conductivity, but also have excellent film formability, good storage stability, and materials. It is also necessary that it be easy to manufacture. However, no solid electrolyte that comprehensively satisfies these required performances has been developed to date.
たとえば、Na−β−An!gosや
Na+−x ZrzP2−1ISixO+g (0≦X
≦3)のような無機固体電解質は良好なイオン伝導性を
有することが知られている(エム・ニス・ウィッティイ
ンガム(M、SJhittingham)らジャーナル
・オフ゛・ケミカル・フィシツク、ス(Journal
of ChemicalPhysics) 54巻4
14頁(1971年)、エイ・クリアフィールド(A、
C1earfield) らソリッド・ステート・イ
オニクス(Solid 5tate Ionics)9
/10S895頁(1983年)が機械的強度が著しく
弱く、可視性膜への加工性に劣るという致命的欠点をも
っている。For example, Na-β-An! gos or Na+-x ZrzP2-1ISixO+g (0≦X
It is known that inorganic solid electrolytes such as
of Chemical Physics) Volume 54 4
14 pages (1971), A. Clearfield (A.
C1earfield et al. Solid State Ionics9
/10S, p. 895 (1983) has a fatal drawback of extremely low mechanical strength and poor processability into visible films.
ポリエチレンオキサイド(以下PEOと略ス)は種々の
周期律表Ia族又はIIa族に属する金属イオンの塩、
たとえばLiCFsSOs 、 LiI、1.1cj2
0s、Nal 、NaCPISOs、KCF、So、な
どと固体電解質として機能をする錯体を形成し、比較的
良好なイオン伝導性を示しくたとえばビー・バーシスタ
(P、Vashista)らによってファスト・イオン
・トランスポート・イン・ソリッド(Past Ton
Transport in 5olid) 、131頁
(1979年)に報告されている)、また高分子特有の
粘弾性、柔軟性を具備しており、加工性も良好であると
ともに保存安定性も良好である。Polyethylene oxide (hereinafter abbreviated as PEO) is a salt of various metal ions belonging to Group Ia or Group IIa of the periodic table.
For example LiCFsSOs, LiI, 1.1cj2
It forms a complex that functions as a solid electrolyte with 0s, Nal, NaCPISOs, KCF, So, etc., and exhibits relatively good ion conductivity.・In Solid (Past Ton
Transport in 5 Solids, p. 131 (1979)), and has the viscoelasticity and flexibility characteristic of polymers, and has good processability and storage stability.
しかしながらPEOのイオン伝導性は温度依存性が大き
く、60℃以上では良好なイオン伝導性を示すものの2
0°C以下になるとイオン伝導性が著しく悪化していま
い、広い温度領域でも使用できるような汎用性のある商
品に組込むことは困難であった。このようなPEO系固
体電解質の持つイオン伝導性が20°C以下で著しく悪
化するという問題を克服する方法として特開昭62−1
39266号に通常の分子量のPEOに分子量1. 0
00以下の低分子量のPEOを混合して用いる方法が提
案されている。しかしながら、この方法では従来の問題
に対し本質的な解決手段を提案するに至っていない、す
なわち多量の低分子量PEOを混合すれば、20°C付
近のイオン伝導性は良化するものの製膜性の低下が著し
く、フィルム化が困難となってしまうものであった。低
分子量PEOを用いてイオン伝導性を向上させる方法と
して、ビニル系ポリマーの側鎖に低分子lPE0を導入
するという方法がデイ−・ジェイ・バニスター(D、J
、Ban1ster)らによって、ポリマー(Poly
me r )、25巻、1600頁(1984年)に、
またポリフォスフアゼンの側鎖に低分子量PEOを導入
する方法がデイ・エフ・シェライバ−(D、F、5hr
iver)らによってジャーナル・オプ・アメリカン・
ケミカル・メサエテイ (Journal of Am
ericanChee+1cal 5ociety)
、106巻、6854頁(1984年)に、またポリフ
ォスフアゼンの側鎖でアミノ基を有する有機基を持った
材料が特開昭63−241066号に、同じくポリフォ
スフアゼンの側鎖にアミド結合を含む有機基を持った材
料が特開昭63−186766号に報告されている。However, the ionic conductivity of PEO is highly temperature dependent, and although it shows good ionic conductivity above 60°C,
At temperatures below 0°C, the ionic conductivity deteriorates significantly, making it difficult to incorporate it into versatile products that can be used in a wide temperature range. As a method to overcome the problem that the ionic conductivity of the PEO-based solid electrolyte deteriorates significantly at temperatures below 20°C, Japanese Patent Laid-Open No. 62-1
No. 39266 has a molecular weight of 1. 0
A method of using a mixture of PEO having a low molecular weight of 0.00 or less has been proposed. However, this method has not yet proposed an essential solution to the conventional problem.In other words, if a large amount of low molecular weight PEO is mixed, the ionic conductivity around 20°C will improve, but the film forming property will be reduced. The decrease was significant, making it difficult to form a film. As a method for improving ionic conductivity using low molecular weight PEO, D.J. Bannister (D, J.
