JPH02251217A - Adsorption and separation tower for gas separation - Google Patents

Adsorption and separation tower for gas separation

Info

Publication number
JPH02251217A
JPH02251217A JP1070361A JP7036189A JPH02251217A JP H02251217 A JPH02251217 A JP H02251217A JP 1070361 A JP1070361 A JP 1070361A JP 7036189 A JP7036189 A JP 7036189A JP H02251217 A JPH02251217 A JP H02251217A
Authority
JP
Japan
Prior art keywords
gas
adsorption
adsorbent
separation
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1070361A
Other languages
Japanese (ja)
Inventor
Kenichi Maehara
前原 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1070361A priority Critical patent/JPH02251217A/en
Publication of JPH02251217A publication Critical patent/JPH02251217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To contrive the recovery of a difficultly adsorbable gas with a good degree of efficiency by providing a porous resistance plate perpendicularly to a gaseous stream on an adsorbent bed of an adsorptive separating tower filled with adsorbent. CONSTITUTION:A mixed gas (e.g. air) is separated into a difficultly adsorbable gas (e.g. oxygen) and an easily adsorbable gas (e.g. nitrogen) by pressure swing process using an adsorbent (e.g. zeolite) for effecting a selective adsorption of the gas of a specific component. A porous resistance plate 13 is provided perpendicularly to a gaseous stream on an adsorbent bed 11 of an disruptive separating tower 10 filled with the adsorbent. This reduces the amount of the easily adsorbable gas being carried off with the difficultly adsorbable gas in the process of recovering the difficultly adsorbable gas, which, therefore, can be efficiently recovered as a whole.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧力スイング法によって混合ガスを成分ガスに
分離する吸着分離塔の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement in an adsorption separation column that separates a mixed gas into component gases by a pressure swing method.

〔従来の技術〕[Conventional technology]

特定の成分ガスを優先的(選択的)に吸着する性質を有
する吸着剤を利用して、加圧条件下で晶鉄・層性ガスを
吸着させて難吸着性ガスを分離し、減圧条件下で易吸着
性ガスを脱着して吸着剤を再生する方法は圧力スイング
式ガス分離法(PSA法)と呼ばれ、従来より広く空気
分離装置(o、ガス、Ntガス製造)等の産業分計で利
用されている。
Using an adsorbent that has the property of preferentially (selectively) adsorbing specific component gases, crystalline iron and layered gases are adsorbed under pressurized conditions, and gases that are difficult to adsorb are separated. The method of regenerating adsorbents by desorbing easily adsorbable gases is called the pressure swing gas separation method (PSA method), and is widely used in industrial applications such as air separation equipment (O, gas, Nt gas production). It is used in

このPSA式ガス分離装置の一例を第3図に示し、その
構造と機能を説明する。この装置は主に次の機器よシ構
成されている。
An example of this PSA type gas separation device is shown in FIG. 3, and its structure and function will be explained. This equipment mainly consists of the following equipment.

1は原料ガスプロワ−であって、吸着塔に原料ガスを加
圧供給する機器、2A、2Bは吸着塔、!iA、3Bは
吸着塔2A、2Bの内部に設けられた吸着剤床、4は吸
着塔2A、2Bを減圧して吸着剤を再生する真空ポンプ
、5人、6人、7人、8.5B 、6E及び7Bは定め
られたサイクルタイムに従ってガスの流れを切換える切
換弁である。
1 is a raw material gas blower, which is a device that supplies raw material gas under pressure to an adsorption tower; 2A and 2B are adsorption towers; iA and 3B are adsorbent beds provided inside the adsorption towers 2A and 2B, 4 is a vacuum pump that reduces the pressure in the adsorption towers 2A and 2B and regenerates the adsorbent, 5 people, 6 people, 7 people, 8.5B , 6E and 7B are switching valves that switch the flow of gas according to a predetermined cycle time.

次にPSA式ガス分離装置として、最も広く使用されて
いる0、ガス製造装置を例として、同じく第3図を利用
してその機能を説明する。
Next, the functions of the most widely used PSA type gas separation apparatus, a gas production apparatus, will be explained using FIG. 3 as an example.

PSA式0.ガス製造装置の場合、一般に5A型や13
X型と呼ばれるゼオライトモVキュヲシーブスが吸着剤
として使用され、下記の3つの操作工程によって運転操
作され、空気を原料ガスとしてO,ガスが分りm造され
る。
PSA formula 0. In the case of gas production equipment, generally 5A type or 13
Zeolite MoV Cuosieves, called type X, is used as an adsorbent, and is operated through the following three operating steps to produce O gas using air as a raw material gas.

