JPH0225168Y2 - - Google Patents

Info

Publication number
JPH0225168Y2
JPH0225168Y2 JP1877584U JP1877584U JPH0225168Y2 JP H0225168 Y2 JPH0225168 Y2 JP H0225168Y2 JP 1877584 U JP1877584 U JP 1877584U JP 1877584 U JP1877584 U JP 1877584U JP H0225168 Y2 JPH0225168 Y2 JP H0225168Y2
Authority
JP
Japan
Prior art keywords
sample
slag
container
sample container
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1877584U
Other languages
Japanese (ja)
Other versions
JPS60131856U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1877584U priority Critical patent/JPS60131856U/en
Publication of JPS60131856U publication Critical patent/JPS60131856U/en
Application granted granted Critical
Publication of JPH0225168Y2 publication Critical patent/JPH0225168Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【考案の詳細な説明】 本考案は、鉱滓、溶融フラツクス成分の分析の
ために使用する鉱滓試料採取容器に関するもので
ある。なお、本明細書では溶融フラツクスをも含
めて鉱滓と称することにする。
[Detailed Description of the Invention] The present invention relates to a slag sample collection container used for analysis of slag and molten flux components. In this specification, the term slag includes molten flux.

従来、例えば高炉滓の成分を分析するには、採
取した試料を蛍光X線分析装置により分析するの
が一般的であるが、冷却速度が大きいと試料に割
れが入り易く、単に冷却するだけでは満足できる
健全な試料を得ることはなかなか困難であつた。
冷却速度を緩慢にするためにセラミツクスなどの
熱伝導率の悪い材料を試料容器に使用しても、高
炉滓が容器内面に密着して剥離し難くなり、無理
に剥離しても表面状態の極めて悪い試料しか得ら
れなかつた。
Conventionally, for example, in order to analyze the components of blast furnace slag, it is common to analyze the collected sample using a fluorescent X-ray analyzer, but if the cooling rate is too high, cracks tend to appear in the sample, so it is difficult to simply cool it. It was quite difficult to obtain a satisfactory and healthy sample.
Even if a material with poor thermal conductivity such as ceramics is used for the sample container in order to slow the cooling rate, the blast furnace slag will stick to the inner surface of the container and will be difficult to peel off, and even if it is forcibly peeled off, the surface condition will be extremely poor. Only bad samples were obtained.

従つて、通常5〜10Kg程度の高炉滓を汲み取つ
て自然冷却により常温になるまで冷却し、その後
に粗粉砕して除鉄作業を行い、更に100メツシユ
以下に微粉砕し、それを四分法によつて正確に10
グラムの試料に分け、この試料にバインダとして
例えば澱粉、スチレン、スチレンマレイン酸ポリ
マ、ステアリン酸等の結合剤を適量添加混合し、
40〜50トン程度のプレス機械で加圧成型して分析
用試料を調整している。かくすることにより、分
析用試料の表面は滑らかな平担部となり、その表
面に一定の条件で蛍光X線を照射することがで
き、分析値を求めることができる。
Therefore, usually around 5 to 10 kg of blast furnace slag is scooped out and cooled down to room temperature by natural cooling, then coarsely crushed to remove iron, further finely crushed to less than 100 mesh, and then quartered. exactly 10 by law
Divide into gram samples, add and mix an appropriate amount of a binder such as starch, styrene, styrene maleic acid polymer, stearic acid, etc. to this sample,
Samples for analysis are prepared by pressure molding using a 40 to 50 ton press machine. By doing so, the surface of the sample for analysis becomes a smooth, flat part, and the surface can be irradiated with fluorescent X-rays under certain conditions, allowing analysis values to be determined.