, Ban1ster et al.
me r ), vol. 25, p. 1600 (1984),
In addition, a method for introducing low molecular weight PEO into the side chain of polyphosphazene was developed by D.F. Schereiver (D, F, 5hr
Journal of the American
Chemical Mesaetei (Journal of Am)
ericanChee+1cal 5ociety)
, Vol. 106, p. 6854 (1984), and in JP-A No. 63-241066, a material with an organic group having an amino group in the side chain of polyphosphazene is published, which also has an amide bond in the side chain of polyphosphazene. A material having an organic group containing is reported in JP-A-63-186766.
しかしながらこのような高分子材料はLi塩と錯体を形
成し、良好な製膜性を持つが、20“C以下でのイオン
伝導性が不充分であった。However, although such polymeric materials form complexes with Li salts and have good film-forming properties, they have insufficient ionic conductivity at temperatures below 20"C.
以上のように従来のPEO系化合物とアルカリ金属塩か
らなる固体電解質では室温以下のイオン伝導度が著しく
低いか又は成膜性に著しく劣っていしまうという2つの
問題点を共に解決し満足せしめることができず、共に解
決した固体電解質の提供が望まれていた。As mentioned above, it is possible to both solve and satisfy the two problems that conventional solid electrolytes made of PEO-based compounds and alkali metal salts have: extremely low ionic conductivity below room temperature, or extremely poor film-forming properties. However, there was a desire to provide a solid electrolyte that solved both problems.
本発明の目的は室温以下で高いイオン伝導性を示し、か
つ、成膜性に優れた新規な固体電解質を提供することに
ある。An object of the present invention is to provide a novel solid electrolyte that exhibits high ionic conductivity below room temperature and has excellent film-forming properties.
前記の目的は少なくとも下記−数式(I)で表わされる
くり返し単位を含有する高分子化合物と周期律表Iaま
たはna族に属する金属イオンの塩を含有することを特
徴とする高分子固体電解質によって達成された。The above object is achieved by a polymer solid electrolyte characterized by containing at least a polymer compound containing a repeating unit represented by the following formula (I) and a salt of a metal ion belonging to group Ia or na of the periodic table. It was done.
一般式(1) R
L+ X+−←0CHzCH−+−r−ORsg
(式中、L+ 、Lxは2価の連結基を表わし、X3、
χよは3価の連結基を表わす、R,、R。General formula (1) R L+ X+-←0CHzCH-+-r-ORsg (wherein, L+ and Lx represent a divalent linking group,
χ represents a trivalent linking group, R,,R.
は水素原子又は低級アルキル基を表わし、R1、R4は
水素原子、アルキル基、アルケニル基、アリール基又は
アラルキル基を表わす、nは1〜30の整数である。)
本発明の高分子材料は側鎖にエチレンオキシド基を有す
ることから誘電率が高く、支持電解質を溶解、解離する
能力に優れている。また、主鎖がポリフォスフアゼンよ
りなっていることから、ガラス転移点(Tg)が低く、
イオンの移動を容易にしていると考えられる。represents a hydrogen atom or a lower alkyl group, R1 and R4 represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or an aralkyl group, and n is an integer of 1 to 30. ) Since the polymeric material of the present invention has an ethylene oxide group in its side chain, it has a high dielectric constant and is excellent in the ability to dissolve and dissociate a supporting electrolyte. In addition, since the main chain is made of polyphosphazene, the glass transition point (Tg) is low.
It is thought that this facilitates the movement of ions.
特に、本発明の高分子電解質は、主鎖がポリフォスフア
ゼンよりなり、側鎖1本あたり2本以上のアルキレンオ
キシド基を有していることにより、従来知られている側
鎖1本あたり1本のアルキレンオキシド基を有している
高分子電解質に比べて驚くべきことに室温付近でのイオ
ン伝導度が大幅に向上された。In particular, the polymer electrolyte of the present invention has a main chain composed of polyphosphazene and has two or more alkylene oxide groups per side chain. Surprisingly, the ionic conductivity near room temperature was significantly improved compared to the polymer electrolyte having alkylene oxide groups.
