JPH0225091Y2 - - Google Patents

Info

Publication number
JPH0225091Y2
JPH0225091Y2 JP1984121769U JP12176984U JPH0225091Y2 JP H0225091 Y2 JPH0225091 Y2 JP H0225091Y2 JP 1984121769 U JP1984121769 U JP 1984121769U JP 12176984 U JP12176984 U JP 12176984U JP H0225091 Y2 JPH0225091 Y2 JP H0225091Y2
Authority
JP
Japan
Prior art keywords
condenser
compressor
refrigerant
pipe
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984121769U
Other languages
Japanese (ja)
Other versions
JPS6138455U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12176984U priority Critical patent/JPS6138455U/en
Publication of JPS6138455U publication Critical patent/JPS6138455U/en
Application granted granted Critical
Publication of JPH0225091Y2 publication Critical patent/JPH0225091Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 本考案はコンプレツサから吐出された冷媒の圧
力損失の低減化を図つた冷凍サイクルに関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a refrigeration cycle that reduces the pressure loss of refrigerant discharged from a compressor.

〔考案の技術的背景とその問題点〕[Technical background of the invention and its problems]

冷凍サイクルにおいて、コンプレツサから吐出
された冷媒はコンデンサに至るまでの間ほとんど
ガスの状態で流れ、コンデンサに至ると放熱し凝
縮しつつ流れるようになる。ところが、従来はコ
ンプレツサからコンデンサに至るまでの管路はコ
ンデンサを構成する管と同径であつたため、凝縮
しつつ流れるコンデンサにおいて冷媒の流速は低
いが、ほとんどガスの状態で流れるコンデンサま
での管路においては冷媒の流速はかなり速いた
め、当該管路における冷媒の圧力損失が大きく、
冷凍サイクル全体としての効率が低下するという
問題があつた。
In the refrigeration cycle, the refrigerant discharged from the compressor flows almost in a gas state until it reaches the condenser, and when it reaches the condenser, it radiates heat and begins to flow while condensing. However, in the past, the pipes from the compressor to the condenser had the same diameter as the pipes that made up the condenser, so although the flow rate of the refrigerant was low in the condenser where it was flowing while condensing, the pipes from the compressor to the condenser where it was flowing in almost a gaseous state. Since the flow rate of the refrigerant is quite fast in the pipe, the pressure loss of the refrigerant in the pipe is large.
There was a problem that the efficiency of the refrigeration cycle as a whole decreased.

〔考案の目的〕[Purpose of invention]

本考案は上記の事情に鑑みてなされたもので、
その目的は、コンプレツサからコンデンサに至る
までの管路における冷媒の圧力損失を低減させて
効率の向上を図ることができる冷凍サイクルを提
供するにある。
This idea was made in view of the above circumstances.
The purpose is to provide a refrigeration cycle that can improve efficiency by reducing the pressure loss of refrigerant in the pipeline from the compressor to the condenser.

〔考案の概要〕[Summary of the idea]

本考案は、コンプレツサの吐出口と当該コンプ
レツサ側から送られてくる冷媒を凝縮して冷却器
へ送るコンデンサとの間の管路を、前記コンデン
サを構成する管よりも径大な管により形成された
放熱管を複数個並列に設けて構成し、以てコンデ
ンサに至るまでの管路における冷媒の流速を低減
せしめることにより、圧力損失の低減化を図つた
ものである。
In the present invention, the pipe line between the discharge port of the compressor and the condenser that condenses the refrigerant sent from the compressor side and sends it to the cooler is formed by a pipe having a diameter larger than that of the pipe constituting the condenser. A plurality of heat dissipation tubes are arranged in parallel to reduce the flow velocity of refrigerant in the conduit leading to the condenser, thereby reducing pressure loss.

〔考案の実施例〕[Example of idea]

以下本考案の一実施例を図面に基づいて説明す
る。
An embodiment of the present invention will be described below based on the drawings.

