JPH02252607A - Combustion equipment for reformer - Google Patents

Combustion equipment for reformer

Info

Publication number
JPH02252607A
JPH02252607A JP1073111A JP7311189A JPH02252607A JP H02252607 A JPH02252607 A JP H02252607A JP 1073111 A JP1073111 A JP 1073111A JP 7311189 A JP7311189 A JP 7311189A JP H02252607 A JPH02252607 A JP H02252607A
Authority
JP
Japan
Prior art keywords
thermal expansion
partition wall
combustion
burner
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1073111A
Other languages
Japanese (ja)
Inventor
Sadatoshi Takayanagi
高柳 貞敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1073111A priority Critical patent/JPH02252607A/en
Publication of JPH02252607A publication Critical patent/JPH02252607A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a combustion equipment for reformer capable of preventing occurrence of heat stress and having high reliability to stability and life of equipment by providing a thermal expansion absorbing means capable of absorbing thermal expansion generating in combustion of burner on the first partition wall for partitioning an air chamber and reforming furnace. CONSTITUTION:When a main burner is fired by a pilot burner 41, combustion flame 102 is formed to heat a reforming furnace C. When a combustion equipment is operated, the first partition wall 3 and hole plate 211 which is main burner face are heated by radiant heat of burner flame, combustion gas and furnace C to thermally expand the partition wall 3 and hole plate 211. Thermal stretch by thermal expansion is absorbed by deformation of thermal expansion absorbing means 6 and deformation of hole plate 211 and generation of thermal stress are prevented and deformation by buckling, etc., can be also prevented. Although the second partition wall 5 is also thermally expanded by being subject to the influence of thermal expansion of partition wall 3, the thermal expansion is absorbed by thermal expansion absorbing means 7 and occurrence of thermal stress can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は燃料電池発電装置の燃料改質器用燃焼装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a combustion device for a fuel reformer of a fuel cell power generation device.

「従来の技v#] 燃料電池発電装置の基本的な構成を簡単・模式化して第
3図に示す。基本的な構成要素どしては改質装置(9)
 とCO転化器(901)及び発電セル本体(902)
であり、改質装置(9)には改質反応の温度維持と反応
熱の供給のための燃焼器(904)と、改質炉(G)内
部には改質触媒が充填されている改質反応管(903)
が収納されCいる。燃料電池発電装置の始動は、まず改
質用燃焼器(904)で在来の燃料例えば都市ガス(t
3A) ’と燃焼用空気を供給して予熱燃焼を行なう。
"Conventional Technique v#" The basic configuration of a fuel cell power generation device is shown in a simplified and schematic form in Figure 3.The basic components are a reformer (9)
and CO converter (901) and power generation cell body (902)
The reformer (9) includes a combustor (904) for maintaining the temperature of the reforming reaction and supplying reaction heat, and the reformer (G) has a reformer filled with a reforming catalyst. Quality reaction tube (903)
is stored in C. To start the fuel cell power generation device, first, the reforming combustor (904) uses conventional fuel such as city gas (t
3A) ' and combustion air are supplied to perform preheating combustion.

反応管(903)が反応を進行させるに十分な所定の温
度に達した後、改質原料ガス(通常は都市ガス(13A
 )又はメタノール)土水蒸気(H2O)を反応管(9
0:l)に導入する。改質装置(!l)にて改質され水
素(112)分を多く含む改質ガスはCO転化器(90
1)を通り、未反応のCOと1120より更にH2が富
化された燃料ガスとなり発電セル本体(902)に供給
される。
After the reaction tube (903) reaches a predetermined temperature sufficient for the reaction to proceed, the reformed raw material gas (usually city gas (13A
) or methanol) and water vapor (H2O) into the reaction tube (9
0:l). The reformed gas containing a large amount of hydrogen (112) is reformed in the reformer (!l) and sent to the CO converter (!l).
1), becomes a fuel gas enriched in H2 from unreacted CO and 1120, and is supplied to the power generation cell body (902).