本発明によって従来の高分子電解質では達成できなかっ
た低温での高いイオン伝導性を良好な成膜性を両立する
ことができた。The present invention has made it possible to achieve both high ionic conductivity at low temperatures and good film formability, which could not be achieved with conventional polymer electrolytes.
以下−数式[1)について詳しく説明する。Below - Equation [1] will be explained in detail.
L、およびR8はそれぞれ同じでも異なっていてもよく
、2価の連結基を表わし、−0−−5−−N−及び置換
基を有してもよいアルキレン基が好ましい、置換基の例
としては水酸基、アルコキシ基、アルキル基及びハロゲ
ン原子(塩素原子、フッ素原子など)をあげることがで
きる。L and R8 may be the same or different, and each represents a divalent linking group, and -0--5--N- and an alkylene group which may have a substituent are preferable examples of the substituent. can include a hydroxyl group, an alkoxy group, an alkyl group, and a halogen atom (chlorine atom, fluorine atom, etc.).
R,は水素原子又は炭素1〜6のアルキル基を表わす、
L+ 、L*で表わされる2価の連結基として特に好ま
しくは−0−である、X、及びX2は3価の連結基で、
同じであっても異なっていてもよい。X、及びX2の好
ましい連結基は一般式%式%
(式中、Aは−LsCLsSOt−1炭素数1〜6のア
ルキレン基、炭素数1〜10のアリーレン基、又はアラ
ルキレン基を表わす、BはL!、L、及びり、は同じで
あっても異なっていてもよく2価の連結基を表わし、ア
ルキレン基、アリーレン基、アラルキレン基が好ましい
、p。R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
The divalent linking groups represented by L+ and L* are particularly preferably -0-, X and X2 are trivalent linking groups,
They may be the same or different. A preferred linking group for X and L!, L, and , which may be the same or different, represent divalent linking groups, and are preferably alkylene groups, arylene groups, and aralkylene groups.
QSrs 3% Lはそれぞれ独自に0又は1である。QSrs 3% L is each independently 0 or 1.
)X、及びXiの具体例としては
しn宜し11重□
これらの基は炭素数1〜12のものが好ましく、またこ
れらの基は置換されていてもよい、置換基の例としては
り、のアルキレン基の置換基であげた置換基が挙げられ
る。) As specific examples of X and Xi, these groups preferably have 1 to 12 carbon atoms, and these groups may be substituted. Examples of substituents include: Examples include the substituents listed as substituents for alkylene groups.
R1及びR2は水素原子又は炭素数1〜3のアルキル基
が好ましく、同じでも異なっていてもよい、R1及びR
3としてさらに好ましくは水素原子又はメチル基である
。R1 and R2 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and may be the same or different.
More preferably, 3 is a hydrogen atom or a methyl group.
R1及びR4は水素原子、炭素数1〜10のアルキル基
、アルケニル基、アリール基、アラルキル基を表わし、
それぞれ同じでも異なっていてもよい、R1及びR4と
して好ましくは炭素数1〜6の置換基を有してもよいア
ルキル基である。置換基としては、Llのアルキレン基
の置換基であげた置換基が挙げられる。R1 and R4 represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an aryl group, an aralkyl group,
R1 and R4, which may be the same or different, are preferably alkyl groups having 1 to 6 carbon atoms and which may have a substituent. Examples of the substituent include the substituents listed as substituents for the alkylene group of Ll.
nは1〜30の整数であり好ましくは2〜10である。n is an integer of 1 to 30, preferably 2 to 10.
本発明の高分子化合物は一般式(1)の繰り返し単位を
複数持ってもよい。The polymer compound of the present invention may have a plurality of repeating units of general formula (1).
本発明の高分子化合物における残りの繰り返し単位とし
ては、たとえば下記−数式(III)又は−数式(IV
)で表わされるものを挙げることができる。The remaining repeating units in the polymer compound of the present invention include, for example, the following formula (III) or formula (IV).
) can be mentioned.
一般式(Ill) −←P−N→− R。General formula (Ill) −←P−N→− R.