しかし、このような試料の調整は時間がかかる
上に、蛍光X線分析装置にかけて真空吸引する
と、試料の一部が飛散して分析装置を損傷する等
の問題がある。また粉末の粒度や成型密度を一定
にしないとX線測定強度に変化が生じて分析値が
不正確になるし、試料と結合剤の混合比や混合状
態による分析値への影響も無視することはできな
い。
However, such sample preparation takes time, and when the sample is vacuum-suctioned by a fluorescent X-ray analyzer, part of the sample scatters and damages the analyzer. In addition, if the particle size and molding density of the powder are not constant, the X-ray measurement intensity will change and the analytical values will be inaccurate, and the influence of the mixing ratio and mixing state of the sample and binder on the analytical values should also be ignored. I can't.

更に、分析精度を高くしたい場合には、微粉砕
した試料の0.5グラムを正確に秤量して、これに
Na2B4O7(ホウ砂)を5グラム添加して白金ルツ
ボ中で約1000度Cに加熱溶融して分析試料にする
ことが行われている。しかしこの場合でも、試料
に含有されている微量元素のナトリウムの分析は
不能であり、微量のカリウム、亜鉛等が希釈され
るために、分析精度が必ずしも十分でない。
Furthermore, if you want to increase the accuracy of your analysis, you can accurately weigh 0.5 grams of the finely ground sample and add it to the sample.
A sample for analysis is prepared by adding 5 grams of Na 2 B 4 O 7 (borax) and heating and melting it in a platinum crucible at about 1000 degrees Celsius. However, even in this case, it is impossible to analyze the trace element sodium contained in the sample, and trace amounts of potassium, zinc, etc. are diluted, so the analysis accuracy is not necessarily sufficient.

このように、従来の試料調製方法では分析精度
に問題があると共に、調製時間も労力も相当に大
きく、それに要するコストは相当に高価となる。
As described above, conventional sample preparation methods have problems with analytical precision, require considerable preparation time and labor, and are considerably expensive.

本考案の目的は、上述の問題を改善するため、
溶融状態の鉱滓をそのまま試料容器に注入して、
それを冷却するだけで蛍光X線用の分析試料が容
易に得られる鉱滓試料採取容器を提供することに
あり、その要旨は、熱伝導率が低くかつ多孔質の
材料により凹型に成型した試料容器の内面に、高
温の鉱滓と反応し難い性質の金属膜を試料容器の
多孔性を損わないようにコーテイングしたことを
特徴とするものである。
The purpose of this invention is to improve the above-mentioned problems.
Pour the molten slag directly into the sample container,
The purpose is to provide a slag sample collection container from which an analysis sample for fluorescent X-rays can be easily obtained by simply cooling the slag sample container. The inner surface of the sample container is coated with a metal film that does not easily react with high-temperature slag so as not to impair the porosity of the sample container.

第1図は本考案に係る鉱滓試料採取容器の1実
施例を示すものであり、例えば高さH=15〜20
mm、開口の内径D1=32〜35mm、底部の内径D2=
31〜34mm程度の凹状の容器であり、試料容器1は
熱伝導率の低い材料で作られていると共に、凝固
時に鉱滓から発生するガスを放散するために多孔
質の材料で作られている。
FIG. 1 shows an embodiment of the slag sample collection container according to the present invention, for example, the height H=15 to 20.
mm, inner diameter of opening D1=32~35mm, inner diameter of bottom D2=
The sample container 1 is a concave container with a diameter of about 31 to 34 mm, and is made of a material with low thermal conductivity, and is also made of a porous material to dissipate gas generated from the slag during solidification.

試料容器1は例えばセラミツクスや鋳物用砂型
を単一又は混合したものにフエノールレジン等の
粘着剤を添加して凹型に加熱成型したものが用い
られるが、耐高温性を有し、溶融滓と反応せずに
しかも高い通気性を有することが必要である。
The sample container 1 is, for example, made of ceramics or a foundry sand mold, either singly or in a mixture, with an adhesive such as phenol resin added and heated and molded into a concave shape. It is necessary to have high air permeability without any air pollution.