発電セル本体(902)ではこの112富化改質ガスと
酸化剤の空気とが電解質を通して反応し電気出力を得る
と同時に改質ガス中の82分は消費され電池オフガスと
なって排出される。しかしこの電池オフガスには未消費
の114分が約20・〜30vo1%程度残っており、
その他は1120やGO□の不活性ガスという低カロリ
ー可燃である。この低カロリー可燃ガスである電池オフ
ガスを再び改質用燃焼器(904)に導入して燃焼させ
改質反応の熱供給に利用して燃料電池発電装置の効率を
高いものにしている。
In the power generation cell main body (902), this 112-enriched reformed gas and the oxidizing agent air react through the electrolyte to obtain electrical output, and at the same time, 82 minutes in the reformed gas is consumed and discharged as battery off-gas. However, this battery off-gas has an unconsumed 114 minutes remaining at approximately 20-30vo1%.
Others are low calorie flammable inert gases such as 1120 and GO□. This battery off-gas, which is a low-calorie combustible gas, is again introduced into the reforming combustor (904), burned, and used to supply heat for the reforming reaction, thereby increasing the efficiency of the fuel cell power generation device.

なお、低カロリーオフガス燃焼が行なわれる時点では、
予熱燃焼はすでに停止している。
In addition, at the time when low-calorie off-gas combustion is performed,
Preheating combustion has already stopped.

また、供給される燃料ガスの種類(低カロリーオフガス
か高カロリー都市ガスかなど)や量に応じて供給される
燃焼用空気の晴も調節されるのは言うまでもない。
Furthermore, it goes without saying that the quality of the combustion air that is supplied is adjusted depending on the type and amount of fuel gas that is supplied (low-calorie off-gas, high-calorie city gas, etc.).

また、燃焼装置と1ノては、例えば特願昭63−778
53号に示すものがあり、その概略を第4図に示す。第
4図(a)は要部断面図、第4図(b)は第4図(a)
を改質炉側から見た平面図である。
In addition, for example, the combustion device and the
There is one shown in No. 53, and its outline is shown in Figure 4. Figure 4(a) is a sectional view of the main part, Figure 4(b) is Figure 4(a)
FIG.

図において、(C)は改質炉であり、改質反応管(図示
せず)が収納される。(B)は改質炉(C)に隣接して
設けられ燃焼用空気(201)が供給さ第1る空気室、
(A)はこの空気室(B)に隣接して設けられ燃料ガス
(101)が供給される燃料室である。
In the figure, (C) is a reforming furnace in which a reforming reaction tube (not shown) is housed. (B) is a first air chamber provided adjacent to the reforming furnace (C) and supplied with combustion air (201);
(A) is a fuel chamber provided adjacent to this air chamber (B) and to which fuel gas (101) is supplied.

(iuo)は燃料管であり、一端が燃料室(A)に開[
1し、他端が改質炉(C)に・開口して燃料ガス(io
n)を改質炉(C)に噴出して炎孔部となる。
(iuo) is a fuel pipe, one end of which opens into the fuel chamber (A).
1, and the other end opens into the reforming furnace (C) to supply fuel gas (io
n) is ejected into the reforming furnace (C) to form a flame hole.