(1)吸着工程:この工程で0.ガスが製造される。(1) Adsorption step: 0.0% in this step. Gas is produced.

原料ガスとなる空気は空気プロワ−1によって、切換弁
5Af:通って吸着塔2人に送られる。吸着塔2人には
N、ガスをO,ガスに比べて優先的に吸着する性質を有
するゼオライトモVキュフシーブスが吸着剤床3Aとし
て充填されている。
Air serving as a raw material gas is sent to two adsorption towers by an air blower 1 through a switching valve 5Af. The two adsorption towers are filled with zeolite MoV cup sieves, which have the property of preferentially adsorbing N and gases compared to O and gases, as an adsorbent bed 3A.

原料空気中に約79%含有されているN、ガスは、この
吸着剤床5Aを通過する際に次第に吸着剤に吸着される
結果、難吸着性のO,ガスは同時に次第に濃縮されて、
切換弁7人を通って濃縮0.ガスとして分4R造される
N gas, which is about 79% contained in the raw air, is gradually adsorbed by the adsorbent as it passes through this adsorbent bed 5A, and as a result, O gas, which is difficult to adsorb, is gradually concentrated at the same time.
Concentration 0.0 through 7 switching valves. Produced as gas in 4R minutes.

この吸着工程が進行するに従って、吸着剤・、13Aの
吸着剤のN、吸着容量は減少するので、この吸着工程は
0.ガス濃度が所定の濃度まで低下する前に終了する。
As this adsorption process progresses, the N adsorption capacity of the adsorbent 13A decreases, so this adsorption process is completed at 0. The process ends before the gas concentration drops to a predetermined concentration.

通常二の工程で90〜b れる。Usually 90~b in the second step It will be done.

+210.ガス回収工程:この工程では吸着工程終了時
に吸着塔上部に残存するO8富化ガスを回収する。吸着
工程は所定の製品ata度まで低下する前に終了する結
果、吸着塔上部の空間および吸着剤床3Aの吸着剤空隙
には0.富化空気が残存する。このガスは切換弁5A、
7Aを閉とし、切換弁8を開として、吸着塔2Bに回収
する。吸着塔2Bはあらかじめ脱着再生工程が終了した
もので減圧状態であるので吸着塔2人から吸着塔2Bへ
の残存0.富化空気の移送は自然に行われる。このO,
ガス回収工程を効率よく行うことによって、0.製品の
収率をアップさせることができる。
+210. Gas recovery step: In this step, the O8-enriched gas remaining in the upper part of the adsorption tower at the end of the adsorption step is recovered. As a result of the adsorption process being completed before the product ata degree has decreased to a predetermined degree, 0.0% is left in the space above the adsorption tower and the adsorbent voids in the adsorbent bed 3A. Enriched air remains. This gas is transferred to the switching valve 5A,
7A is closed, the switching valve 8 is opened, and the adsorption column 2B is recovered. Since the adsorption tower 2B has previously completed the desorption and regeneration process and is in a reduced pressure state, there is no residual 0.0% from the two adsorption towers to the adsorption tower 2B. Transport of enriched air occurs naturally. This O,
By performing the gas recovery process efficiently, 0. Product yield can be increased.

(3)脱着再生工程:この工程は吸着剤を脱着再生する
工程で、吸着塔2人が吸着工程にある時、吸着塔2Bは
脱着再生工程にあり逆に吸着塔2Bが吸着工程にある時
は吸着塔2人が脱着再生工程にある。この脱着再生工程
は上記12)項のO,ガス回収工程において、0.富化
ガスを他塔に放出した工程に引続き行われる。第5図で
は吸着塔2Bが当該工程にあることを示している。
(3) Desorption and regeneration process: This process is the process of desorption and regeneration of the adsorbent. When the two adsorption towers are in the adsorption process, the adsorption tower 2B is in the desorption and regeneration process, and conversely, when the adsorption tower 2B is in the adsorption process. Two adsorption tower workers are in the desorption and regeneration process. This desorption and regeneration step is performed in the O gas recovery step of item 12) above. This is carried out following the step in which enriched gas is discharged to another column. FIG. 5 shows that the adsorption tower 2B is in the relevant step.

