JPH02251187A - Co2 gas laser oscillator - Google Patents

Co2 gas laser oscillator

Info

Publication number
JPH02251187A
JPH02251187A JP7287889A JP7287889A JPH02251187A JP H02251187 A JPH02251187 A JP H02251187A JP 7287889 A JP7287889 A JP 7287889A JP 7287889 A JP7287889 A JP 7287889A JP H02251187 A JPH02251187 A JP H02251187A
Authority
JP
Japan
Prior art keywords
heat
section
laser
oscillator
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7287889A
Other languages
Japanese (ja)
Inventor
Koichi Shimizu
宏一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Amada Co Ltd
Original Assignee
Amada Co Ltd
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd, Okuma Machinery Works Ltd filed Critical Amada Co Ltd
Priority to JP7287889A priority Critical patent/JPH02251187A/en
Publication of JPH02251187A publication Critical patent/JPH02251187A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To increase the area of heat dissipation, and to add a cooling means freely by projecting the heat-dissipating section of a heat pipe to the outside of an oscillator. CONSTITUTION:Discharge pins 2 are implanted to mutual opposed surfaces at the center of an upper half circle section and a pair of upper and lower electrodes 3 at an interval are extended in long size in the axial direction and an air blower 4 is installed in the axial direction to a lower half circle section in a cylindrical body 1 brought to the state of low pressure in a laser oscillator. The electrodes 3 and the air blower 4 are partitioned by a parting plate 5, and an arcuate hood 6 is mounted from the upstream-side opening section of a laser gas flow to the clearance section of the electrodes 3. Several heat exchangers 9 of heat pipes 11 with heat-receiving fins 10 are arrayed to a heat- receiving section on the parting plate side of the hood 6, the heat-dissipating sections of the heat exchangers are penetrated through the end wall 1 of the cylindrical body 1 and projected to the outside, and radiating fins 12 are fixed to the heat-dissipating sections. Accordingly, the heat-dissipating sections of the heat pipes are projected to the outside, thus improving the efficiency of heat exchange by scaling up the radiating fins and adding a cooling means.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザガス冷却用熱交換器を改良したCO□ガ
スレーザ発振器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a CO□ gas laser oscillator with an improved heat exchanger for cooling the laser gas.

従来の技術 レーザ光を発振させるために発振器の電極間でグロー放
電を起こしレーザガスに励起エネルギーを注入するがレ
ーザ出力として取り出されるエネルギーは10%程度で
あるため、放電エネルギのうちレーザ出力として取り出
せない残りのエネルギーの殆どは熱になりレーザガスの
温度を上昇し、この温度上昇はさらにレーザ発振効率を
低下させるという悪循環を繰り返す。このため三軸直交
型のレーザ発振器では、レーザガスを送風機を用いて4
0m/see程度の高速で器内を循環させて、この循環
路中にフィンアンドチューブ型の熱交換器を設置してレ
ーザガスから熱を取り除きレーザガスの温度を低くして
所望のレーザ出力を得るようになされている。
Conventional technology To oscillate laser light, a glow discharge is generated between the electrodes of an oscillator and excitation energy is injected into the laser gas, but only about 10% of the energy is extracted as laser output, so the discharge energy cannot be extracted as laser output. Most of the remaining energy turns into heat and increases the temperature of the laser gas, and this temperature increase further reduces the laser oscillation efficiency, repeating a vicious cycle. For this reason, in a three-axis orthogonal laser oscillator, the laser gas is
The laser gas is circulated in the chamber at a high speed of about 0 m/see, and a fin-and-tube heat exchanger is installed in this circulation path to remove heat from the laser gas and lower the temperature of the laser gas to obtain the desired laser output. is being done.

発明が解決しようとする課題 レーザガスの温度を低くする一つの手段は熱交換器の熱
交換能力を上げて発生した熱を早く取り去ることで、フ
ィンアンドチューブ型の熱交換器では放熱面積を大きく
するかチューブ本数を増加することになる。またレーザ
ガスの温度を低くするもう一つの手段はガス流速を高く
してレーザカスが放電空間内でグロー放電にさらされて
レーザガスに温度が伝わる時間を極力短くすることで強
力な送風機を使うことになる。
Problems to be Solved by the Invention One way to lower the temperature of the laser gas is to increase the heat exchange capacity of the heat exchanger and quickly remove the generated heat.In the case of a fin-and-tube heat exchanger, the heat radiation area is increased. Or the number of tubes will be increased. Another way to lower the temperature of the laser gas is to use a powerful blower by increasing the gas flow rate and minimizing the time during which the laser scum is exposed to glow discharge in the discharge space and the temperature is transmitted to the laser gas. .