LI R&
一般式(IV)
L、−礼
−←P−N→−
LニーR1
(式中、R,、R?はそれぞれ同じでも異なっていても
よく、置換基を有してもよいアルキル基R。LI R& General formula (IV) L, -Rei-←P-N→- Lnee R1 (In the formula, R, and R? may be the same or different, and each is an alkyl group that may have a substituent. R.
又は−+C1,C11−0七I” irzを表わす、n
′はnと同義であるe L+ 、Lx 、L 、R+
、Rs nは一般式(1)でのそれぞれと同義である。or −+C1, C11-07I” irz, n
' is synonymous with n e L+ , Lx , L , R+
, Rs n have the same meanings as in general formula (1).
)一般式(I)で表わされる繰り返し単位は高分子中5
0モル%以上含有されるのが好ましい、更に好ましくは
80モル%以上であり、特に好ましくは100モル%で
ある。) The repeating unit represented by general formula (I) is 5 in the polymer.
The content is preferably 0 mol% or more, more preferably 80 mol% or more, and particularly preferably 100 mol%.
以下に一般式(1)で表わされる繰り返し単位の代表例
および、一般式(I)で表わされる繰り返し単位と一般
(II)又は(III)で表わされる繰り返し単位を含
む共重合例を示すが、熱論これらに限定されるものでは
ない。Representative examples of the repeating unit represented by the general formula (1) and copolymerization examples containing the repeating unit represented by the general formula (I) and the repeating unit represented by the general formula (II) or (III) are shown below. The theory is not limited to these.
化合物例1 (P−1)
化合物4 (P−4)
十P=N+
化合物例2 (P−2)
化合物例5 (P−5)
十P=N+−
岨
化合物例3 (P−3)
化合物6
(P
CH3
化合物例7
(P
しυυ1−しH冨1;H寡0−すy(IIs化合物例1
1(P−11)
化合物例12(P−12)
化合物例13(P−13)
\C1h(1+cHtcH* O÷rCH3化合物例
日
(P−8)
化合物例9
(P−9)
化合物例10(P−10)
化合物例14(P−14)
O→CHsCHt O÷r CHs
本発明の高分子化合物の重置平均分子量Mw(ポリスチ
レン換算)
は2000〜5,000,000が好
ましく、
さらに好ましくは
10.000〜2,000,000
である。Compound Example 1 (P-1) Compound 4 (P-4) 10P=N+ Compound Example 2 (P-2) Compound Example 5 (P-5) 10P=N+- 娨Compound Example 3 (P-3) Compound 6 (P CH3 Compound Example 7 (P shiυυ1-shiH 1; H 0-sy(IIs Compound Example 1
1 (P-11) Compound Example 12 (P-12) Compound Example 13 (P-13) \C1h(1+cHtcH* O÷rCH3 Compound Example Day (P-8) Compound Example 9 (P-9) Compound Example 10 ( P-10) Compound Example 14 (P-14) O→CHsCHt O÷r CHs The weight average molecular weight Mw (polystyrene equivalent) of the polymer compound of the present invention is preferably 2000 to 5,000,000, more preferably 10 .000 to 2,000,000.
本発明に用いられる周期律表Ia族又はIIa族に属す
る金属イオンとしては、リチウム、ナトリウム、カリウ
ムのイオンが好ましく、代表的な金属イオンの塩として
は、t、1cpssos、LiPF*、LiCj!n
、Lil 、LiBFn 、 LiCFsCOt、 L
ISCN 、 Nal 。The metal ions belonging to Group Ia or Group IIa of the periodic table used in the present invention are preferably lithium, sodium, or potassium ions, and representative metal ion salts include t, 1cpssos, LiPF*, LiCj! n
, Lil, LiBFn, LiCFsCOt, L
ISCN, Nal.
NaCFsSOs、NaCl Os、NaBF、 、
HaASF&、KCFiSO3、KSCN、 KPPi
、にC1)4、KAsF4などが挙げられる。NaCFsSOs, NaClOs, NaBF, ,
HaASF&, KCFiSO3, KSCN, KPPi
, C1)4, KAsF4, etc.
更に好ましくは、上記のLi塩である。これらは1種又
は2種以上を混合してもよく、また、NBuJF4等の
ような他の電解質と混合して使用してもよい。More preferred is the above Li salt. These may be used alone or in combination of two or more, or may be used in combination with other electrolytes such as NBuJF4.