吸着塔2Bは真空ポンプ4によって減圧されることによ
って、吸着剤床3Bの吸着剤に吸着されている吸着性ガ
スは吸着剤より脱離して、切換弁6Bを通って塔外に排
出される。
The adsorption tower 2B is depressurized by the vacuum pump 4, so that the adsorbent gas adsorbed by the adsorbent in the adsorbent bed 3B is desorbed from the adsorbent and discharged to the outside of the tower through the switching valve 6B.

このガスはN、成分に富むガスである。This gas is a gas rich in N, a component.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述したように、0.ガス回収工程が分離効率と分離さ
れるガスの純度に大きな影響を与える。
As mentioned above, 0. The gas recovery process has a major impact on the separation efficiency and the purity of the separated gas.

すなわち、できるだけ高純度で、かつ、できるだけ多く
の0.ガスを回収、することが0.ガス収率の向上と0
.ガス純度の維持に必要である。
In other words, the purity is as high as possible and as much as possible. It is possible to collect and collect gas. Improved gas yield and 0
.. Necessary to maintain gas purity.

一般に吸着剤に吸着される量は吸着されるN。Generally, the amount of N adsorbed by the adsorbent is the amount of N adsorbed.

ガスの分圧に比例する。吸着塔内の吸着剤の空気入口側
に近いほど、N、ガスは多量に吸着され、0、ガスの出
口はど吸着されているN、ガスは少ない。
Proportional to the partial pressure of the gas. The closer to the air inlet side of the adsorbent in the adsorption tower, the more N and gas are adsorbed, and the closer to the gas outlet the less N and gas are adsorbed.

前述した従来法で0.ガス回収工程を行なった場合、0
.ガスを他吸着塔に移送するにしたがって、吸着塔内の
圧力は次第に降下する。すなわち、吸着塔内の全圧(主
にN1分圧と偽分圧の合計にほぼ等しい)が降下するの
で、各部におけるN1分圧も降下する。この場合、先に
述べた理由によって、空気入口側に近い吸着剤はど多量
のN、ガスが吸着剤よ)脱着してくる。このガスがOt
ガス回収ガスに混合してくるため、0.ガスの回収効率
が悪くなる大きな原因となる。
0.0 with the conventional method mentioned above. If gas recovery process is performed, 0
.. As the gas is transferred to another adsorption tower, the pressure inside the adsorption tower gradually decreases. That is, since the total pressure within the adsorption tower (mainly approximately equal to the sum of the N1 partial pressure and the false partial pressure) falls, the N1 partial pressure in each part also falls. In this case, for the reasons mentioned above, a large amount of N and gas (N and gas) are desorbed from the adsorbent near the air inlet side. This gas is Ot
Since the gas is mixed with the recovered gas, 0. This is a major cause of poor gas recovery efficiency.

換言すれば、肯吸着が十分に行われた吸着剤床の全圧は
できるだけ降下させず、0!ガスを多量に含む出口側の
0!富化ガスだけを回収することが理想的である。
In other words, the total pressure of the adsorbent bed where sufficient positive adsorption has been performed should be kept as low as possible to drop to 0! 0 on the exit side that contains a large amount of gas! Ideally, only the enriched gas should be recovered.

又、−数的に真空脱着工程終了時に原料空気を供給管よ
り供給した場合、全圧が低い状態即ちN、ガス分圧が低
くてN、吸着力が低い伏順で供給されるため、N、ガス
が出口側まで短時間で流れO2純度で40〜66%しか
濃縮できな埴。この欠点をおぎなうために・、製品O,
ガスの一部をあらかじめ吸着塔に還流される方法などが
採用されているが、これはo2収率の低下をまねいてい
る。
In addition, numerically speaking, when feed air is supplied from the supply pipe at the end of the vacuum desorption process, the total pressure is low, that is, N, the gas partial pressure is low and N is supplied, and the adsorption force is low, so N is supplied in a low order. , the gas flows to the outlet side in a short time, and the O2 purity can only be concentrated by 40 to 66%. In order to overcome this drawback, product O,
A method has been adopted in which a portion of the gas is refluxed to the adsorption tower in advance, but this leads to a decrease in the O2 yield.

