JPH02250932A - Manufacture of composite material - Google Patents

Manufacture of composite material

Info

Publication number
JPH02250932A
JPH02250932A JP7147089A JP7147089A JPH02250932A JP H02250932 A JPH02250932 A JP H02250932A JP 7147089 A JP7147089 A JP 7147089A JP 7147089 A JP7147089 A JP 7147089A JP H02250932 A JPH02250932 A JP H02250932A
Authority
JP
Japan
Prior art keywords
alloy
composite material
additive
molten metal
primary crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7147089A
Other languages
Japanese (ja)
Inventor
Satoru Ishizuka
哲 石塚
Shinji Yamamoto
真二 山本
Nobuhiro Fujita
伸弘 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP7147089A priority Critical patent/JPH02250932A/en
Publication of JPH02250932A publication Critical patent/JPH02250932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain the composite material contg. metallic structure having excellent strength by dispersedly adding an additive such as grains and whiskers of specified substance to the molten metal of a binary alloy and cooling and solidifying the structure white stirring is executed. CONSTITUTION:The molten metal 10a of an Al-Si ally, e.g. of Al-22% Si is charged to a heat-resistant vessel 11 and an additive 12 such as SiC grains and whiskers is added to the molten metal 10a at >=730 deg.C, which is cooled while stirring is executed. In the alloy molten metal 10a, the added substance 12 forms a nucleus and the primary crystals 13 are crystallized out at 577 to 730 deg.C. By furthermore continuing stirring and cooling, the added substance 12 is preferentially consumed inside the primary crystals 13 to reinforce the primary crystals 13, and when temp. is reduced to <=577 deg.C, the other parts are gradually solidified as well to form a matrix 14, by which the reinforced composite material contg. metallic structure can be obtd.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、複合材料の製造方法に係り、特に粒子、ウィ
スカー等の添加物を合金に分散させて添加するようにし
た複合材料の製造方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a composite material, in particular a method for manufacturing a composite material, in which additives such as particles and whiskers are dispersed and added to an alloy. This invention relates to a method for manufacturing composite materials.

(従来の技術及び発明が解決しようとする課題)従来、
強化複合材料の製造方法としては添加物と金属粉末とを
混合し、これを金型等で成形した後に焼結する粉末冶金
法があり、また、ボロン、炭素、アルミナ、炭化ケイ素
を繊維とする強化材プリフォームを金型に配置し、これ
に純アルミニュウムの如き金属または合金の溶湯を注入
し加圧成形するようにした溶湯鋳造法等がある。
(Prior art and problems to be solved by the invention) Conventionally,
There is a powder metallurgy method for producing reinforced composite materials, in which additives and metal powder are mixed, molded in a mold, etc., and then sintered, and boron, carbon, alumina, and silicon carbide are used as fibers. There is a molten metal casting method in which a reinforcing material preform is placed in a mold, and a molten metal such as pure aluminum or an alloy is injected into the mold and pressure molded.

これ等の方法のうち粉末冶金法では添加物が合金中に適
度に分散配置されず、局部的に強度が弱い部分が生じる
し、また、溶湯鋳造法では強化材プリフォーム中に溶湯
が十分に浸透されず、末複合化部が生じ強度が局部的に
弱い部分が生じることがある等の問題があった。
Among these methods, in the powder metallurgy method, the additives are not properly dispersed in the alloy, resulting in localized areas of weak strength, and in the molten metal casting method, the molten metal is not sufficiently dispersed in the reinforcing material preform. There were problems such as not being permeated, resulting in the formation of composite parts and locally weak strength parts.

本発明は、これ等の問題を解決するためにアルミニュウ
ムの如き溶湯状態あるいは部分凝固状態の合金中に粒子
、ウィスカー等の添加物を分散させながら添加し強固な
複合材料を製造方法するようにしたものである。
In order to solve these problems, the present invention provides a method for manufacturing strong composite materials by adding additives such as particles and whiskers to a molten or partially solidified alloy such as aluminum while dispersing them. It is something.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、二元素以上の溶湯状態の合金にまたは部分凝
固状態の合金に粒子、ウィスカー等の添加物を分散して
添加させ、この合金を冷却しながら撹拌して凝固させる
ようにしたものである。
(Means for Solving the Problems) The present invention involves adding dispersed additives such as particles and whiskers to a molten alloy of two or more elements or a partially solidified alloy, and stirring the alloy while cooling it. It is made to solidify.