前者のようにするとレーザガスの流れに対する障害物が
多くなり流れに対する抵抗が増してレーザガスの流速を
低下させるという矛盾が生じる。
If the former method is used, there will be a contradiction in that the number of obstacles to the flow of the laser gas will increase, the resistance to the flow will increase, and the flow velocity of the laser gas will decrease.

後者のようにすると送風機の圧縮仕事による発熱による
レーザガスの温度上昇さらに送風機が大きくなり発振器
を小形にすることが困難になる不都合がある。
If the latter is used, the temperature of the laser gas will rise due to heat generated by the compressive work of the blower, and the blower will become larger, making it difficult to downsize the oscillator.

本発明は従来の技術の有するこのような問題点に鑑みな
されたもので、その目的とするところは熱交換器がレー
ザガスの流れに対する抵抗を増加させることなく熱交換
能力の大きな熱交換器を持つCO□ガスレーザ発振器を
提供しようとするものである。
The present invention was made in view of the above-mentioned problems of the conventional technology, and its purpose is to provide a heat exchanger with a large heat exchange capacity without increasing the resistance to the flow of laser gas. The present invention aims to provide a CO□ gas laser oscillator.

課題を解決するための手段 上述の目的を達成するために本発明は、熱交換器にヒー
トバイブを用い、該ヒートパイプの放熱部を発振器外部
に取出したものである。または放熱部をレーザガス流路
以外に位iδさせる。
Means for Solving the Problems In order to achieve the above-mentioned objects, the present invention uses a heat vibrator as a heat exchanger, and the heat radiation part of the heat pipe is taken out outside the oscillator. Alternatively, the heat dissipation section is placed at a position iδ other than the laser gas flow path.

作用 強制循環されレーザガスが電極間で注入されたエネルギ
ーの励起に寄与しない残りのエネルギにより温度上昇し
、その熱はヒートバイブプの受熱部で吸収されピー1〜
パイプ内のウィックにより放熱部に運ばれ放熱されろ。
The laser gas is forced to circulate, and its temperature rises due to the remaining energy that does not contribute to the excitation of the energy injected between the electrodes, and the heat is absorbed by the heat receiving part of the heat vibrator.
The wick inside the pipe carries the heat to the heat dissipation section and dissipates it.

冷却されたウィックの循環により効率よくレーザガスの
熱か取り去られレーザガス温度を低く保つ。
The heat of the laser gas is efficiently removed by the circulation of the cooled wick, keeping the laser gas temperature low.