(1)〜(5)はそれぞれ壁である。また、第4図(a
)では複雑となるため図示していないが、空気室(B)
と改質炉(C)を仕切る第1仕切壁(3)壁には燃料管
(110)と隣接して複、数個の空気噴出孔が設けられ
ており、この空気噴出孔と燃料管(110)の分散の様
子を第4図(b)に示す。第4図(b)は第4図(a)
を改質炉(C)側から見た平面図であり、図において、
(210)は空気噴出孔を示す。この例では、燃料管(
110)の炎孔部に隣接して多数の空気噴出孔(210
)を設けた大板(211)が空気室(B)と改質炉(C
)を第1仕切壁(3)に例えば溶接などにより接合され
、燃料管(iio)と空気噴出孔(210)を多数集合
させて一つのメインバーナを構成している。また燃料管
(110)はその内径が数1例えば5mmであり、燃料
室(A)と空気室(B)とを第2仕切壁(5) に例え
ば溶接などにより隙間のないように固定され、炎孔部分
が改質炉(C)内に数m111以下程度突出するように
配置されている。即ち、メインバーナの一端側が第1仕
切壁(3)に支持され他端側か第2仕切壁(5)に支持
される。さらに、例えば周囲に4個配置されたメインバ
ーナの中央部には、着火手段すなわちメインバーナ着火
用のパイロットバーナ(41)が取り付けられており、
その先端のパイロット火炎孔(402)の近傍にはパイ
ロット火炎(403)の着火用放電電極(51)が配置
されると共に、パイロット火炎(403)の火炎検知電
極(52)がパイロ−/1・火炎(403)に挿入され
るように配置されている。なお、壁(4)の空気室(B
)に接する位置にはパイロット火炎(403)用の2次
空気孔(220)が開けられている。 (401)はパ
イロット火炎(403)用の燃料である。
(1) to (5) are walls, respectively. In addition, Fig. 4 (a
) is complicated, so it is not shown in the figure, but the air chamber (B)
The first partition wall (3) that separates the reforming furnace (C) from the fuel pipe (110) is provided with a plurality of air injection holes adjacent to the fuel pipe (110). 110) is shown in FIG. 4(b). Figure 4(b) is Figure 4(a)
is a plan view seen from the reforming furnace (C) side, and in the figure,
(210) indicates an air outlet. In this example, the fuel pipe (
A large number of air outlet holes (210) are located adjacent to the flame hole portion of (110).
) is installed on the large plate (211) that connects the air chamber (B) and the reforming furnace (C).
) is joined to the first partition wall (3) by, for example, welding, and a large number of fuel pipes (IIO) and air injection holes (210) are assembled to form one main burner. Further, the fuel pipe (110) has an inner diameter of several tens of millimeters, for example, 5 mm, and the fuel chamber (A) and the air chamber (B) are fixed to the second partition wall (5) by, for example, welding so that there is no gap. The flame hole portion is arranged so as to protrude several m111 or less into the reforming furnace (C). That is, one end of the main burner is supported by the first partition wall (3), and the other end is supported by the second partition wall (5). Furthermore, an ignition means, that is, a pilot burner (41) for igniting the main burners is attached to the center of the four main burners arranged around the periphery, for example.
A discharge electrode (51) for igniting the pilot flame (403) is arranged near the pilot flame hole (402) at the tip, and a flame detection electrode (52) of the pilot flame (403) is arranged near the pilot flame hole (402). It is arranged to be inserted into the flame (403). In addition, the air chamber (B) on the wall (4)
) is provided with a secondary air hole (220) for the pilot flame (403). (401) is fuel for the pilot flame (403).