1はシリンダで圧縮した冷媒を一旦外ケース内
に吐出する形式のコンプレツサであり、このコン
プレツサ1の吐出口1aにデリバリ管2を接続
し、このデリバリ管2の出口を並列に設けた二個
の放熱管3,4の共通の入口に接続している。そ
して、両放熱管3,4の共通の出口を接続管5を
介してコンプレツサ1の外ケース内に設けた冷却
管6の入口に接続し、この冷却管6の出口をコン
デンサ7の入口に接続している。このようにして
コンプレツサ1の吐出口1aとコンデンサ7との
間に接続した管路(デリバリ管2、放熱管3,
4、接続管5、冷却管6)のうちその大部分を占
める両放熱管3及び4はコンデンサ7を構成する
管よりも径大な管を使用している。尚、デリバリ
管2及び接続管5は放熱管3,4と同径のものを
使用してもよいし、コンデンサ7を構成する管と
同径のものを使用するようにしてもよい。8は冷
却器で、この冷却器8の入口をキヤピラリチユー
ブ9及び差圧弁10を介してコンデンサ7の出口
に接続すると共に、冷却器8の出口を逆止弁11
及びサクシヨン管12を介してコンプレツサ1の
吸入口1bに接続している。上記差圧弁10は、
連通管13を介してサクシヨン管12に連通され
ており、コンプレツサ1の運転時に生ずる吸入側
と吐出側との圧力差により開動作してコンデンサ
7とキヤピラリチユーブ9との間を連通させる。
そして、この差圧弁10と逆止弁11とはコンプ
レツサ1の運転停止時にコンデンサ7内の高温冷
媒が冷却器8内に流入することを防止する作用を
なす。
Reference numeral 1 denotes a compressor that discharges refrigerant compressed in a cylinder into an outer case.A delivery pipe 2 is connected to the discharge port 1a of the compressor 1, and two parallel pipes are connected to each other, with the exits of the delivery pipe 2 being connected in parallel. It is connected to a common inlet of the heat radiation pipes 3 and 4. Then, the common outlet of both heat radiation pipes 3 and 4 is connected to the inlet of a cooling pipe 6 provided inside the outer case of the compressor 1 via a connecting pipe 5, and the outlet of this cooling pipe 6 is connected to the inlet of a condenser 7. are doing. In this way, the pipes (delivery pipe 2, heat dissipation pipe 3,
4, the connecting pipe 5, and the cooling pipe 6), the heat dissipation pipes 3 and 4, which account for most of them, are pipes having a larger diameter than the pipe constituting the condenser 7. Note that the delivery tube 2 and the connecting tube 5 may have the same diameter as the heat dissipation tubes 3 and 4, or may have the same diameter as the tube constituting the condenser 7. 8 is a cooler, and the inlet of the cooler 8 is connected to the outlet of the condenser 7 via a capillary tube 9 and a differential pressure valve 10, and the outlet of the cooler 8 is connected to a check valve 11.
It is connected to the suction port 1b of the compressor 1 via a suction pipe 12. The differential pressure valve 10 is
It is connected to the suction pipe 12 via a communication pipe 13, and is opened by the pressure difference between the suction side and the discharge side that occurs when the compressor 1 is in operation, thereby establishing communication between the condenser 7 and the capillary tube 9.
The differential pressure valve 10 and the check valve 11 function to prevent the high temperature refrigerant in the condenser 7 from flowing into the cooler 8 when the compressor 1 is stopped.

上記構成において、コンプレツサ1が起動する
と、コンプレツサ1で圧縮された冷媒がデリバリ
管2を介して放熱管3,4に供給され、ここで放
熱して一部液化する。この冷媒は接続管5を介し
て冷却管6内に流入し、ここで液冷媒が蒸発して
コンプレツサ1を冷却し、この後、コンデンサ7
内に流入する。コンデンサ7内に流入した冷媒は
ここで凝縮して液化し、差圧弁10及びキヤピラ
リチユーブ9を介して冷却器8に流入して蒸発
し、然る後、逆止弁11及びサクシヨン管12を
介してコンプレツサ1に吸入される。
In the above configuration, when the compressor 1 is started, the refrigerant compressed by the compressor 1 is supplied to the heat radiation pipes 3 and 4 via the delivery pipe 2, where it radiates heat and partially liquefies. This refrigerant flows into the cooling pipe 6 via the connecting pipe 5, where the liquid refrigerant evaporates to cool the compressor 1, and then the condenser 7
flow inside. The refrigerant that has flowed into the condenser 7 is condensed and liquefied, flows into the cooler 8 via the differential pressure valve 10 and the capillary tube 9, and evaporates. The air is drawn into the compressor 1 through the air.

