JPH02250928A - Method for recovering zinc - Google Patents

Method for recovering zinc

Info

Publication number
JPH02250928A
JPH02250928A JP1072341A JP7234189A JPH02250928A JP H02250928 A JPH02250928 A JP H02250928A JP 1072341 A JP1072341 A JP 1072341A JP 7234189 A JP7234189 A JP 7234189A JP H02250928 A JPH02250928 A JP H02250928A
Authority
JP
Japan
Prior art keywords
liquid
dust
zinc
acid
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1072341A
Other languages
Japanese (ja)
Other versions
JP2622413B2 (en
Inventor
Isamu Kato
勇 加藤
Satoru Nagai
悟 長井
Katsuya Watanabe
勝也 渡辺
Tsugio Chikama
近間 次雄
Tadashige Shiga
志賀 忠成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Kurita Water Industries Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Nisshin Steel Co Ltd filed Critical Kurita Water Industries Ltd
Priority to JP7234189A priority Critical patent/JP2622413B2/en
Publication of JPH02250928A publication Critical patent/JPH02250928A/en
Application granted granted Critical
Publication of JP2622413B2 publication Critical patent/JP2622413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To separate and recover a high purity Zn compd. at a high yield by bringing the dust which is collected from an electric furnace, etc., and contains Zn, Fe and other metals into contact with an acid in the presence of an oxidizing agent to dissolve the Zn, the bringing the same into a contact reaction with an alkaline liquid. CONSTITUTION:The dust discharged from the electric furnace, converter, blast furnace, etc., contains the Zn, Fe and other metals and, therefore, this dust 3 is put into an elution tank 4 and an acid liquid 5 of sulfuric acid, etc., is supplied therein. The oxidizing agent 7, such as O2 or air, is blown thereto under stirring with a stirring device 6 to bring the dust into reaction with the acidic liquid of pH4 to 5.5 to dissolve the Zn in the acid liquid while the dissolution of the Fe in the dust is suppressed. This liquid 9 is separated by a solid- liquid separator 10 and the resulted liquid is supplied to a heat treatment tank 11 where the aq. alkaline liquid 12 such as NaOH is added to adjust the pH to 10 to 12. The dissolved Zn heated to 60 to 100 deg.C by a heater 14 is subjected to a solid-liquid sepn. 17 as recovered cake essentially composed of ZnO. Only the Zn is recovered in the high-purity state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電気炉、転炉、高炉等から排出される亜鉛
および鉄を含むダストから、湿式法で亜鉛を効率的に分
離回収する方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides a method for efficiently separating and recovering zinc from dust containing zinc and iron discharged from electric furnaces, converters, blast furnaces, etc. using a wet method. Regarding.

〔従来の技術〕[Conventional technology]

電気炉等の集塵ダスト中には多量の金属亜鉛の他に鉄、
クロム、ニッケルなどの金属が含まれている。ダストは
粒子径が数十μmの粉体で、表面積が大きいため、酸性
液による溶出速度が大きい。
Dust collected from electric furnaces, etc. contains a large amount of metal zinc as well as iron,
Contains metals such as chromium and nickel. Dust is a powder with a particle diameter of several tens of micrometers and has a large surface area, so the elution rate with acidic liquid is high.

そのため原理的には、酸で溶出後にアルカリで中和を行
って水酸化亜鉛として分離すれば回収可能である。
Therefore, in principle, it can be recovered by eluting it with an acid and then neutralizing it with an alkali and separating it as zinc hydroxide.

しかし、酸溶出工程では、亜鉛の溶出と同時に鉄も溶出
するため、回収した亜鉛化合物の純度が低くなる。また
溶出液をアルカリ中和すると、ゲル状水酸化物が生成し
、濾過速度が遅いとともに回収ケーキの含水率が高くな
るなどの問題点がある。
However, in the acid elution step, since iron is also eluted at the same time as zinc is eluted, the purity of the recovered zinc compound becomes low. Further, when the eluate is neutralized with alkali, gel-like hydroxide is generated, which causes problems such as slow filtration rate and high water content of the recovered cake.