次に、動作について説明する。燃料電池発電装置の始動
時は、まず、在来の燃料、例えば都市ガス(13A)を
用いて予熱燃焼を行なう。すなわち、空気源、例えば送
風機から燃焼用空気(201)を空気室(B)に導入し
、続いて放電電極(51)によりパイロットバーナ(4
1)に対して放電スパークを飛ばしながらパイロットバ
ーナ(41)に都市ガス燃料(401)と燃焼用空気(
201)を導入することによりパイロットバーナ(41
)が着火する。パイロットバーナ(41)の着火により
パイロット火炎(403)が生じ、そのパイロット火炎
(403)中に挿入された火炎検知電極(52)とパイ
ロットバーナ(41)との間に電圧を印加することによ
り火炎内を電流が流れ、その電流値により着火検知され
、着火が確認される。着火が確認されると、燃料室(A
)に予熱用の都市ガス(13A)が導入され燃料管(1
10)を通り、空気噴出孔(210)から噴出される燃
焼用空気と拡散混合してパイロット火炎(403)と接
触することによって着火し、メインバーナ上に燃焼火炎
(102)が形成され改質炉(C)を予熱する。その後
、改質炉(C)が所定温度に達したら、燃料室(A)へ
の都市ガス(13^)の導入を停止する。予熱完了後は
予熱燃焼は停止し第4図に示す改質反応管(903)に
原料ガス+11□0が導入されH2富化された改質ガス
は発電セル(902)に導入され発電を開始する。発電
後の未消費8.分を含む電池オフガス(101)は再び
改質用燃焼器(9O4)に供給され、燃料室(^)から
燃料管(110)を通りメインパーナトで低カロリーオ
フガス燃焼が行なわわる。この際、燃焼用空気(201
)が供給されていることは3つまでもない。
Next, the operation will be explained. When starting the fuel cell power generation device, first, preheating combustion is performed using a conventional fuel, such as city gas (13A). That is, combustion air (201) is introduced into the air chamber (B) from an air source, such as a blower, and then the pilot burner (4) is introduced by the discharge electrode (51).
1), city gas fuel (401) and combustion air (
By introducing the pilot burner (41)
) ignites. A pilot flame (403) is generated by ignition of the pilot burner (41), and by applying a voltage between the pilot burner (41) and the flame detection electrode (52) inserted into the pilot flame (403), the flame is generated. A current flows through it, and ignition is detected based on the current value, confirming ignition. When ignition is confirmed, the fuel chamber (A
) City gas (13A) for preheating is introduced into the fuel pipe (1
10), diffuses and mixes with the combustion air ejected from the air nozzle (210), and ignites when it comes into contact with the pilot flame (403), forming a combustion flame (102) on the main burner and reforming. Preheat the furnace (C). Thereafter, when the reformer (C) reaches a predetermined temperature, the introduction of city gas (13^) into the fuel chamber (A) is stopped. After the preheating is completed, the preheating combustion stops, and the raw material gas +11□0 is introduced into the reforming reaction tube (903) shown in Fig. 4, and the H2-enriched reformed gas is introduced into the power generation cell (902) to start power generation. do. Unconsumed after power generation 8. The cell off-gas (101) containing the fuel is again supplied to the reforming combustor (9O4), passes from the fuel chamber (^) through the fuel pipe (110), and burns the low-calorie off-gas in the main tank. At this time, combustion air (201
) are supplied in no more than three cases.

ところで、電池オフガス(ioi)が燃料室(A)に戻
ってくる間、メインバーナが着火していない又は負荷が
急変した様な場合、発電セル(902)に流通する燃料
ガスと発電負荷どのバランスが崩れ、−時的に極度に低
カロリーの電池オフガス(loi)が戻り、メインバー
ナが失火する場合もある。このため、パイロットバーナ
(4I)は常に着火状態においておく必要があり、又、
着火確認の信頼性が十分に高い必要性がある。パイロッ
トバーナ(41)の着火確認としては、パイロット火炎
(403)中に挿入配置された火炎検知電極: (52
)とパイロットバーナ(41)との間に電圧を印加し、
その間に流れる電流を検出1.設定値と比較し、その電
流値により着火検出を行っている。
By the way, while the battery off-gas (ioi) is returning to the fuel chamber (A), if the main burner is not ignited or the load suddenly changes, the balance between the fuel gas flowing to the power generation cell (902) and the power generation load may change. - Sometimes extremely low-calorie battery off-gas (LOI) returns, causing the main burner to misfire. Therefore, it is necessary to keep the pilot burner (4I) in the ignited state at all times, and
There is a need for sufficiently high reliability of ignition confirmation. To confirm the ignition of the pilot burner (41), a flame detection electrode inserted into the pilot flame (403): (52
) and the pilot burner (41),
Detect the current flowing during that time 1. Ignition detection is performed based on the current value compared with a set value.