(作 用) 二元素置上の溶湯状態の合金に添加物を添加し、この合
金を冷却しながら撹拌すると、この添加物が核となる初
品が晶出し、その後全体が凝固すると、この初晶部が添
加物により強化された複合材料となる。また、添加物の
量によっては初晶が晶出されて強化されるとともにマト
リックスも強化された複合材料となる。さらにまた、二
元素置上の部分凝固状態の合金に粒子、ウィスカー等の
添加物を分散して添加し、この合金を冷却しながら撹拌
すると、マトリックスが強化された合金が得られる。
(Function) When an additive is added to a molten alloy placed on a two-element system and the alloy is stirred while being cooled, an initial product with the additive as a nucleus crystallizes out, and then when the whole solidifies, this initial product crystallizes. The result is a composite material whose crystalline parts are strengthened by additives. Furthermore, depending on the amount of additives, primary crystals are crystallized and strengthened, and the matrix is also strengthened to form a composite material. Furthermore, by adding dispersed additives such as particles and whiskers to an alloy in a partially solidified state on a two-element system, and stirring the alloy while cooling, an alloy with a strengthened matrix can be obtained.

(実施例) 以下図面について本発明複合材料を製造方法の一実施例
を説明する。
(Example) An example of the method for manufacturing the composite material of the present invention will be described below with reference to the drawings.

一般に、合金は、その合金比率により異なるが温度によ
り凝固状態、部分凝固状態および溶湯状態となる。すな
わち、第2図は、Al−3t合金の平衡状態図であり、
例えば、A l−22%Si合金では、730℃以上の
温度で溶湯状態、577℃〜730℃の温度範囲で部分
凝固状態、577℃以下の温度で凝固状態となる。
In general, an alloy can be in a solidified state, a partially solidified state, or a molten state depending on the temperature, depending on the alloy ratio. That is, FIG. 2 is an equilibrium state diagram of Al-3t alloy,
For example, an Al-22% Si alloy becomes a molten metal at a temperature of 730°C or higher, a partially solidified state at a temperature of 577°C to 730°C, and a solidified state at a temperature of 577°C or lower.

本発明は、合金の上記状態変化を利用して強化複合材料
を製造するものでって、まず、湯槽11に合金10を入
れ高温に加熱して溶湯状態10aにした後、この溶湯状
態10aの合金中にSi粒子、ウィスカー等の添加物1
2を添加して撹拌しなが冷却する(第1図(a))。そ
こで、冷却が進み溶湯状態10aから部分凝固状態にな
ると、合金10には添加物12が核となって初晶13が
晶出される(第1図(b))。この合金10をさらに冷
却しながら撹拌すると、初晶13の内部に前記添加物1
2が優先的に消費され初晶13が強化されるとともに、
その他の部分も次第に凝固してマトリックス14が形成
され、強力複合材料となる(第1図(C))。
In the present invention, a reinforced composite material is manufactured by utilizing the above state change of the alloy. First, the alloy 10 is placed in a hot water bath 11 and heated to a high temperature to form a molten metal state 10a, and then the alloy 10 is placed in a molten metal state 10a. Additives such as Si particles and whiskers in the alloy 1
2 and cooled while stirring (Fig. 1(a)). Then, as cooling progresses and the state changes from the molten state 10a to a partially solidified state, primary crystals 13 are crystallized in the alloy 10 with the additive 12 acting as a nucleus (FIG. 1(b)). When this alloy 10 is stirred while being further cooled, the additive 1 is added to the inside of the primary crystal 13.
2 is preferentially consumed and primary crystal 13 is strengthened,
The other portions are also gradually solidified to form a matrix 14, resulting in a strong composite material (FIG. 1(C)).

そこで、上記Al−22%Si合金により第1図に示す
複合材料を製造するには、730℃以上の温度で添加物
12を入れ、撹拌しながら冷却すると577℃〜730
℃の温度範囲で初品13が生成され、577℃以下に温
度が低下すると全体が凝固し複合材料となる。
Therefore, in order to manufacture the composite material shown in FIG. 1 using the Al-22%Si alloy, add the additive 12 at a temperature of 730°C or higher and cool it while stirring.
The initial product 13 is produced in the temperature range of 577° C., and when the temperature drops below 577° C., the whole solidifies to form a composite material.

上記場合は初晶13を強化して複合材料を製造するもの
であるが、添加物12を多くすると初晶13とマトリッ
クス14を強化して複合材料が製造される。すなわち、
溶湯状態10aで多量の添加物12を入れると部分凝固
状態において添加物12が核となって初晶13が生成さ
れとともに、その初晶13に消費されず残った添加物1
2はマトリックス14に分散して消費され、その後全体
が凝固することによって初晶13とマトリックス14と
の両者が添加物12によって強化された強化複合材料と
なる。
In the above case, a composite material is manufactured by strengthening the primary crystals 13, but if the amount of the additive 12 is increased, a composite material is manufactured by strengthening the primary crystals 13 and the matrix 14. That is,
When a large amount of the additive 12 is added in the molten state 10a, the additive 12 becomes a nucleus in the partially solidified state and primary crystals 13 are generated, and the additive 1 that is not consumed and remains in the primary crystal 13.
2 is dispersed in the matrix 14 and consumed, and then the entire material solidifies, thereby forming a reinforced composite material in which both the primary crystals 13 and the matrix 14 are strengthened by the additive 12.