このため操作性や経済性の点から湿式法による亜鉛の回
収は実用化されていない。
For this reason, wet method recovery of zinc has not been put to practical use due to operability and economical considerations.

また電気炉等の集塵ダストから亜鉛等の金属を回収する
方法として、高温の塩化アンモニウムで電気炉層じんを
処理して各金属を分別回収する方法が公知である(例え
ば特公昭57−54450号)。
Furthermore, as a method for recovering metals such as zinc from dust collected from electric furnaces, etc., a method is known in which the electric furnace layer dust is treated with high-temperature ammonium chloride and each metal is separated and recovered (for example, Japanese Patent Publication No. 57-54450 issue).

しかしこのような従来の方法では、高温下でダストを処
理するためアンモニア臭が著しく、その対策が必要であ
る。またその排水には高濃度の窒素分が含まれるため、
厳格な廃水処理が要求され。
However, in such conventional methods, since the dust is treated at high temperatures, there is a strong ammonia odor, and countermeasures are required. In addition, the wastewater contains a high concentration of nitrogen, so
Strict wastewater treatment is required.

さらに塩化アンモニウムが高価であるなどの問題点があ
った。
Furthermore, there were other problems such as ammonium chloride being expensive.

このように従来は電気炉集塵ダスト等の有効な処理法が
なく、これらは産業廃棄物として処分され、貴重な資源
が無駄に廃棄されていた。
As described above, in the past, there was no effective treatment method for electric furnace dust, etc., and these were disposed of as industrial waste, resulting in a waste of valuable resources.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この発明の目的は、上記問題点を解決するため、鉄の溶
出を少なくし、純度が高く、含水率が低い亜鉛化合物を
、ダストから効率よく回収することが可能な亜鉛の回収
方法を提案することである。
The purpose of this invention is to solve the above-mentioned problems by proposing a zinc recovery method that can efficiently recover zinc compounds with high purity and low water content from dust while reducing iron elution. That's true.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は亜鉛および鉄を含むダストを酸化性物質の存在
下に酸と接触させて亜鉛を溶出させる工程と、その溶出
液をアルカリ性下に加熱処理する工程と、固液分離する
工程とを含むことを特徴とする亜鉛の回収方法である。
The present invention includes a step of contacting dust containing zinc and iron with an acid in the presence of an oxidizing substance to elute zinc, a step of heat-treating the eluate under alkalinity, and a step of solid-liquid separation. This is a method for recovering zinc.

本発明において処理の対象となるダストは、亜鉛および
鉄を含むダストであって、他の金属等を含んでいてもよ
い、このようなダストとしては。
The dust to be treated in the present invention is dust containing zinc and iron, and may also contain other metals.

電気炉、転炉、高炉等の製錬所の集塵ダストがあげられ
る。
Examples include dust collected from smelters such as electric furnaces, converters, and blast furnaces.

本発明の亜鉛の回収方法では、まず亜鉛および鉄を含む
ダストを酸化剤の存在下に接触させて亜鉛を溶出させる
。酸化性物質としては酸素、空気のほか過酸化水素等の
酸化剤などが使用でき、酸素、空気などのガスを用いる
場合は曝気を行うことができる。酸としては硫酸、塩酸
など任意の酸を用いることができるが、硫酸が好ましい
In the zinc recovery method of the present invention, first, dust containing zinc and iron is brought into contact with the dust in the presence of an oxidizing agent to elute zinc. As the oxidizing substance, in addition to oxygen and air, an oxidizing agent such as hydrogen peroxide can be used. When using a gas such as oxygen or air, aeration can be performed. As the acid, any acid such as sulfuric acid and hydrochloric acid can be used, but sulfuric acid is preferred.

亜鉛の溶出はダストを前記酸化剤の存在下に酸と接触さ
せることにより行われるが、このときの酸液のPHは3
〜6、好ましくは4〜5.5が適当である。
Elution of zinc is carried out by bringing the dust into contact with acid in the presence of the oxidizing agent, but the pH of the acid solution at this time is 3.
-6, preferably 4-5.5 is suitable.