[発明が解決しようと1゛る課題] しかしながら上述した従来装置は、燃焼装置が作動する
と、バーナ火炎、燃焼ガス、及び改質炉の輻射熱Cより
、空気室(B)と改質炉(C)を仕切る第1仕切壁(3
)  メインバーナ面である大板(211)は加熱され
熱膨張する。一方、空気室(B)、改質炉(C)を形成
する壁(2)は大気により冷却さJするため熱膨張しな
い。従って、第1仕切壁(3)やメインバーナ面の大板
(211)には大きな熱応力が発生し、座屈などにより
変形を生じ、装置の安全性、寿命に対する信頼性が低い
ものとなっている。
[Problems to be Solved by the Invention] However, in the conventional device described above, when the combustion device operates, the burner flame, combustion gas, and radiant heat C of the reforming furnace cause the air chamber (B) and the reforming furnace (C ) The first partition wall (3
) The large plate (211), which is the main burner surface, is heated and thermally expands. On the other hand, the walls (2) forming the air chamber (B) and the reforming furnace (C) are cooled by the atmosphere and do not thermally expand. Therefore, a large thermal stress is generated in the first partition wall (3) and the large plate (211) on the main burner surface, causing deformation due to buckling, etc., and reducing the safety and reliability of the equipment. ing.

この発明は上記のような課題を解決するためになされた
ものであり、信頼性の高い改質装置用燃焼装置を提供す
ることを目的とする。
This invention was made to solve the above-mentioned problems, and an object thereof is to provide a highly reliable combustion device for a reformer.

[課題を解決するための手段] この発明に係る改質装置用燃焼装置は、空気室と改質炉
とを仕切る第1仕切壁にバーナ燃焼時に発生する熱膨張
を吸収する熱膨張吸収手段を設けたものである。
[Means for Solving the Problems] A combustion device for a reformer according to the present invention includes a thermal expansion absorbing means for absorbing thermal expansion generated during burner combustion on a first partition wall that partitions an air chamber and a reforming furnace. It was established.

[作用] この発明における改質装置用燃焼装置は、第1仕切壁に
設けた熱膨張吸収手段により、バーナ燃焼時に発生する
熱膨張を吸収する。
[Operation] The combustion device for a reformer according to the present invention absorbs thermal expansion generated during burner combustion by the thermal expansion absorbing means provided on the first partition wall.

[実施例] 以下、この発明の一実施例を第1図及び第2図に基づい
て説明する。これら各図において、(1) 〜(5) 
、(41) 、 (401) 〜(405) 、(10
1) 、(110) 。
[Example] Hereinafter, an example of the present invention will be described based on FIGS. 1 and 2. In each of these figures, (1) to (5)
, (41) , (401) ~(405) , (10
1) , (110).

(102) 、 (201) 、 (211) 、(2
20) 、 (八) 、 (+1) 、 (C)は」二
連した従来装置の構成と同様である。(6)は空気室(
8)と改質炉(C)とを仕切る第1仕切壁(3)にメイ
ンバーナを囲繞するように、即ち、メインバーナ面を成
す突板(211)を囲繞するように形成された環状の熱
膨張吸収手段であり、例えばジャバラ状住つ環状に形成
されている。(7)は燃料室(A)と空気室(tl)と
を仕切る第2仕切壁(5)に燃料管(110)を囲繞す
るように、即ち、熱膨張吸収手段(6)と相対する位置
に配設された環状の熱膨張吸収手段であり、例えばジャ
バラ状且つ環状に形成されている。
(102) , (201) , (211) , (2
20), (8), (+1), and (C) are the same as the configuration of a conventional dual device. (6) is the air chamber (
8) and the reforming furnace (C), an annular heat sink formed so as to surround the main burner, that is, to surround the projecting plate (211) forming the main burner surface. It is an expansion absorbing means, and is formed, for example, in a bellows-like ring shape. (7) is positioned so that the second partition wall (5) that partitions the fuel chamber (A) and the air chamber (tl) surrounds the fuel pipe (110), that is, in a position facing the thermal expansion absorbing means (6). It is an annular thermal expansion absorbing means disposed in, for example, a bellows-like and annular shape.