本発明の高分子化合物と金属イオンの塩の比率は、ポリ
エチレンオキシド単位が金属イオンの塩の2〜50倍の
比率で含有されるのが好ましい。The ratio of the polymer compound of the present invention to the metal ion salt is preferably such that polyethylene oxide units are contained in a ratio of 2 to 50 times that of the metal ion salt.
更に好ましくは、6〜30倍である。比率が高すぎると
Tgが上りイオン伝導性が低下し、比率が低すぎると有
効イオン濃度が低下し、イオン伝導性も低下してしまう
。More preferably, it is 6 to 30 times. If the ratio is too high, the Tg will increase and the ionic conductivity will decrease; if the ratio is too low, the effective ion concentration will decrease and the ionic conductivity will also decrease.
本発明の高分子電解質は、更に高分子化合物、他の両親
媒性化合物などを添加してもよい。The polymer electrolyte of the present invention may further contain a polymer compound, another amphipathic compound, and the like.
添加してもよい高分子化合物としては以下に代表例を示
すものが用いられるが、されらに限定されるわけではな
く、本発明の高分子化合物と相溶しうるものを好ましく
用いることができる。Typical examples of the polymer compound that may be added are shown below, but the present invention is not limited thereto, and compounds that are compatible with the polymer compound of the present invention can be preferably used. .
化合物例(C−1) −(−CHz−CH→1− OCOCHs 化合物例(C−2) +CH,−CH→]− 化合物例(C−3) +CHt−CH!−0÷「 化合物例(C−4) +CH1−CH2−〇+− CH。Compound example (C-1) -(-CHz-CH→1- OCOCHs Compound example (C-2) +CH, -CH→]- Compound example (C-3) +CHt-CH! −0÷“ Compound example (C-4) +CH1-CH2-〇+- CH.
化合物例(C−5) CM。Compound example (C-5) CM.
一÷−CHg Ch−
COO’CHz
また、添加しうる両親媒性化合物としては、公知の両親
媒性化合物なら添加することができる。1÷-CHg Ch- COO'CHz Further, as the amphipathic compound that can be added, any known amphipathic compound can be added.
代表例として以下に示すものがあげられるが、もちろん
これらに限定されるわけではない。Typical examples include those shown below, but of course they are not limited to these.
化合物例(C−6) CI&H3゜ト+CI(z(jlto→T丁CH。Compound example (C-6) CI&H3゜to+CI(z(jlto→Tcho CH.
化合物例(C−7)
C+zH+sO+CHgCIh0 +rrC+tH+s
化合物例(C−8)
本発明の高分子化合物と金属イオンの塩を溶解する溶媒
の代表例としてはアセトニトリル、ベンゾニトリル等の
ニトリルM:プロピレンヵーボネート、エチレンカーボ
ネート等のカーボネート類:テトラヒドロフラン、3−
メチル−テトラヒドロフラン、2−メチル−テトラヒド
ロフラン、テトラハイドロピラン、1.3−ジオキサン
、1.4ジオキソラン、1.2−ジメトキシエタン等の
エーテル類:T−ブチロラクトン、δ−ブチロラクトン
等のラクトン類ニジメチルスルホキシド、テトラメチレ
ンサルフオン、ジメチルホルムアミド等があげられるが
、必ずしもこれらに限定されるものではない、これらの
溶媒は、1種または2種以上を混合して使用してもよい
。Compound example (C-7) C+zH+sO+CHgCIh0 +rrC+tH+s
Compound Example (C-8) Typical examples of solvents for dissolving the polymer compound of the present invention and metal ion salts include: nitrile M such as acetonitrile and benzonitrile; carbonates such as propylene carbonate and ethylene carbonate; tetrahydrofuran; 3-
Ethers such as methyl-tetrahydrofuran, 2-methyl-tetrahydrofuran, tetrahydropyran, 1.3-dioxane, 1.4-dioxolane, 1.2-dimethoxyethane; Lactones such as T-butyrolactone and δ-butyrolactone; dimethyl sulfoxide; , tetramethylene sulfon, dimethylformamide, etc., but are not necessarily limited to these. These solvents may be used alone or in combination of two or more.
本発明の高分子固体電解質はプラスチック材料の帯電防
止用材料や電池及び、エレクトロクロミック表示装置・
コンデンサーなど各種電気化学デバイス用の材料として
も利用できる。The polymer solid electrolyte of the present invention can be used as an antistatic material for plastic materials, as a battery, and as an electrochromic display device.
It can also be used as a material for various electrochemical devices such as capacitors.