酸溶出工程では、回収対象の亜鉛をできるだけ多量に溶
出させる必要があり、このためにはpoを低くすれば可
能であるが、同時に鉄の溶出も多くなるとともに、酸使
用量が増加し、不経済となる。
In the acid elution process, it is necessary to elute as much zinc as possible to be recovered, and this can be done by lowering the PO, but at the same time, more iron is eluted and the amount of acid used increases, resulting in waste. It becomes the economy.

pH6では鉄の溶出は起きないが、亜鉛の溶出量が低く
なる。亜鉛の溶出と鉄の溶出防止を両立させるためには
、pH4〜5.5で溶出を行うと同時に、空気攪拌の併
用あるいは酸化剤の添加を行うのが有効である。
At pH 6, iron elution does not occur, but the amount of zinc elution becomes low. In order to achieve both the elution of zinc and the prevention of elution of iron, it is effective to elute at pH 4 to 5.5 and simultaneously use air stirring or add an oxidizing agent.

酸化性物質の使用量は、空気、酸素等のガスを用いる場
合は酸液を攪拌できる程度に供給する。
When using a gas such as air or oxygen, the oxidizing substance is supplied in an amount sufficient to stir the acid solution.

酸化剤を用いる場合例えば過酸化水素では、250〜1
000mg/jl程度用いる。
When using an oxidizing agent, for example, hydrogen peroxide, 250 to 1
About 000mg/jl is used.

これらの酸化性物質により酸化鉄(Fed)のような可
溶性の鉄の溶出抑制が可能となる。溶出液中のFe/Z
n(重量比)は115以下、好ましくはl/10以下に
すると、後の工程において分離性の良好な汚泥が得られ
るので、亜鉛溶出工程におけるPH1酸化性物質の使用
量を選択し、Fe/Zn(重量比)を上記範囲に維持す
る。
These oxidizing substances make it possible to suppress the elution of soluble iron such as iron oxide (Fed). Fe/Z in eluate
When n (weight ratio) is 115 or less, preferably l/10 or less, sludge with good separability can be obtained in the subsequent process. Maintain Zn (weight ratio) within the above range.

このようにして亜鉛を溶出させた溶出液は、次の熱処理
工程において、アルカリ性下に加熱処理する。この工程
では亜鉛の溶出液にアルカリを添加してPH9以上、好
ましくは10〜12に調整した状態で、賽温50℃以上
、好ましくは60〜100℃で、lO分〜5時間、好ま
しくは30分〜4時間加熱処理を行う、アルカリとして
は水酸化ナトリウム、酸化マグネシウムなどが使用でき
る。
The eluate from which zinc has been eluted in this manner is heat treated under alkaline conditions in the next heat treatment step. In this step, an alkali is added to the zinc eluate to adjust the pH to 9 or higher, preferably 10 to 12, and the temperature is 50°C or higher, preferably 60 to 100°C, for 10 minutes to 5 hours, preferably 30 The heat treatment is performed for minutes to 4 hours. As the alkali, sodium hydroxide, magnesium oxide, etc. can be used.

アルカリの添加により溶出液中の亜鉛、鉄等は水酸化物
となり、このときの汚泥はゲル状で脱水性が悪いが、加
熱処理すると白色粉末状となり、脱水性の良好な汚泥が
得られる。この加熱処理による脱水縮合により酸化亜鉛
が生成するが、鉄等の不純物が共存すると、亜鉛との複
合錯体が生成し、酸化亜鉛が生成しにくくなるため、脱
水性の良好な汚泥が得られなくなるものと推測される。
By adding alkali, zinc, iron, etc. in the eluate become hydroxides, and the sludge at this time is gel-like and has poor dewatering properties, but when heated, it becomes a white powder and a sludge with good dewatering properties is obtained. Zinc oxide is produced through dehydration condensation during this heat treatment, but if impurities such as iron coexist, a complex with zinc will form, making it difficult to produce zinc oxide, making it impossible to obtain sludge with good dewatering properties. It is assumed that

加熱処理後、固液分離することにより、酸化亜鉛を主体
とする亜鉛化合物を高純度で回収することができる。こ
のとき汚泥の分離性は良好であるため、沈殿分離、濾過
脱水等により、効率よく固液分離を行うことができる。
By performing solid-liquid separation after heat treatment, a zinc compound mainly composed of zinc oxide can be recovered with high purity. At this time, since the separability of the sludge is good, solid-liquid separation can be efficiently performed by precipitation separation, filtration and dehydration, etc.