実施例 以下第1図、第2同にもとづいて説明する。レザ発振器
は低圧状態とされた筒体1内に上半内部中央に放電ピン
2を互いの対向面に41U設して間隅をあけた上下一対
の電極3が軸方向に長く延在され、下半内部には軸方向
に長い送風機4が設けられている。そして電極3と送風
機4との間を仕切り板5で仕切られ、レーザガス流の」
−流側間lコ部から電極3の間隙部迄弧状のフード6が
設りられている。また仕切り板5のレーザガス流の下流
側開口部より送風機4の前面迄漏斗形の案内筒7が設G
ノられ、電極3と案内筒7の入口迄弧状のフード8が設
けられている。フード6の仕切り板側にはフィンアンド
チューブ型の熱交換器に替え受熱部に受熱フィン10付
のヒートパイプ11の熱交換器9が数本配列され、その
放熱部は筒体1の端壁1aを貫通して外部に突出し、こ
の放熱部には放熱フィン12が固設されている。そして
ヒートパイプ11と筒体端壁1aの間はOリング13に
よって気密とされている。またフード8の出口側に同様
に受熱部にフィン付のヒートパイプ11の熱交換器9が
数本配列されその放熱フィン12付の放熱部は端壁1a
を貫通して外部に突出し貫通部はOリングにより気密と
されている。そして、レーザガス流に直角方向で電極3
の間隙端にはレーザ光の折り曲げ鏡12、全反射鏡13
、出力窓となる部分反射鏡14が設けられている。なお
、ヒーI・バイブ11の受熱部数熱部には熱交換能力が
充分な場合は必ずしも受熱フィンを設ける必要はないが
設けた方が効率が良くなり好ましい。また放熱部は筒体
外に突出しているので、強制冷却用ファン、冷水冷却装
置を付加して放熱効率を増大することも可能である。ま
た放熱部を筒内のレーザガス流路以外の場所におくこと
も可能であるがこの場合より放熱部位に制限される。
Embodiments will be described below with reference to FIGS. 1 and 2. The laser oscillator has a cylindrical body 1 in a low-pressure state, and a discharge pin 2 is disposed in the center of the upper half of the body 41U on mutually opposing surfaces, and a pair of upper and lower electrodes 3 with a corner between them extend long in the axial direction. An axially long blower 4 is provided inside the lower half. The electrode 3 and the blower 4 are separated by a partition plate 5, and the laser gas flow is controlled by a partition plate 5.
- An arc-shaped hood 6 is provided from the flow-side space 1 to the gap between the electrodes 3. Further, a funnel-shaped guide tube 7 is provided from the downstream opening of the laser gas flow of the partition plate 5 to the front surface of the blower 4.
An arcuate hood 8 is provided extending from the electrode 3 to the entrance of the guide tube 7. On the partition plate side of the hood 6, several heat exchangers 9 of heat pipes 11 with heat receiving fins 10 are arranged in place of the fin-and-tube type heat exchanger in the heat receiving part, and the heat radiating part is arranged on the end wall of the cylinder body 1. A heat dissipation fin 12 is fixed to the heat dissipation portion of the heat dissipation portion. The space between the heat pipe 11 and the cylindrical end wall 1a is made airtight by an O-ring 13. In addition, several heat exchangers 9 of heat pipes 11 with fins are similarly arranged in the heat receiving part on the exit side of the hood 8, and the heat radiating part with heat radiating fins 12 is arranged on the end wall 1a.
The penetrating portion that protrudes to the outside through is made airtight by an O-ring. Then, the electrode 3 is placed in the direction perpendicular to the laser gas flow.
At the end of the gap, there is a laser beam bending mirror 12 and a total reflection mirror 13.
, a partial reflecting mirror 14 serving as an output window is provided. Note that if the heat receiving section of the heat receiving part 11 has sufficient heat exchange capacity, it is not necessarily necessary to provide heat receiving fins, but it is preferable to provide them because the efficiency will be improved. Furthermore, since the heat dissipation section protrudes outside the cylinder, it is also possible to increase the heat dissipation efficiency by adding a forced cooling fan and a cold water cooling device. It is also possible to place the heat dissipation section in a location other than the laser gas flow path within the cylinder, but in this case the heat dissipation section is more limited.