上記技術水準に鑑み、上述した従来技術における不具合
を解消し得るガス分離用吸着分離塔を提供しようとする
ものである。
In view of the above-mentioned state of the art, it is an object of the present invention to provide an adsorption/separation column for gas separation that can eliminate the problems in the prior art described above.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は特定の成分ガスを優先的に吸着する吸着剤を使
用して圧力スイング法によって混合ガスを難吸着性成分
ガスと易吸着性成分ガスとに分離する混合ガス分離用吸
着分離塔において、吸着剤を充填した該吸着分離塔の吸
着剤床に、ガス流れ方向と直角方向に多孔を有する抵抗
板を設けてなることを%徴とする混合ガス分離用吸着分
離塔である。
The present invention provides an adsorption separation column for mixed gas separation that separates a mixed gas into a poorly adsorbable component gas and an easily adsorbable component gas by a pressure swing method using an adsorbent that preferentially adsorbs a specific component gas. This adsorption/separation tower for mixed gas separation is characterized in that the adsorbent bed of the adsorption/separation tower filled with an adsorbent is provided with a resistance plate having porous holes in a direction perpendicular to the gas flow direction.

本発明の好ましい競様としては、上記本発明の構成にお
ける抵抗板を吸着塔内の吸着剤充填高さ(吸着塔が横向
きの場合は吸着剤充填長さ)の半分より吸着剤床の難吸
着性ガスの出口側に設けることがあげられる。ま九抵抗
板は単層構造でも多重構造にすることも任意でちゃ、抵
抗板の開孔率が吸着塔内断面積の10〜50%になるよ
うな抵抗板を使用することが好ましい。
In a preferred embodiment of the present invention, the resistance plate in the above-mentioned configuration of the present invention is moved from half of the height of the adsorbent packed in the adsorption tower (or the length of the adsorbent packed when the adsorption tower is oriented horizontally) to the position where the adsorption of the adsorbent bed is difficult. An example of this is to provide it on the exit side of the gas. The resistance plate may optionally have a single-layer structure or a multilayer structure, but it is preferable to use a resistance plate whose porosity is 10 to 50% of the cross-sectional area of the adsorption tower.

〔作用〕[Effect]

(1)多孔の抵抗板を設けることによって、0.ガ;L
回収工程においてはN、ガスを多量に吸着した空気入口
側吸着剤床からのガス流れを一抵抗板で制限することに
よって、例えば、吸着剤層上部の0.成分に富むガスの
みを効率よく他塔に回収できる。
(1) By providing a porous resistance plate, 0. Ga;L
In the recovery process, the flow of gas from the adsorbent bed on the air inlet side, which has adsorbed a large amount of N and gas, is restricted by one resistance plate, so that, for example, the 0. Only component-rich gas can be efficiently recovered to other towers.

(2)また、この抵抗板を設けることによって、吸着工
程時の性能向上にも有効である。すなわち、吸着工程時
においても原料空気の流れも抵抗を受け、例えば吸着塔
の上部に先立ち吸着塔の下部の全圧が短時間で上昇する
ため、供給原料空気が吹きぬけるような前記の欠点も大
巾に数倍される。
(2) Furthermore, the provision of this resistance plate is effective in improving performance during the adsorption process. That is, even during the adsorption process, the flow of feed air is also resisted, and for example, the total pressure at the bottom of the adsorption tower rises in a short period of time before reaching the top of the adsorption tower, so the above-mentioned drawbacks such as air blowing through the feed air also occur. It is multiplied by a large cloth.

〔実施例〕〔Example〕

以下、本発明オス分離用吸着分離塔の一実施例を第1図
によって説明する。第1図において、9は原料ガス、例
えば空気の入口管、10は吸着塔本体、11は吸着剤床
、12は難吸着性ガス、例えば酸素、の出口管で、との
ま\では従来の吸着塔と同じである。13が本発明の特
徴であるガス流れ方向と直角方向に設けた多孔の抵抗板
である。
Hereinafter, one embodiment of the adsorption separation column for male separation of the present invention will be described with reference to FIG. In Fig. 1, 9 is an inlet pipe for a raw material gas, such as air, 10 is an adsorption tower main body, 11 is an adsorbent bed, and 12 is an outlet pipe for a poorly adsorbed gas, such as oxygen. It is the same as an adsorption tower. 13 is a porous resistance plate provided in a direction perpendicular to the gas flow direction, which is a feature of the present invention.

との実施例では吸着塔本体10の上部の吸着剤床11に
多孔の抵抗板15をガス流れ方向と直角方向に設け、吸
着剤床11をA部とB部に分割している。
In this embodiment, a porous resistance plate 15 is provided on the adsorbent bed 11 in the upper part of the adsorption tower main body 10 in a direction perpendicular to the gas flow direction, and the adsorbent bed 11 is divided into a section A and a section B.