ところで、コンデンサ7において冷媒は該コン
デンサ7を流れるうちに略完全に液化するため比
較的低速で流れる。しかしながら、コンプレツサ
1からコンデンサ7に至るまでの管路特にその大
部分を占める放熱管3,4においては冷媒は一部
液化するもののほとんどガス状態のまま流れる。
こため、放熱管の径がコンデンサの管径と同一で
あると、放熱管を流れる冷媒の速度が高く、かな
り大きな圧力損失を生ずるが、本実施例では放熱
管3,4をコンデンサ7の管径よりも大きくした
ので、且つ冷媒の一部が放熱により液化するの
で、放熱管3,4における冷媒の流速は低くな
り、これに伴つて放熱管3,4での冷媒の圧力損
失が小さくなり、冷凍サイクル全体としての効率
が向上する。しかも、放熱管3,4を二個並列に
設けたので、1個1個の放熱管3,4を流れる冷
媒量はコンプレツサ1から吐出される冷媒量の半
分程度となつて冷媒の流速は一層低くなり、圧力
損失をより小さくすることができる。また、放熱
管3,4の径を大きくしたことにより、その表面
積も大きくなるで、放熱性が良くなり、それだけ
冷媒の液化量も多くなつてコンプレツサ1の冷却
をより確実に行うことができる。
By the way, in the condenser 7, the refrigerant is almost completely liquefied as it flows through the condenser 7, so it flows at a relatively low speed. However, in the conduit from the compressor 1 to the condenser 7, especially in the heat dissipation tubes 3 and 4 which occupy most of the conduit, the refrigerant flows mostly in a gaseous state, although some of the refrigerant liquefies.
Therefore, if the diameter of the heat dissipation tube is the same as that of the condenser, the velocity of the refrigerant flowing through the heat dissipation tube will be high, resulting in a considerably large pressure loss. Since it is made larger than the diameter, and a part of the refrigerant is liquefied by heat radiation, the flow velocity of the refrigerant in the heat radiation pipes 3 and 4 is lowered, and the pressure loss of the refrigerant in the heat radiation pipes 3 and 4 is accordingly reduced. , the efficiency of the entire refrigeration cycle is improved. Moreover, since the two heat radiation pipes 3 and 4 are provided in parallel, the amount of refrigerant flowing through each heat radiation pipe 3 and 4 is about half of the amount of refrigerant discharged from the compressor 1, and the flow rate of the refrigerant is further increased. pressure loss can be reduced. Furthermore, by increasing the diameters of the heat dissipation tubes 3 and 4, the surface area thereof also increases, improving heat dissipation, and the amount of liquefied refrigerant increases accordingly, making it possible to cool the compressor 1 more reliably.

尚、上記実施例では冷却管6を設けたが、これ
らはコンプレツサ1の冷却のためのもので必ず設
けねばならないというものではない。
Although the cooling pipes 6 are provided in the above embodiment, these are for cooling the compressor 1 and do not necessarily have to be provided.

〔考案の効果〕[Effect of idea]

以上の説明から明らかなように本考案は、コン
プレツサからコンデンサまでの管路を、前記コン
デンサを構成する管よりも径大な管により形成さ
れた放熱管を複数個並列に設けて構成したので、
コンプレツサからコンデンサまでは冷媒がほとん
どガスのまま流れるという事情があつても、放熱
管の管径が大きいこと、各放熱管を流れる冷媒量
はコンプレツサの吐出量の半分以下であること、
冷媒は放熱管での放熱により一部液化すること、
などの理由で放熱管における冷媒の流速をかなり
低くすることができ、これにより圧力損失を低減
することができて冷凍サイクル全体としての効率
を向上させることができるという優れた効果を奏
するものである。
As is clear from the above description, in the present invention, the conduit from the compressor to the condenser is constructed by providing in parallel a plurality of heat dissipation tubes each having a diameter larger than that of the tube constituting the condenser.
Even if the refrigerant flows mostly as a gas from the compressor to the condenser, the pipe diameter of the heat radiation pipes must be large, and the amount of refrigerant flowing through each heat radiation pipe must be less than half the discharge amount of the compressor.
Part of the refrigerant liquefies due to heat dissipation in the heat dissipation tube,
For these reasons, the flow velocity of the refrigerant in the heat dissipation tubes can be considerably lowered, which has the excellent effect of reducing pressure loss and improving the efficiency of the refrigeration cycle as a whole. .