次に動作について説明する。パイロットバ〜す(41)
によりメインハ・−すが着火されると燃焼火炎(+02
)が形成され改質炉(C)を加熱する。燃焼装置が作動
すると、バーナ火炎、燃焼ガス、及び改質炉(C)の輻
射熱により第1仕切壁(3)  メインバーナ面である
大板(211)は加熱され熱膨張する。この熱膨張によ
る熱伸びにより熱膨張吸収手段(6)が変形しその熱伸
びを吸収し、メインバーナ面である大板(211)の変
形や熱応力の発生が防止でき、座屈などによる変形も防
止できる。また、第2仕切壁(5) も第1仕切壁(3
)の熱膨張の影響を受けて熱膨張する。その熱膨張は熱
膨張吸収手段(7)により吸収されて熱応力の発生を防
止している。熱膨張の大きい第1仕切壁(3)に熱膨張
吸収手段(6)を設けておけば所期の目的は達成できる
Next, the operation will be explained. Pilot bus (41)
When the main hearth is ignited by
) is formed and heats the reforming furnace (C). When the combustion device operates, the large plate (211), which is the main burner surface of the first partition wall (3), is heated and thermally expanded by the burner flame, combustion gas, and radiant heat of the reformer (C). Thermal expansion absorbing means (6) deforms due to thermal elongation due to this thermal expansion and absorbs the thermal elongation, preventing deformation and thermal stress of the large plate (211) which is the main burner surface, and deformation due to buckling etc. can also be prevented. In addition, the second partition wall (5) is also the first partition wall (3
) expands thermally under the influence of thermal expansion. The thermal expansion is absorbed by the thermal expansion absorbing means (7) to prevent generation of thermal stress. The intended purpose can be achieved by providing a thermal expansion absorbing means (6) on the first partition wall (3), which has a large thermal expansion.

[発明の効果] この発明は以ト説明した通り、空気室と改質炉とを仕切
る第1仕切壁にバーナ燃焼時に発生する熱膨張を吸収す
る熱膨張吸収手段を設けたことにより、バーナ燃焼時の
熱膨張を熱膨張吸収手段により吸収することができ、熱
応力の発生を防1トでき、装置の安全性、寿命に対する
信頼性が高い改質装置用燃焼装置を得ることができる。
[Effects of the Invention] As explained below, the present invention provides thermal expansion absorbing means for absorbing thermal expansion generated during burner combustion in the first partition wall that partitions the air chamber and the reforming furnace, thereby improving burner combustion. It is possible to obtain a combustion device for a reformer that can absorb the thermal expansion caused by the thermal expansion by the thermal expansion absorbing means, can prevent the occurrence of thermal stress, and has high reliability in terms of safety and life of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による改質装置用燃焼装置
を示す断面図、第2図はこの発明に係る熱膨張吸収手段
を示す拡大断面図、第3図41−数的な燃料電池システ
ムを示す系統図、第4図(a)及び(b)は従来の改質
装置用燃焼装置を示す断面図及び改質炉側から見た平面
図で、ちる。 図に↓5いて、(3)は第1仕切壁、(6)は熱I!張
吸収手段、(B)は空気室、(G)は改質炉である。 尚、図中同一符号は同−又は相当部分を示す。 代理人  大  岩  増  雄 第1図 第2図 第4図
FIG. 1 is a cross-sectional view showing a combustion device for a reformer according to an embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view showing a thermal expansion absorbing means according to the present invention, and FIG. 3 is a numerical fuel cell. A system diagram showing the system, FIGS. 4(a) and 4(b) are a sectional view showing a conventional combustion device for a reformer and a plan view seen from the reforming furnace side. In the figure ↓5, (3) is the first partition wall, and (6) is the heat I! (B) is an air chamber, and (G) is a reforming furnace. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa Figure 1 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 改質反応管が収納される改質炉に第1仕切壁を介して設
けられ燃焼用空気が供給される空気室と、この空気室に
第2仕切壁を介して設けられ燃料ガスが供給される燃料
室と、一端側が上記第1仕切壁に支持され他端側が上記
第2仕切壁に支持されたバーナとを有する改質装置用燃
料装置において、上記第1仕切壁に上記バーナ燃焼時に
発生する熱膨張を吸収する熱膨張吸収手段を備えたこと
を特徴とする改質装置用燃焼装置。
An air chamber is provided in the reforming furnace in which the reforming reaction tube is housed via a first partition wall and is supplied with combustion air; and an air chamber is provided in the reformer via a second partition wall and fuel gas is supplied to the air chamber. a fuel chamber for a reformer, and a burner having one end supported by the first partition wall and the other end supported by the second partition wall; A combustion device for a reformer, comprising a thermal expansion absorbing means for absorbing thermal expansion.
JP1073111A 1989-03-23 1989-03-23 Combustion equipment for reformer Pending JPH02252607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1073111A JPH02252607A (en) 1989-03-23 1989-03-23 Combustion equipment for reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1073111A JPH02252607A (en) 1989-03-23 1989-03-23 Combustion equipment for reformer