この抵抗板13を設けることによって、0.ガク回収工
程時にB部からA部に流れるガス流に抵抗が与えられる
のでB部の圧力降下が防止され、0.ガス回収ガス中に
B部からのN、脱離ガスの混合が大幅に防止される。
By providing this resistance plate 13, 0. Since resistance is provided to the gas flow flowing from part B to part A during the pulp collection process, pressure drop in part B is prevented, and the pressure drop in part B is prevented. Mixing of N from part B and desorption gas into the gas recovery gas is largely prevented.

ま九、真空脱着工程終了後の吸着塔本体10を、吸着工
程に切換えた時には、原料空気の流れも、この抵抗板に
よって抵抗を受け、吸着塔本体10上部に先立って吸着
塔本体1oの下部の全圧が短時間に上昇するため、原料
空気が一挙に吹抜は現象を起すことがない。
(9) When the adsorption tower main body 10 is switched to the adsorption step after the vacuum desorption process is completed, the flow of raw material air is also resisted by this resistance plate, and the flow of the raw material air flows through the lower part of the adsorption tower main body 1o before reaching the upper part of the adsorption tower main body 10. Since the total pressure of the air rises in a short period of time, the phenomenon of blowing out all the feed air all at once does not occur.

0、ガス製造装置を代表例として、第3図のフロシート
で構成されたOfガス製造装置に、第1図に示された吸
着塔を採用した場合の効果を第2図および表−1に示す
0. Taking the gas production equipment as a representative example, Fig. 2 and Table 1 show the effects when the adsorption tower shown in Fig. 1 is adopted in the Of gas production equipment configured with the flow sheet shown in Fig. 3. .

この場合の装置条件は表−1に示すが、吸着剤ハ米国の
コニオンカーバイド社製15X型ゼオライトモVキユラ
シーブスを使用している。
The equipment conditions in this case are shown in Table 1, and the adsorbent used is 15X type zeolite MoV Cylinder Sieves manufactured by Conion Carbide Co., Ltd. of the United States.

表 第2図は第3図において切換弁8に接続した配管を0.
ガス回収工程中に流れる0、濃度を計測したものである
Table 2 shows the piping connected to the switching valve 8 in FIG.
This is a measurement of the concentration of 0 flowing during the gas recovery process.

第2図においてaは多孔板の開孔率(塔断面積を100
%として)を10%、bはSOX。
In Figure 2, a is the porosity of the perforated plate (the cross-sectional area of the column is 100
%) is 10%, b is SOX.

c Id 40%とし、dは従来の多孔板のない方式を
比較のために示したものである。
c Id is set to 40%, and d shows a conventional method without a perforated plate for comparison.

0、ガス回収工程は通常5〜15秒間行われるが、本発
明装置を使用しての方法は従来法に比べ、この間のO,
ガス濃度低下が少いことが特徴である。
0. The gas recovery process is normally performed for 5 to 15 seconds, but the method using the device of the present invention has a lower O,
It is characterized by a small decrease in gas concentration.

表−1は第2図のbの場合、(開孔率30Xの抵抗板使
用の場合)の運転性能を示し九ものである。開孔率50
%の抵抗板を吸着塔に取り付けることによってO!ガス
製造麓は従来の9%m”/Hから12 Nm’/mと3
0%以上の大巾改善が認められる。
Table 1 shows the operating performance in case b of Fig. 2 (when using a resistor plate with an aperture ratio of 30X). Open area ratio 50
By attaching a resistance plate of % to the adsorption tower, O! The gas production base has been increased from the conventional 9% m''/H to 12 Nm'/m3.
A major improvement of 0% or more is observed.

更に、偽ガス回収ガスの07m度の向上がみられ、かつ
O,ガスの濃度変動幅が従来の±tO%から士(L2%
に大巾に減少し、非常に安定した0、濃度のガスが製造
できるようになっていることが認められる。
Furthermore, an improvement of 0.7m degree in the false gas recovery gas was observed, and the range of O gas concentration fluctuation was reduced from the conventional ±tO% (L2%).
It is recognized that the concentration of gas has been significantly reduced and that a very stable gas with a concentration of zero can be produced.