本発明の代表的な合成例を次に示す。Typical synthesis examples of the present invention are shown below.
合成例 化合物例1 (P−1)で表わされる繰り返し
単位を100%含有する化合物(P−l)の合成
(1) ポリジクロロフォスフアゼン(D−1)の合
成
(NPCj!z)i 100 g (0,29mol)
をパイレックスチューブに入れ、チューブ内を真空(1
04torr)にした後、チューブを封管したやこのチ
ューブを250℃のオープンに入れ12020時間反応
た。反応後、内容物を取り出し、昇華(50゛C124
時間)にて未反応の原料を除き、目的物を得た。Synthesis Examples Compound Example 1 Synthesis of a compound (P-l) containing 100% of the repeating unit represented by (P-1) (1) Synthesis of polydichlorophosphazene (D-1) (NPCj!z)i 100 g (0.29 mol)
into a Pyrex tube, and vacuum the inside of the tube (1
After the tube was sealed, the tube was placed in an open oven at 250° C. and reacted for 12,020 hours. After the reaction, the contents were taken out and sublimated (50゛C124
The target product was obtained by removing unreacted raw materials.
収185g(収率85%) 化学構造は3IP−NMR2元素分析にて確認した。Yield 185g (yield 85%) The chemical structure was confirmed by 3IP-NMR two-element analysis.
(D−2)の合成
エピクロルヒドリン23.0g (0,247mol)
をジエチレングリコールモノメチルエーテル300 g
(2,5mol)と60%油性水素化ナトリウム12
g (0,3mol)の混合物に対し、60°Cにて
15分間で滴下した。エーテル層を水洗し、硫酸マグネ
シウムで乾燥した後、エーテルを留去してかっ色溶液を
得た。減圧蒸留(171〜182°C/2閣Hg)にて
目的物を得た。収量44.5g(収率60%)
化学構造はNMR,、IR,元素分析、GCにて確認し
た。Synthesis of (D-2) 23.0 g (0,247 mol) of epichlorohydrin
300 g of diethylene glycol monomethyl ether
(2,5 mol) and 60% oily sodium hydride 12
g (0.3 mol) was added dropwise at 60°C over 15 minutes. The ether layer was washed with water and dried over magnesium sulfate, and then the ether was distilled off to obtain a brown solution. The target product was obtained by vacuum distillation (171-182°C/2kg Hg). Yield: 44.5 g (60% yield) The chemical structure was confirmed by NMR, IR, elemental analysis, and GC.
(3)P−1ポリマーの合成
化合物D−230g (0,101mol)をテトラヒ
ドロフラン200mに溶解し、これに60%−水素化ナ
トリウム28g (0,70朔o1)を加えた。この溶
液に対し、室温攪拌下ポリジクロロフォスフアゼン4
g (0,035mol)のテトラヒドロフラン500
dを3時間かけて滴下した。これにn−テトラブチルア
ンモニウムブロマイド0゜1gを加え、室温にて24時
間反応させ、さらに2時間加熱還流した0反応後、系を
希塩酸で中和し、蒸留水で透析を行った(72時間)。(3) Synthesis of P-1 Polymer 230 g (0.101 mol) of Compound D-1 was dissolved in 200 ml of tetrahydrofuran, and 28 g (0.70 mol) of 60% sodium hydride was added thereto. To this solution, polydichlorophosphazene 4 was added under stirring at room temperature.
g (0,035 mol) of tetrahydrofuran 500
d was added dropwise over 3 hours. To this was added 0.1 g of n-tetrabutylammonium bromide, and the mixture was allowed to react at room temperature for 24 hours, and heated under reflux for an additional 2 hours. After the reaction, the system was neutralized with dilute hydrochloric acid and dialyzed against distilled water (72 hours). ).
得られたポリマーをアセトン400mに溶解し、ヘキサ
ン52を加えて再沈澱させた。この操作を2回繰り返し
て黄白色粘稠固体を得た。収量5.5g(収率28%)
Mw=800,000
化学構造は”P−NMR,’H−NMR,IR。The obtained polymer was dissolved in 400ml of acetone, and 52ml of hexane was added to reprecipitate it. This operation was repeated twice to obtain a yellowish white viscous solid. Yield 5.5g (yield 28%) Mw=800,000 Chemical structure is "P-NMR, 'H-NMR, IR.
元素分析にて確認した。Confirmed by elemental analysis.
以下、実施例を用いて詳細に説明する。 Hereinafter, it will be explained in detail using examples.