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の一実施例を示す冷凍サイクル図
である。 図中、1はコンプレツサ、3,4は放熱管、7
はコンデンサ、8は冷却器である。
The drawing is a refrigeration cycle diagram showing an embodiment of the present invention. In the figure, 1 is a compressor, 3 and 4 are heat sinks, and 7
is a condenser, and 8 is a cooler.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] コンプレツサの吐出口と当該コンプレツサ側か
ら送られてくる冷媒を凝縮して冷却器へ送るコン
デンサとの間の管路を、前記コンデンサを構成す
る管よりも径大な管により形成された放熱管を複
数個並列に設けて構成したことを特徴とする冷凍
サイクル。
The conduit between the discharge port of the compressor and the condenser that condenses the refrigerant sent from the compressor side and sends it to the cooler is a heat dissipation tube formed by a tube with a larger diameter than the tube constituting the condenser. A refrigeration cycle characterized by being configured by providing multiple units in parallel.
JP12176984U 1984-08-08 1984-08-08 refrigeration cycle Granted JPS6138455U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12176984U JPS6138455U (en) 1984-08-08 1984-08-08 refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12176984U JPS6138455U (en) 1984-08-08 1984-08-08 refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS6138455U JPS6138455U (en) 1986-03-11
JPH0225091Y2 true JPH0225091Y2 (en) 1990-07-10

Family

ID=30680546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12176984U Granted JPS6138455U (en) 1984-08-08 1984-08-08 refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS6138455U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082800A1 (en) * 2017-10-24 2019-05-02 博 猪倉 Condenser, cooling system, and pipe fitting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609316B2 (en) * 2005-12-28 2011-01-12 パナソニック株式会社 refrigerator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4720891U (en) * 1971-03-26 1972-11-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4720891U (en) * 1971-03-26 1972-11-09

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082800A1 (en) * 2017-10-24 2019-05-02 博 猪倉 Condenser, cooling system, and pipe fitting
JP2019078449A (en) * 2017-10-24 2019-05-23 株式会社アクセスビート Condenser, air-cooling system and pipe joint

Also Published As

Publication number Publication date
JPS6138455U (en) 1986-03-11

Similar Documents

Publication Publication Date Title
CN105004100A (en) Single-refrigerant loop and multiple-suction pressure steam compression refrigeration/heat pump system
WO2020098354A1 (en) Cascade air conditioner system
JP2827404B2 (en) Refrigerant condenser
CN106642836A (en) Direct contact condensation refrigeration system with saturated liquid supercooled completely
CN206817806U (en) A kind of refrigeration system with new micro-channel evaporator
JPH0225091Y2 (en)
WO2023115956A1 (en) Serpentine tube microchannel heat exchanger and air conditioner
CN206347775U (en) A kind of screw air-conditioning system
JPH10160266A (en) Heat exchanger for air conditioner
CN208920635U (en) A kind of earth source heat pump unit of built-in hydraulic module
CN110345654A (en) B-grade condensation formula condenser system
CN208871925U (en) A kind of fluid reservoir with backheating function and the air-conditioning system with it
CN215571384U (en) Bypass noise reduction unit
CN110206708A (en) One kind being used for oil cooler and compressor link circuit
CN216448413U (en) Refrigerating system capable of reducing oil return temperature of compressor
CN219318692U (en) Refrigerant gas-liquid split condenser
CN210197767U (en) Heat pump heat source water energy control device
CN111637653B (en) Method for remotely providing cooling to a condenser in a compressor refrigeration system
JPS60200089A (en) Direct expansion type regenerative heat exchanger
CN210892243U (en) Air conditioner
CN208398201U (en) A kind of air-conditioner set
CN210320741U (en) Refrigerant medium compression system
TW494222B (en) Method for reinforcing condensation and a device thereof
WO2017080268A1 (en) Cooling system
JPS63161360A (en) Refrigeration cycle