以下、本発明を図面により具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to the drawings.

第1図は、亜鉛回収方法の好ましい実施態様を示す系統
図である。
FIG. 1 is a system diagram showing a preferred embodiment of the zinc recovery method.

亜鉛の回収方法は、まずホッパー1およびコンベア2に
より電気炉集塵ダスト等のダスト3を溶出槽4に供給す
る。この溶出槽4には酸液供給路5より酸液を供給する
。溶出槽4において攪拌装置16で攪拌しながら、曝気
装M7により空気を供給して曝気を行い、ダスト3から
鉄の溶出を抑制しながら亜鉛を溶出させる。この溶出液
8は流路9の途中に設けられた固液分離装置10により
不溶物を分離して熱処理槽11に供給する。熱処理槽1
1にはアルカリ液供給路12よりアルカリ液を供給し。
In the zinc recovery method, first, dust 3 such as electric furnace dust is supplied to an elution tank 4 using a hopper 1 and a conveyor 2. An acid solution is supplied to this elution tank 4 from an acid solution supply path 5. In the elution tank 4, aeration is performed by supplying air with an aeration device M7 while stirring with the stirring device 16, and zinc is eluted from the dust 3 while suppressing the elution of iron. This eluate 8 is supplied to a heat treatment tank 11 after separating insoluble matter by a solid-liquid separator 10 provided in the middle of a flow path 9 . Heat treatment tank 1
1 is supplied with alkaline liquid from an alkaline liquid supply path 12.

攪拌装置13により攪拌して、PH調整するとともに、
ヒーター14により加熱処理して汚泥を析出させる。
While stirring with the stirring device 13 to adjust the pH,
Heat treatment is performed using a heater 14 to precipitate sludge.

この加熱処理液15を流路16により固液分離装置11
7(脱水機)に供給して固液分離し5回収ケーキと濾液
を得る。
This heat-treated liquid 15 is passed through a flow path 16 to a solid-liquid separator 11.
7 (dehydrator) for solid-liquid separation to obtain a recovered cake and a filtrate.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、ダストを酸化性物質の存在下に酸と
接触させた後、アルカリ性下に加熱処理するようにした
ので、鉄の溶出量が少ない状態で亜鉛を溶出させるとと
もに、脱水性の良好な汚泥を生成させることができ、効
率よく固液分離を行って、高純度の亜鉛化合物を回収す
ることができる。この場合同液分離速度は大きいため、
作業性が向上するとともに、得られた脱水ケーキの含水
率は低いため、搬送費や、製錬時の熱損失が小さい。ま
た亜鉛の回収により、最終的な廃棄物となるダストの量
は大幅に少なくなる。
According to this invention, the dust is brought into contact with acid in the presence of an oxidizing substance and then heat-treated under alkaline conditions, so that zinc is eluted with a small amount of iron eluted, and the dehydrating property is Good sludge can be produced, solid-liquid separation can be performed efficiently, and highly pure zinc compounds can be recovered. In this case, the liquid separation rate is high, so
Workability is improved, and since the resulting dehydrated cake has a low water content, transportation costs and heat loss during smelting are low. Zinc recovery also significantly reduces the amount of dust that ends up as waste.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。各例中1%は
重量%である。
Examples of the present invention will be described below. In each example, 1% is by weight.