このように構成されているので低圧の筒体1内のレーザ
ガスは送風機4によって矢印方向に流れ、ヒートパイプ
11の間を通りフード6に案内されて電極3間の間隙を
ぬけフード8に案内されヒートパイプ11の間を通り案
内筒7により送風機4に帰る強制循環流となる。電極3
に印加された電圧により放電ビン2からばグロー放電が
発生しており、レーザガスにエネルギーが注入され励起
され発振したレーザ光は折り曲げ鏡12、全反射鏡13
で光路を変更増幅されて部分反射鏡14より出力される
。レーザガスはグロー放電域を通るときレーザ出力とし
て取り出されない残りのグロー放電のエネルギーは熱に
変換してレーザガスの温度を高める。高温となったレー
ザガスば熱交換器9のヒートパイプ11の受熱部により
吸収され管内のウィックによって運ばれた熱は放熱部の
放熱フィン12によって放熱され、冷却されたウィック
が受熱部に戻り循環によって効率的な熱交換を行う。ヒ
ートパイプの放熱部は外部に突出しているため放熱フィ
ンを大きくしたり冷却手段の付加により熱交換効率を格
段に向上できる。
With this structure, the laser gas in the low-pressure cylinder 1 flows in the direction of the arrow by the blower 4, passes between the heat pipes 11, is guided to the hood 6, passes through the gap between the electrodes 3, and is guided to the hood 8. A forced circulation flow passes between the heat pipes 11 and returns to the blower 4 by the guide tube 7. Electrode 3
A glow discharge is generated from the discharge bottle 2 due to the voltage applied to the laser gas, and energy is injected into the laser gas to excite and oscillate the laser beam, which is transmitted to the bending mirror 12 and the total reflection mirror 13.
The optical path is changed and the light is amplified and outputted from the partial reflecting mirror 14. When the laser gas passes through the glow discharge region, the remaining glow discharge energy that is not extracted as laser output is converted into heat and increases the temperature of the laser gas. The heated laser gas is absorbed by the heat receiving section of the heat pipe 11 of the heat exchanger 9 and carried by the wick inside the tube. The heat is radiated by the heat radiating fins 12 of the heat radiating section, and the cooled wick returns to the heat receiving section and is circulated. Perform efficient heat exchange. Since the heat dissipation part of the heat pipe protrudes to the outside, heat exchange efficiency can be significantly improved by increasing the size of the heat dissipation fins or adding cooling means.

効果 以−に詳述したように構成されているので本発明は以下
の効果を奏する。
Effects Since the present invention is constructed as detailed below, the present invention has the following effects.

請求項1のCO2ガスレーザ発振器ではヒートパイプの
放熱部が発振器外に突出しているため放熱面積を大きく
また冷却手段を自由にイ」加することが可能となり受熱
部の受熱フィンの面積を特に大きくする必要がな〈従来
と同程度としても熱交換効率を向」−させることができ
る。また受熱フィンを小さくしたりヒートパイプの本数
を少なくしてレーザガス循環時の抵抗を少なくできこの
結果循環流速を増すことができて熱交換効率を従来と同
程度或いはそれ以上に増大させることができ、発振器の
小形化にも寄与する。
In the CO2 gas laser oscillator of claim 1, since the heat dissipation part of the heat pipe protrudes outside the oscillator, the heat dissipation area is increased and the cooling means can be freely added, making the area of the heat receiving fins of the heat receiving part particularly large. It is possible to improve the heat exchange efficiency even if it is the same level as before. In addition, by making the heat receiving fins smaller and reducing the number of heat pipes, the resistance during laser gas circulation can be reduced, and as a result, the circulation flow rate can be increased, and the heat exchange efficiency can be increased to the same level or more than before. , it also contributes to the miniaturization of the oscillator.

請求項2のCO2ガスレーザ発振器では放熱部位の工夫
が要するが熱交換効率を従来以上に増加させることがで
きる。
In the CO2 gas laser oscillator according to the second aspect, although it is necessary to devise a heat dissipation part, the heat exchange efficiency can be increased more than before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はレーザ発振器の横断面説明図、第2図は熱交換
器を示す図である。 ■・・筒体    3・・電極 4・・送風a   9・・熱交換器 10・・受熱フィン 11・・ヒートパイプI2・ 放
熱フィン 特許出願人 株式会社 大隈鐵工所 株式会社 ア マ ダ
FIG. 1 is a cross-sectional explanatory diagram of a laser oscillator, and FIG. 2 is a diagram showing a heat exchanger. ■...Cylinder 3...Electrode 4...Blower a 9...Heat exchanger 10...Heat receiving fin 11...Heat pipe I2/Radiating fin Patent applicant Okuma Iron Works Co., Ltd. AMADA Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)電極間を強制循環されるレーザガス通路に熱交換
器を設けたCO_2ガスレーザ発振器において、熱交換
器にヒートパイプを用い、該ヒートパイプの放熱部を発
振器外部に取出したことを特徴とするCO_2ガスレー
ザ発振器。
(1) A CO_2 gas laser oscillator in which a heat exchanger is provided in the laser gas path that is forcedly circulated between electrodes, characterized in that a heat pipe is used as the heat exchanger, and the heat dissipation part of the heat pipe is taken out outside the oscillator. CO_2 gas laser oscillator.
(2)ヒートパイプの放熱部を発振器内部のレーザガス
流路以外の場所に位置せしめた請求項1記載のCO_2
ガスレーザ発振器。
(2) CO_2 according to claim 1, wherein the heat dissipation part of the heat pipe is located at a location other than the laser gas flow path inside the oscillator.
Gas laser oscillator.
JP7287889A 1989-03-24 1989-03-24 Co2 gas laser oscillator Pending JPH02251187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7287889A JPH02251187A (en) 1989-03-24 1989-03-24 Co2 gas laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7287889A JPH02251187A (en) 1989-03-24 1989-03-24 Co2 gas laser oscillator