Publications (1)

Publication Number Publication Date
JPH02252607A true JPH02252607A (en) 1990-10-11

Family

ID=13508843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1073111A Pending JPH02252607A (en) 1989-03-23 1989-03-23 Combustion equipment for reformer

Country Status (1)

Country Link
JP (1) JPH02252607A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577539A (en) * 1980-06-17 1982-01-14 Aisan Ind Co Ltd Apparatus for detecting and preventing separation of fluid mixture
JPS6183601A (en) * 1984-09-29 1986-04-28 Toshiba Corp Reforming apparatus
JPS63201001A (en) * 1987-02-18 1988-08-19 Hitachi Ltd Fuel reforming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577539A (en) * 1980-06-17 1982-01-14 Aisan Ind Co Ltd Apparatus for detecting and preventing separation of fluid mixture
JPS6183601A (en) * 1984-09-29 1986-04-28 Toshiba Corp Reforming apparatus
JPS63201001A (en) * 1987-02-18 1988-08-19 Hitachi Ltd Fuel reforming apparatus

Similar Documents

Publication Publication Date Title
EP0356092B1 (en) Gas turbine combustor
KR100599885B1 (en) Combustor, fuel reforming device, fuel cell system and method for starting up the fuel reforming system
JPH08189380A (en) Fuel reforming device and power generating system with it
KR19980063334A (en) Apparatus with fuel cell and operation method thereof
JP2004156895A (en) Burner, hydrogen generating device and fuel battery power generating system
JP2001201019A (en) Combustion device for fuel cell system and hydrogen generating device using the same
JP5902581B2 (en) Fuel cell system and control method thereof
EP1376726A3 (en) Solid-oxide fuel cell system having a fuel combustor to pre-heat a fuel reformer on start-up
JP2004196600A (en) Hydrogen generating apparatus to be used for fuel cell and starting method
JP3765989B2 (en) Reformer heating method and heating apparatus
JP3975191B2 (en) Combustion device for fuel reformer
JPH02252607A (en) Combustion equipment for reformer
JP2011089754A (en) Mix burner device of liquid fuel and low calorie fuel
JP2581208B2 (en) Combustion device of fuel reformer for fuel cell power generator
JP2004196584A (en) Method of stopping hydrogen production apparatus and fuel cell system operation
JP4904879B2 (en) Vaporization burner for fuel processor
JPH02252606A (en) Combustion equipment for reformer
JPH02251010A (en) Flame detection device of burner for modification device
JP6101653B2 (en) Combustor ignition method
JPH0435690Y2 (en)
KR20190111374A (en) The reformer of SOFC
JPH01155112A (en) Dual burner
JP2005195254A (en) Catalytic combuster for fuel battery power generation
JP4089480B2 (en) Combustion device
JP4973080B2 (en) How to start the reformer