例1 電気炉集塵ダスト(Zn 18.4%、Fe 9.87
%、Ni1.03%、Cr O,26%、Cd O,2
2%)を100g#lの割合で水に懸濁させ攪拌しなが
ら、20%硫酸を添加して所定のpHに保持し、亜鉛を
溶出させた。所定時間経過後の溶出した亜鉛と鉄の濃度
を第2図(A)。
Example 1 Electric furnace dust (Zn 18.4%, Fe 9.87
%, Ni1.03%, CrO,26%, CdO,2
2%) was suspended in water at a ratio of 100 g/l, and while stirring, 20% sulfuric acid was added to maintain a predetermined pH, and zinc was eluted. Figure 2 (A) shows the concentrations of eluted zinc and iron after a predetermined period of time.

(B)に示す。Shown in (B).

第2図(A)、 (B)から亜鉛の溶出の点からはp)
lが低い方がよく、鉄の溶出防止のためにはpHが高い
方がよいことがわかる。
From the point of zinc elution from Figure 2 (A) and (B), p)
It can be seen that a lower l value is better, and a higher pH value is better for preventing iron elution.

例2 例1において、PH4で2時間溶出を行う際に、攪拌の
みを行った場合と、攪拌と曝気を併用した場合と、攪拌
時に酸化剤として500■g/nの過酸化水素水を添加
した場合の鉄の溶出量を表1に示す。
Example 2 In Example 1, when performing elution at pH 4 for 2 hours, there are cases where only stirring is performed, cases where stirring and aeration are used together, and cases where 500 g/n of hydrogen peroxide solution is added as an oxidizing agent during stirring. Table 1 shows the amount of iron eluted.

表1から明らかなように、曝気あるいは酸化剤併用によ
り、鉄の溶出の抑制が可能であった。
As is clear from Table 1, it was possible to suppress the elution of iron by aeration or by using an oxidizing agent in combination.

表1 例3 試薬Zn5O,・7H,05,000+g/fl(Zn
として)およびNa25o42,000mg/Q溶液に
試薬FeCQ3・6H,0を添加し。
Table 1 Example 3 Reagent Zn5O, 7H, 05,000+g/fl (Zn
) and the reagent FeCQ3.6H,0 was added to the Na25o42,000 mg/Q solution.

鉄濃度の影響を検討した。The influence of iron concentration was investigated.

中和は20%水酸化ナトリウムでpH11,5とし、1
00℃で15分間加熱処理し、 その後1時間静置した
。鉄の各濃度における生成した汚泥(亜鉛水和物)の容
積を第3図に示す。
Neutralize to pH 11.5 with 20% sodium hydroxide,
The sample was heat-treated at 00°C for 15 minutes, and then left to stand for 1 hour. Figure 3 shows the volume of sludge (zinc hydrate) produced at each concentration of iron.

第3図から明らかなように、鉄濃度の低い溶出液を、加
熱処理しない場合は、Zn(OH)、のゲルのままであ
るため、沈殿分離しないが、加熱処理すると容積は大幅
に減少した。しかし鉄濃度が高い場合は加熱しても容積
の減少は少なく、脱水縮合による脱水性の良い汚泥が得
られなかった。
As is clear from Figure 3, when the eluate with a low iron concentration is not heat-treated, it remains a gel of Zn(OH) and is not separated by precipitation, but when heat-treated, the volume decreases significantly. . However, when the iron concentration is high, the volume decreases little even when heated, and sludge with good dewatering properties cannot be obtained through dehydration condensation.

例4 試薬Zn5O,・7H,05,OOO■g#1(Znと
して)、Na25o42.000mg/Q、FeCam
・6H,0100mg/Q (Feとして)を、20%
水酸化ナトリウムで所定pHに調整し、100”Cで3
0分間加熱処理した。その後1時間静置して汚泥容積を
測定した結果を表2に示す。
Example 4 Reagent Zn5O, 7H, 05, OOO g#1 (as Zn), Na25o42.000mg/Q, FeCam
・6H, 0100mg/Q (as Fe), 20%
Adjust to the specified pH with sodium hydroxide, and
Heat treatment was performed for 0 minutes. Thereafter, the sludge volume was measured after being allowed to stand for 1 hour, and the results are shown in Table 2.

表2に示すように、縮合反応はPHの影響が大きく、p
H9以上で顕著となった。
As shown in Table 2, the condensation reaction is greatly influenced by pH, and p
This became noticeable at H9 and above.