さらにまた、この二元素置上の合金10を部分凝固状態
にしてから、この合金に添加物12を添加し、冷却しな
がら撹拌すると、この部分凝固状態の合金10にはすで
にある温度で初晶20が品出されているので(第3図(
a)) 、この初晶20には添加物12が受入れられず
添加物12はマトリックス14のみに分散して消費され
る(第3図(b))。この状態でさらに冷却されると、
合金10全体が凝固されマトリックス14が強化された
強力な複合材料が製造される(第2図(C))。
Furthermore, if the alloy 10 in the two-element state is brought into a partially solidified state, and then the additive 12 is added to this alloy and stirred while cooling, the alloy 10 in the partially solidified state will already have primary crystals at a certain temperature. 20 are on sale (see Figure 3).
a)) The additive 12 is not accepted in this primary crystal 20, and the additive 12 is dispersed and consumed only in the matrix 14 (FIG. 3(b)). If it is further cooled in this state,
The entire alloy 10 is solidified to produce a strong composite material with reinforced matrix 14 (FIG. 2(C)).

第4図、第5図および第6図は、上記方法により製造さ
れた複合材料の組織を示す顕微鏡写真である。
FIG. 4, FIG. 5, and FIG. 6 are micrographs showing the structure of the composite material manufactured by the above method.

即ち、第4図と第5図は、Al−22%Si合金(AC
9A)を溶湯状態10aにし、これにSi粒子の添加物
12を5重量%、20重量%を添加して製造した複合材
料である。
That is, FIGS. 4 and 5 show that Al-22%Si alloy (AC
9A) was made into a molten metal state 10a, and 5% by weight and 20% by weight of Si particle additives 12 were added thereto to produce a composite material.

この写真から明らかなように添加物12を5重量%(第
4図)を添加したものは、初晶20だけが強化され、マ
トリックス14には添加物12が残らない強力な複合材
料である。また、20重量%を添加したものは初晶20
およびマトリックス14が強化された強力な複合材料と
なる。
As is clear from this photograph, the material to which 5% by weight of the additive 12 (FIG. 4) is added is a strong composite material in which only the primary crystals 20 are strengthened and no additive 12 remains in the matrix 14. In addition, when 20% by weight is added, primary crystals are 20%
and the matrix 14 becomes a reinforced and strong composite material.

第6図は、Al−22%Si合金(A C9A)を部分
凝固状態10bにし、これにSi粒子の添加物12Sを
40重量%を添加して製造した複合材料である。
FIG. 6 shows a composite material produced by bringing an Al-22% Si alloy (AC9A) into a partially solidified state 10b and adding 40% by weight of an additive 12S of Si particles thereto.

この写真から明らかなように部分凝固状態10bの合金
中に添加物12を添加したものでは、添加物12は初晶
20に消費されずマトリックス14のみに分散された強
力な複合材料となる。
As is clear from this photograph, when the additive 12 is added to the alloy in the partially solidified state 10b, the additive 12 is not consumed in the primary crystals 20 but is dispersed only in the matrix 14, resulting in a strong composite material.

なお、上記実施例では添加物としてSi粒子を用いたが
、ウィスカーのようなものを用いても同様な効果を得る
ことができる。
Note that although Si particles were used as the additive in the above embodiments, similar effects can be obtained by using something like whiskers.

〔発明の効果〕〔Effect of the invention〕

二元素以上の溶湯状態の合金を、あるいは部分凝固状態
の合金中に適量の粒子、ウィスカー等の添加物を添加し
て冷却しながら撹拌し複合材料を製造したので、添加物
が合金内の初品内あるいはマトリックス内に均一に分散
し、当該部の強度が増加され強力な複合材料を得ること
ができる。しかも、添加物の量によっては両者がともに
強化された複合材料を得ることができる。
Composite materials are manufactured by adding an appropriate amount of additives such as particles or whiskers to a molten alloy of two or more elements or a partially solidified alloy and stirring while cooling. It is uniformly dispersed within the product or matrix, increasing the strength of the relevant part and making it possible to obtain a strong composite material. Furthermore, depending on the amount of additives, it is possible to obtain a composite material in which both are reinforced.