この試料容器1の内面には、高温の鉱滓と反応
し難い性質を有する例えばクロム、ニツケル、
金、白金等が蒸着或いはスパツタリングなどによ
り極めて薄い金属膜2として通気性を損わずにコ
ーテイングされている。第1図の場合は試料容器
1の内面に直接金属膜2をコーテイングした例で
あるが、第2図に示す実施例は試料容器1の内面
に予め黒鉛層3を形成してから、金属膜2をコー
テイングした場合を示している。
The inner surface of the sample container 1 is coated with materials such as chromium, nickel, etc., which have properties that do not easily react with high-temperature slag.
Gold, platinum, etc. are coated as an extremely thin metal film 2 by vapor deposition or sputtering without impairing air permeability. In the case of FIG. 1, the metal film 2 is directly coated on the inner surface of the sample container 1, but in the embodiment shown in FIG. 2 is coated.

このように形成した試料容器1に溶融状態の鉱
滓を注型してそのまま冷却すると、第3図に示す
ような形状を有する試料4が得られるが、試料容
器1の内面には高温の鉱滓と反応し難い金属膜2
があるため、試料4は試料容器から簡単に剥離で
きるし、試料4の分析面5はガラス表面状の極め
て滑らかな面になつているので、そのまま蛍光X
線分析装置へかけることができる。この点につい
ては金属膜2を設けない試料容器で採取した試料
が、容器と試料との境界層で殆ど剥離できないと
いう事実からもその効果が実証される。また、得
られた試料4は結合剤も混入されていず、更にナ
トリウム、カリウム等の微量含有元素が全く希釈
されていないから、従来の場合に比較して高い分
析精度が得られる。
If molten slag is poured into the sample container 1 formed in this way and then cooled, a sample 4 having the shape shown in FIG. 3 will be obtained. Metal film that is difficult to react 2
Because of this, the sample 4 can be easily peeled off from the sample container, and the analysis surface 5 of the sample 4 has an extremely smooth glass surface, so it can be directly exposed to fluorescent X.
It can be applied to a line analyzer. Regarding this point, its effectiveness is also demonstrated by the fact that a sample collected using a sample container without the metal film 2 can hardly be separated at the boundary layer between the container and the sample. In addition, the obtained sample 4 does not contain any binder, and furthermore, trace elements such as sodium and potassium are not diluted at all, so that higher analysis accuracy can be obtained than in the conventional case.

なお、本考案に係る鉱滓試料採取容器は、高炉
滓や製鋼滓のみだけでなく、熔銑予備処理滓、炉
外精錬滓、タンデツシユ内鉱滓、連続鋳造鋳型内
鉱滓等の試料調製にも利用できることは勿論であ
る。
The slag sample collection container according to the present invention can be used not only for blast furnace slag and steelmaking slag, but also for sample preparation of hot metal pretreatment slag, out-of-furnace smelting slag, slag in a tundish, slag in a continuous casting mold, etc. Of course.

上述したように本考案に係る鉱滓試料採取容器
は、試料容器内に金属膜をコーテイングするなど
して、溶融鉱滓を注型して冷却させるだけで健全
な試料が得られるので、分析精度が向上するのみ
ならず、従来大変な手数と時間を必要とした試料
調製を1/10程度の短時間で簡易に行うことがで
き、それに要するコストも大幅に切下げることが
可能である。
As mentioned above, the slag sample collection container according to the present invention improves analysis accuracy because a healthy sample can be obtained by simply casting molten slag and cooling it by coating the sample container with a metal film. In addition, sample preparation, which conventionally required a great deal of effort and time, can be easily performed in about 1/10th the time, and the costs required can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案に係る鉱滓試料採取容器の実施例
を示し、第1図、第2図はその断面図、第3図は
得られた試料の斜視図である。 符号1は試料容器、2は金属膜、3は黒鉛層、
4は試料、5は分析面である。
The drawings show an embodiment of the slag sample collection container according to the present invention, and FIGS. 1 and 2 are sectional views thereof, and FIG. 3 is a perspective view of the obtained sample. 1 is a sample container, 2 is a metal film, 3 is a graphite layer,
4 is a sample, and 5 is an analysis surface.