表2 例5 試薬ZnSO4・7H,010,0OOa+g/a(Z
nとして)、NazSO*4+000txg/Q%Fe
CQa・6)120400mg/ff1(Feとして)
を、20%水酸化ナトリウムで所定PH11,5とし、
15分間所定温度に加熱処理した。静置1時間後の汚泥
容積を表3に示す。
Table 2 Example 5 Reagent ZnSO4.7H,010,0OOa+g/a (Z
n), NazSO*4+000txg/Q%Fe
CQa・6) 120400mg/ff1 (as Fe)
is adjusted to a specified pH of 11.5 with 20% sodium hydroxide,
Heat treatment was performed at a predetermined temperature for 15 minutes. Table 3 shows the sludge volume after 1 hour of standing.

縮合反応に対する液温の影響は大きく、50”C以上で
は効果が顕著となった。
The influence of liquid temperature on the condensation reaction was large, and the effect became significant at temperatures above 50''C.

表  3 表4 例6 例1と同様に曝気併用の攪拌を行いながらpH5で2時
間酸溶出を行った。20%硫酸の添加量はダスト100
g/lの懸濁液1n当り150mQであった。
Table 3 Table 4 Example 6 As in Example 1, acid elution was carried out at pH 5 for 2 hours while stirring and aeration were performed. The amount of 20% sulfuric acid added is dust 100
It was 150 mQ per n of g/l suspension.

溶出後に固液分離して得た溶出液はZn 12,100
■g/12、 Fa  105B/n% Ni  15
4mg/L  Cd  267B/L  Cr1.9+
ag/Qであった0次にその溶出液に20%水酸化ナト
リウムを約200m m加えpH11,5とした。
The eluate obtained by solid-liquid separation after elution contains Zn 12,100
■g/12, Fa 105B/n% Ni 15
4mg/L Cd 267B/L Cr1.9+
About 200 mm of 20% sodium hydroxide was added to the ag/Q eluate to adjust the pH to 11.5.

PH11,5の汚泥混濁液をそのまま脱水した場合と。When turbid sludge with a pH of 11.5 is directly dehydrated.

70℃で30分間加熱処理後に脱水した場合の濾過速度
および脱水ケーキ含水率を表4に示す。脱水条件はスラ
リー濃度2.1%、濾過圧力3.0kg/dG、圧搾圧
カフ、0kg/aJGである。
Table 4 shows the filtration rate and water content of the dehydrated cake when dehydrating the sample after heat treatment at 70°C for 30 minutes. The dehydration conditions were a slurry concentration of 2.1%, a filtration pressure of 3.0 kg/dG, a compression cuff, and 0 kg/aJG.

表4に示すように、加熱処理により脱水縮合した場合は
、濾過速度は脱水縮合をしない場合の1.8倍、含水率
も大幅に改善された。
As shown in Table 4, when dehydration condensation was performed by heat treatment, the filtration rate was 1.8 times that of the case without dehydration condensation, and the water content was also significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を示す系統図、第21M(A
)、 (B)および第3図は実施例の結果を示すグラフ
である。 3:ダスト、4:溶出槽、10,17:固液分離装置、
11:熱処理槽。 代理人 弁理士 柳 原   成
FIG. 1 is a system diagram showing an embodiment of the present invention, No. 21M (A
), (B) and FIG. 3 are graphs showing the results of Examples. 3: Dust, 4: Elution tank, 10, 17: Solid-liquid separator,
11: Heat treatment tank. Agent Patent Attorney Sei Yanagihara

Claims (1)

【特許請求の範囲】[Claims] (1)亜鉛および鉄を含むダストを酸化性物質の存在下
に酸と接触させて亜鉛を溶出させる工程と、その溶出液
をアルカリ性下に加熱処理する工程と、固液分離する工
程とを含むことを特徴とする亜鉛の回収方法。
(1) Includes a step of contacting dust containing zinc and iron with an acid in the presence of an oxidizing substance to elute zinc, a step of heat-treating the eluate under alkaline conditions, and a step of solid-liquid separation. A method for recovering zinc, characterized by the following.
JP7234189A 1989-03-24 1989-03-24 How to recover zinc Expired - Lifetime JP2622413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7234189A JP2622413B2 (en) 1989-03-24 1989-03-24 How to recover zinc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7234189A JP2622413B2 (en) 1989-03-24 1989-03-24 How to recover zinc