したがって、この強化複合材料の製造方法によれば強化
ブリフームを事前に製造する必要もなく、特別な加圧装
置も必要もない。
Therefore, according to this method for manufacturing a reinforced composite material, there is no need to manufacture a reinforced brim in advance, nor is there a need for a special pressurizing device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明複合材の製造方法の概略を示す説明図
、第2図は、−数的な二元素合金の平衡状態図、第3図
は、本発明の他の複合材の製造方法の概略を示す説明図
、第4図、第5図および第6図は、それぞれ第1図およ
び第3図により製造された複合材の組成を示す顕微鏡写
真である。 10・・・合金、11・・・湯槽、12・・・添加物、
13.20・・・初晶、14・・・マトリックス。
FIG. 1 is an explanatory diagram showing an outline of the method for manufacturing the composite material of the present invention, FIG. 2 is a numerical equilibrium state diagram of a two-element alloy, and FIG. 3 is a diagram for manufacturing another composite material of the present invention. Explanatory drawings showing the outline of the method, FIG. 4, FIG. 5, and FIG. 6 are micrographs showing the composition of the composite materials manufactured according to FIGS. 1 and 3, respectively. 10... Alloy, 11... Hot water tank, 12... Additive,
13.20...primary crystal, 14...matrix.

Claims (1)

【特許請求の範囲】[Claims]  二元素以上の溶融状態の合金にまたは部分凝固状態の
合金に粒子、ウィスカ等の添加物を分散して添加させ、
この合金を冷却しながら撹拌して凝固するようにしたこ
とを特徴とする複合材料の製造方法。
Dispersing and adding additives such as particles and whiskers to an alloy of two or more elements in a molten state or an alloy in a partially solidified state,
A method for manufacturing a composite material, characterized in that the alloy is stirred and solidified while being cooled.
JP7147089A 1989-03-23 1989-03-23 Manufacture of composite material Pending JPH02250932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7147089A JPH02250932A (en) 1989-03-23 1989-03-23 Manufacture of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7147089A JPH02250932A (en) 1989-03-23 1989-03-23 Manufacture of composite material

Publications (1)

Publication Number Publication Date
JPH02250932A true JPH02250932A (en) 1990-10-08

Family

ID=13461526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7147089A Pending JPH02250932A (en) 1989-03-23 1989-03-23 Manufacture of composite material

Country Status (1)

Country Link
JP (1) JPH02250932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339027A (en) * 2001-05-18 2002-11-27 Honda Motor Co Ltd Member using aluminum alloy composite material and its producing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339027A (en) * 2001-05-18 2002-11-27 Honda Motor Co Ltd Member using aluminum alloy composite material and its producing method
JP4550314B2 (en) * 2001-05-18 2010-09-22 本田技研工業株式会社 Member using aluminum-based composite material and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4713111A (en) Production of aluminum-SiC composite using sodium tetrasborate as an addition agent
US4753690A (en) Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement
CN110423914B (en) Preparation method of rare earth magnesium alloy composite material
CN105401012A (en) Preparation method for novel pelletized hypereutectic Al-Si alloy
CN107400808B (en) A kind of Al-Ti-C-Nd intermediate alloy and its preparation method and application
CN109022888B (en) Novel in-situ self-generated hypereutectic aluminum-silicon alloy composite modifier and preparation method thereof
CN106555066B (en) A method of preparing high-performance richness iron secondary aluminium with micro compound additive
JP3246363B2 (en) Forming method of semi-molten metal
CN106702227B (en) A kind of wear-resistant aluminum alloy and preparation method thereof
JPH02250932A (en) Manufacture of composite material
JPH09137239A (en) Method for molding half-molten metal
GB1309340A (en) Production of fine grained ingots for the advanced superalloys
Mondal et al. Net-shape manufacturing of intricate components of A356/SiCp composite through rapid-prototyping-integrated investment casting
CN113373367A (en) Aluminum intermediate alloy containing multi-scale mixed particles and preparation method thereof
CN1944699B (en) High volume fractional endogenous granular reinforced aluminum base composite material and its preparing method
CN106544531A (en) A kind of process of In-situ Synthesis TiC Particle refining aluminum alloy solidified structure
JPH08325652A (en) Method for molding semisolid metal
JP3216685B2 (en) Forming method of semi-molten metal
JPH0987768A (en) Production of half-melted hypereutectic al-si alloy
JP3053063B2 (en) Manufacturing method of aluminum alloy casting material suitable for semi-solid molding
Ajith Kumar et al. Changes in solidification morphology of Mg–Si alloys by Ca additions
JPH10195586A (en) Fe-c-si alloy casting and its casting method
JPH0987773A (en) Method for molding half-molten metal
JPH0987771A (en) Production of half-melted aluminum-magnesium alloy
JP2864391B2 (en) Hypereutectic Al-Si alloy composite material and method for producing the same