実施例I
P−1ポリマーとLiChSOsを表1に示した組成比
になるようにTHFに室温で溶解した。このときP−1
ポリマーの濃度は3wt%であった。Example I P-1 polymer and LiChSOs were dissolved in THF at room temperature so as to have the composition ratio shown in Table 1. At this time P-1
The concentration of polymer was 3 wt%.
その後、この溶液をテフロン板上にキャスティングし、
溶媒を真空下(10−”〜l O−’torr)で室温
24時間、60°Cで24時間処理し、溶媒を完全に除
去して均一な薄膜を得た。(■■O)更にP−1ポリマ
ーのかわりにP−2ポリマーLiCFsSOsのかわり
にLiCI O,におきかえた以外は同一であるFit
膜を得た。(OO[F])比較として■のP−1ポリマ
ーのかわりに特開昭62−47713号に記載された下
記の化合物(E−1)に置き換えた以外は実施例1と同
一である薄膜ΦOθを作成した。Then, cast this solution on a Teflon plate,
The solvent was treated under vacuum (10-'' to 1 O-'torr) at room temperature for 24 hours and at 60 °C for 24 hours to completely remove the solvent and obtain a uniform thin film.(■■O) Furthermore, P -1 polymer is replaced by P-2 polymer LiCFsSOs is replaced by LiCIO, but the Fit is the same.
A membrane was obtained. (OO[F]) For comparison, the thin film ΦOθ is the same as Example 1 except that the P-1 polymer in (■) was replaced with the following compound (E-1) described in JP-A No. 62-47713. It was created.
(E −1) ” PEO(Mw=600,000)
/” PEO(Mw=600)・2/1混合物
1日本油脂型さらに■のP−1ポリマーのかわりにジ
ャーナル・オプ・アメリカン・ケミカル・ソサエティ(
Journal of American Chemi
cal 5ociety) 106巻、6854頁(1
984年)に記載されている下記の化合物(E−2)に
置き換えた以外は■と同一である薄膜を得た。(@Φθ
)
(E−2)
OCHzCllz OCHICHIOCH3−+ P
= N −3−M賀中10’OCHzC)It O
CHiCHi OCH3このようにして得た薄膜につ
いてステンレス/薄膜/ステンレスからなる試料を作成
し、0.1Hz〜10万Hzでインピーダンスを測定(
測定温度25°C)L、Co1e−Coleプoyトか
らイオン伝導度を求めた。(E −1) ” PEO (Mw=600,000)
/” PEO (Mw=600)・2/1 mixture
1 Nippon Oil & Fats type and the Journal of American Chemical Society (instead of ■ P-1 polymer)
Journal of American Chemi
cal 5ociety) Volume 106, Page 6854 (1
A thin film was obtained which was the same as (1) except that the following compound (E-2) described in 1984) was substituted. (@Φθ
) (E-2) OCHzCllz OCHICHIOCH3-+ P
= N -3-Mkanaka10'OCHzC)It O
CHiCHi OCH3 For the thin film thus obtained, a sample consisting of stainless steel/thin film/stainless steel was created, and the impedance was measured at 0.1 Hz to 100,000 Hz (
The measurement temperature was 25°C), and the ionic conductivity was determined from the Cole-Cole port.
また、成膜性は次の方法で求めた。ガラス板上にキャス
ティング法にて薄膜を作成し、1m径のサファイヤ針を
用いて耐引掻テストを行い、フィルムが破壊し傷あとが
残った時の針にかけた荷重を求め引掻強度とした。Further, film formability was determined by the following method. A thin film was formed on a glass plate by a casting method, and a scratch resistance test was conducted using a sapphire needle with a diameter of 1 m.The load applied to the needle when the film was destroyed and a scar remained was determined as the scratch strength.
上記の評価結果を表1に示した。The above evaluation results are shown in Table 1.
表1かられかるように本発明の実施例@〜[F]は比較
例Φ〜θに比べて室温付近でのイオン伝導性、成膜性と
もに良好であることが明らかであり、また比較例O〜θ
に比べて室温付近でのイオン伝導性が良好であることが
明らかである。As can be seen from Table 1, it is clear that Examples @ to [F] of the present invention have better ionic conductivity and film formability near room temperature than Comparative Examples Φ to θ, and Comparative Examples O~θ
It is clear that the ionic conductivity near room temperature is better than that of .