Publications (1)

Publication Number Publication Date
JPH02251187A true JPH02251187A (en) 1990-10-08

Family

ID=13502031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7287889A Pending JPH02251187A (en) 1989-03-24 1989-03-24 Co2 gas laser oscillator

Country Status (1)

Country Link
JP (1) JPH02251187A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832989A (en) * 1996-03-14 1998-11-10 Denso Corporation Cooling apparatus using boiling and condensing refrigerant
US6076596A (en) * 1996-03-14 2000-06-20 Denso Corporation Cooling apparatus for high-temperature medium by boiling and condensing refrigerant
US6119767A (en) * 1996-01-29 2000-09-19 Denso Corporation Cooling apparatus using boiling and condensing refrigerant
US6357517B1 (en) 1994-07-04 2002-03-19 Denso Corporation Cooling apparatus boiling and condensing refrigerant
US6527045B1 (en) 1996-03-14 2003-03-04 Denso Corporation Cooling apparatus boiling and condensing refrigerant
JP2007141941A (en) * 2005-11-15 2007-06-07 Komatsu Ltd Excimer laser device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6357517B1 (en) 1994-07-04 2002-03-19 Denso Corporation Cooling apparatus boiling and condensing refrigerant
US6119767A (en) * 1996-01-29 2000-09-19 Denso Corporation Cooling apparatus using boiling and condensing refrigerant
US6575230B1 (en) 1996-01-29 2003-06-10 Denso Corporation Cooling apparatus using boiling and condensing refrigerant
US5832989A (en) * 1996-03-14 1998-11-10 Denso Corporation Cooling apparatus using boiling and condensing refrigerant
US6076596A (en) * 1996-03-14 2000-06-20 Denso Corporation Cooling apparatus for high-temperature medium by boiling and condensing refrigerant
US6527045B1 (en) 1996-03-14 2003-03-04 Denso Corporation Cooling apparatus boiling and condensing refrigerant
US7004239B2 (en) 1996-03-14 2006-02-28 Denso Corporation Cooling apparatus boiling and condensing refrigerant
JP2007141941A (en) * 2005-11-15 2007-06-07 Komatsu Ltd Excimer laser device

Similar Documents

Publication Publication Date Title
US6212211B1 (en) Shock wave dissipating laser chamber
JPH062337U (en) LCD projector liquid crystal cooler
US5481556A (en) Laser oscillation apparatus with cooling fan and cooling fins
JPH02251187A (en) Co2 gas laser oscillator
JP2005135908A5 (en)
US4686680A (en) Gas laser having improved crossflow blower arrangement
JP2002184234A (en) Lamp cooling structure
JP2003188441A (en) Solar beam direct excitation laser oscillator
JPS6384179A (en) Cross flow type laser apparatus
JP2686395B2 (en) Magnetron cooling system
RU41508U1 (en) SPOTLIGHT
JPS6126035A (en) Air cooler
JPS6342533Y2 (en)
JPS63239888A (en) Gas laser oscillator
JP2983570B2 (en) Laser oscillator
JPS63269589A (en) Laser oscillator
JP2586500Y2 (en) Laser cooling device
JP2793616B2 (en) Laser oscillation device
JPH0799352A (en) Laser oscillator
JPS58155783A (en) Gas laser device
KR100685868B1 (en) Laser device
JPS6312185A (en) Cooling equipment for gas laser oscillator
RU2106047C1 (en) Gas pumping and cooling assembly for fast-flow laser
JPH02222180A (en) Pulse laser oscillator
JPH02101782A (en) Gas laser equipment