Publications (2)

Publication Number Publication Date
JPH02250928A true JPH02250928A (en) 1990-10-08
JP2622413B2 JP2622413B2 (en) 1997-06-18

Family

ID=13486499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7234189A Expired - Lifetime JP2622413B2 (en) 1989-03-24 1989-03-24 How to recover zinc

Country Status (1)

Country Link
JP (1) JP2622413B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000052340A (en) * 1999-01-23 2000-08-25 이호인 Zine collecting method from steel powder containing zinc ferrite
KR100390191B1 (en) * 1998-08-12 2003-10-10 (주) 상원이엔씨 Leaching Method of Steelmaking Dust Using Acid and Hydrogen Peroxide
JP2020056089A (en) * 2018-10-04 2020-04-09 Jfeスチール株式会社 Method for treating iron-containing dust

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111412A (en) * 1975-03-27 1976-10-01 Toho Aen Kk Wet method of treatment of dust from iron industry

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111412A (en) * 1975-03-27 1976-10-01 Toho Aen Kk Wet method of treatment of dust from iron industry

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390191B1 (en) * 1998-08-12 2003-10-10 (주) 상원이엔씨 Leaching Method of Steelmaking Dust Using Acid and Hydrogen Peroxide
KR20000052340A (en) * 1999-01-23 2000-08-25 이호인 Zine collecting method from steel powder containing zinc ferrite
JP2020056089A (en) * 2018-10-04 2020-04-09 Jfeスチール株式会社 Method for treating iron-containing dust

Also Published As

Publication number Publication date
JP2622413B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
CA1075015A (en) Process for working up manganese modules and recovery of the contained valuable constituents
JP4126415B2 (en) Method for removing and fixing arsenic present in iron sulfate solution
CN114606387A (en) Wet-process and pyrogenic-process combined comprehensive recovery method for arsenic-alkali residue
GB2621039A (en) Harmless treatment method for recovering sulfur, rhenium, and arsenic from arsenic sulfide slag
WO2017162013A1 (en) Preparation and application method for ion blocking and controlling adsorbent
US3273997A (en) Wet process for the separation, isolation, and recovery of certain metallic and non-metallic constituents of waste slag from reverberatory refining of copper pyritic type ores
JPH02250928A (en) Method for recovering zinc
US2144339A (en) Recovery of magnesium
EP0244910B1 (en) Separation of non-ferrous metals from iron-containing powdery material
US4562048A (en) Process for the treatment of metal-bearing ores
CN113817923B (en) Method for separating beryllium from beryllium-containing sludge based on mineral phase reconstruction
CN109593965A (en) A method of recycling valuable element from aluminium base petroleum refining dead catalyst
US3744994A (en) Method of separating copper from nickel
GB2155918A (en) Method for precipitating vanadium from vanadium bearing liquors and recovering vanadium pentoxide
US3007770A (en) Extraction of lithium
JP2680024B2 (en) Method for producing high-purity iron oxide
JPS58113331A (en) Leaching method for copper and arsenic
CN108425014B (en) A method of extracting high pure metal palladium from useless palladium-aluminium oxide catalyst
CN217732945U (en) System for recovering mercury and selenium in colored smelting flue gas purification acid sludge
NO150321B (en) FR
CN116477679B (en) Method for preparing chloroiridium acid by recycling and purifying iridium catalyst with alumina carrier
CN113460976B (en) Purification method of tin-containing tellurium dioxide
RU2765974C1 (en) Method for processing metallurgical slag
CN114908259B (en) Method for selectively extracting beryllium from beryllium-containing sludge based on hydrothermal ore phase regulation and control
JP2000167569A (en) Method and equipment for treating copper-containing acidic waste water