Claims (1)

【実用新案登録請求の範囲】 1 熱伝導率が低くかつ多孔質の材料により凹型
に成型した試料容器の内面に、高温の鉱滓と反
応し難い性質の金属膜を試料容器の多孔性を損
わないようにコーテイングしたことを特徴とす
る鉱滓試料採取容器。 2 前記試料容器の内面と前記金属膜との間に黒
鉛層を介在した実用新案登録請求の範囲第1項
に記載の鉱滓試料採取容器。
[Claims for Utility Model Registration] 1. On the inner surface of a sample container formed into a concave shape using a porous material with low thermal conductivity, a metal film that does not easily react with high-temperature slag is placed on the inner surface of the sample container to reduce the porosity of the sample container. A slag sample collection container characterized by being coated to prevent the occurrence of slag. 2. The slag sample collection container according to claim 1, wherein a graphite layer is interposed between the inner surface of the sample container and the metal film.
JP1877584U 1984-02-13 1984-02-13 Mine slag sample collection container Granted JPS60131856U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1877584U JPS60131856U (en) 1984-02-13 1984-02-13 Mine slag sample collection container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1877584U JPS60131856U (en) 1984-02-13 1984-02-13 Mine slag sample collection container

Publications (2)

Publication Number Publication Date
JPS60131856U JPS60131856U (en) 1985-09-03
JPH0225168Y2 true JPH0225168Y2 (en) 1990-07-11

Family

ID=30507724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1877584U Granted JPS60131856U (en) 1984-02-13 1984-02-13 Mine slag sample collection container

Country Status (1)

Country Link
JP (1) JPS60131856U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4009167A1 (en) * 1990-03-22 1991-09-26 Electro Nite SAMPLER FOR METAL MELTING

Also Published As

Publication number Publication date
JPS60131856U (en) 1985-09-03

Similar Documents

Publication Publication Date Title
US5615730A (en) Methods for inspecting the content of structure modifying additives in molten cast iron and chilling tendency of flaky graphite cast iron
US4059996A (en) Molten metal sample cup containing blob for promoting carbide formation
EP1925936B1 (en) New thermal analysis device
CN105143471B (en) Molten iron sampler
US5057149A (en) Method and apparatus for introducing uniform quantities of a material into a metallurgical sample
JPH0225168Y2 (en)
JPH0225169Y2 (en)
JPS566772A (en) Instrument for casting
US4105191A (en) Crucible for the thermal analysis of aluminum alloys
Narasimha Murthy et al. Granulated blast furnace slag: potential sustainable material for foundry applications
EP0529074B1 (en) Method of judging carbon equivalent, carbon content, and silicon content of cast iron and estimating physical and mechanical properties thereof, and cooling curve measuring cup used for said method
EP1056995B1 (en) Device and process for thermal analysis of molten metals
US5503475A (en) Method for determining the carbon equivalent, carbon content and silicon content of molten cast iron
EP3311157B1 (en) Apparatus and method for analysis of molten metals
US6155122A (en) Additive for molten metal sampler
US5762675A (en) Method relating to the preparation of amorphous samples and means therefor
US4125144A (en) Refractory material for labeling, which contains an activatable element
US5948350A (en) Device for dispensing additive in molten metal sample mold
AU713552B2 (en) A method relating to the preparation of amorphous samples and means therefor
Varahraam et al. Variation of Residual Magnesium and Preheating Phenomena Associated with Nodularising Alloys employed in the Inmold Process
Kabasele et al. Evaluation of South African Chromite Sand Sintering Behaviour
JPH07120455A (en) Sampling device for molten metal
JPH019005Y2 (en)
CA2080490A1 (en) Method of determining the carbon equivalent, carbon content and silicon content of molten cast iron and estimating the physical and mechanical properties of the iron, and cooling curve measuring cup used in the method
Loane et al. Chemical and Physical Properties of Bottom Pouring Mold Powders