〔発明の効果〕〔Effect of the invention〕

(1)難吸着性ガス(I/4えばOS )回収工程で易
吸着性ガス(例えばNt )の随伴が減少するので、全
体として難吸着性ガスを効率よく回収しうる。
(1) Since the amount of easily adsorbed gases (eg, Nt) accompanying the recovery process of poorly adsorbed gases (for example, I/4 OS) is reduced, it is possible to efficiently recover the poorly adsorbed gases as a whole.

(2)真空脱着後の吸着塔を原魁ガス(例えば空気)が
−挙に吹抜けることが阻止され、結果的に曙吸着性ガス
(例えばOl)の純度を高めることができる。
(2) The primary gas (eg, air) is prevented from suddenly blowing through the adsorption tower after vacuum desorption, and as a result, the purity of the adsorbent gas (eg, Ol) can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一夾施例の吸着塔の概略図、第2図
は本発明の詳細な説明するための図表、第3図は従来の
PSA式ガス分離装置のフローy −)である。
Fig. 1 is a schematic diagram of an adsorption tower according to one embodiment of the present invention, Fig. 2 is a diagram for explaining the present invention in detail, and Fig. 3 is a flowchart of a conventional PSA type gas separation device. It is.

Claims (1)

【特許請求の範囲】[Claims] 特定の成分ガスを優先的に吸着する吸着剤を使用して圧
力スイング法によつて混合ガスを難吸着性成分ガスと易
吸着性成分ガスとに分離する混合ガス分離用吸着分離塔
において、吸着剤を充填した該吸着分離塔の吸着剤床に
、ガス流れ方向と直角方向に多孔を有する抵抗板を設け
てなることを特徴とする混合ガス分離用吸着分離塔。
In an adsorption separation column for mixed gas separation, which uses an adsorbent that preferentially adsorbs a specific component gas to separate a mixed gas into a poorly adsorbable component gas and an easily adsorbable component gas using a pressure swing method, adsorption 1. An adsorption separation tower for separating a mixed gas, characterized in that a resistance plate having porous holes in a direction perpendicular to a gas flow direction is provided on an adsorbent bed of the adsorption separation tower filled with an agent.
JP1070361A 1989-03-24 1989-03-24 Adsorption and separation tower for gas separation Pending JPH02251217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1070361A JPH02251217A (en) 1989-03-24 1989-03-24 Adsorption and separation tower for gas separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1070361A JPH02251217A (en) 1989-03-24 1989-03-24 Adsorption and separation tower for gas separation

Publications (1)

Publication Number Publication Date
JPH02251217A true JPH02251217A (en) 1990-10-09

Family

ID=13429218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1070361A Pending JPH02251217A (en) 1989-03-24 1989-03-24 Adsorption and separation tower for gas separation

Country Status (1)

Country Link
JP (1) JPH02251217A (en)

Similar Documents

Publication Publication Date Title
EP1380336B1 (en) Pressure swing adsorption process operation and optimization
US5085674A (en) Duplex adsorption process
EP0215899B1 (en) Enhanced pressure swing adsorption processing
US7828877B2 (en) Separation of carbon dioxide from other gases
KR930007491A (en) Dual Product Pressure Swing Adsorption and Membrane Operation
JPH01104325A (en) Adsorption molecular sieve for pressure swing of auxiliary bed
JPH06104176B2 (en) Rapid adiabatic pressure swing adsorption method for multi-component gas separation and its equipment
EP0853968A1 (en) Method for production of nitrogen using oxygen selective adsorbents
JP2008504954A (en) Gas flow adsorption separation method
CA2044909A1 (en) Pressure swing adsorption method for separating gaseous mixtures
JPH0587286B2 (en)
JP2006239692A (en) Pressure swing adsorption process and apparatus
JPH0420643B2 (en)
JPH0639230A (en) Method for recovering argon from waste gas produced in argon-oxygen-carbon removing process
JP2002191925A (en) Pressure swing adsorption method for separating feed gas
KR930007490A (en) Dual Product Pressure Swing Adsorption Method and System
JP3050881B2 (en) How to separate oxygen from air
JPH0239294B2 (en)
US6261343B1 (en) Use of activated carbon adsorbent in argon and/or oxygen controlling hydrogen PSA
JPS60150814A (en) Process for separating supplied gaseous mixture stream by pressure swing adsorption
KR102018322B1 (en) Adsorber system for adsorption process and method of separating mixture gas using its adsorption process
JPH05111611A (en) Device for separating produced gas
JP2994843B2 (en) Recovery method of low concentration carbon dioxide
JPH04222612A (en) Air separator
JPH02251217A (en) Adsorption and separation tower for gas separation