本発明によると、室温以下でのイオン伝導性に優れ、成
膜性も良好な高分子固体電解質を得ることができる。According to the present invention, it is possible to obtain a polymer solid electrolyte that has excellent ionic conductivity at room temperature or lower and also has good film formability.
特許出願人 富士写真フィルム株式会社1、事件の表示 2、発明の名称 3、補正をする者 事件との関係 平成1年特願第70ココ号 高分子固体電解質Patent Applicant: Fuji Photo Film Co., Ltd. 1, Incident Representation 2. Name of the invention 3. Person who makes corrections Relationship with the incident 1999 Patent Application No. 70 Coco Polymer solid electrolyte
Claims (1)
位を含有する高分子化合物と周期律表IaまたはIIa族
に属する金属イオンの塩を含有することを特徴とする高
分子固体電解質。 一般式(I) ▲数式、化学式、表等があります▼ (式中、L_1、L_2は2価の連結基を表わし、X_
1、X_2は3価の連結基を表わす。R_1、R_2は
水素原子又は低級アルキル基を表わし、R_3、R_4
は水素原子、アルキル基、アルケニル基、アリール基又
はアラルキル基を表わす。nは1〜30の整数である。 )[Scope of Claims] A solid polymer electrolyte characterized by containing at least a polymer compound containing a repeating unit represented by the following general formula (I) and a salt of a metal ion belonging to Group Ia or IIa of the Periodic Table. . General formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, L_1 and L_2 represent divalent linking groups,
1 and X_2 represent a trivalent linking group. R_1, R_2 represent a hydrogen atom or a lower alkyl group, R_3, R_4
represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or an aralkyl group. n is an integer from 1 to 30. )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1075522A JPH02252762A (en) | 1989-03-28 | 1989-03-28 | Solid polyelectrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1075522A JPH02252762A (en) | 1989-03-28 | 1989-03-28 | Solid polyelectrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02252762A true JPH02252762A (en) | 1990-10-11 |
Family
ID=13578648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1075522A Pending JPH02252762A (en) | 1989-03-28 | 1989-03-28 | Solid polyelectrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02252762A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007063175A (en) * | 2005-08-31 | 2007-03-15 | Nagoya City | Oligoethylene oxide derivative and manufacturing method of oligoethylene oxide derivative |
-
1989
- 1989-03-28 JP JP1075522A patent/JPH02252762A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007063175A (en) * | 2005-08-31 | 2007-03-15 | Nagoya City | Oligoethylene oxide derivative and manufacturing method of oligoethylene oxide derivative |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3301378B2 (en) | Polyether copolymer and crosslinked polymer solid electrolyte | |
US4737422A (en) | Polymeric electrolytes | |
CA2253863C (en) | Cross-linked solid polyelectrolyte and use thereof | |
US20040054126A1 (en) | Conductive polymeric compositions for lithium batteries | |
JP2003525957A (en) | Aromatic polymer having pendant fluorine-substituted ionic groups | |
JP2003525957A5 (en) | ||
Ford et al. | Perfluorocyclobutyl (PFCB) aromatic polyethers: Synthesis and characterization of new sulfonimide containing monomers and fluoropolymers | |
Itoh et al. | Polymer electrolytes based on hyperbranched polymers | |
JP2009287012A (en) | Ionic polymer and method of manufacturing the same | |
JPH04270762A (en) | Non-liquid conductive polymer composition | |
JPH0725838B2 (en) | Polymer solid electrolyte | |
Itoh et al. | Ionic conductivity of the hyperbranched polymer-lithium metal salt systems | |
JPH02252762A (en) | Solid polyelectrolyte | |
JPH0725839B2 (en) | Polymer solid electrolyte | |
JPH02212547A (en) | Ionic conductor composition and its application | |
CN116231060A (en) | Preparation method and application of single lithium ion conductive fluoropolymer solid electrolyte | |
US5393620A (en) | Conductive polymers with ionic conductance | |
JPS6230148A (en) | Novel ion conductive high polymer complex | |
JPS6230147A (en) | Ion conductive high polymer complex | |
JP3640863B2 (en) | Ion conductive solid electrolyte | |
JP2002260441A (en) | Polymeric solid electrolyte and method of making the same | |
JPH02215836A (en) | Polyelectrolyte | |
JP2002150836A (en) | Polymer solid electrolyte, and manufacturing method of the same | |
JPH04301370A (en) | High molecular solid electrolyte | |
JPH0725840B2 (en) | Polymer solid electrolyte and method for producing the same |