JPH02249970A - Instrument for measuring solution component - Google Patents

Instrument for measuring solution component

Info

Publication number
JPH02249970A
JPH02249970A JP7143589A JP7143589A JPH02249970A JP H02249970 A JPH02249970 A JP H02249970A JP 7143589 A JP7143589 A JP 7143589A JP 7143589 A JP7143589 A JP 7143589A JP H02249970 A JPH02249970 A JP H02249970A
Authority
JP
Japan
Prior art keywords
reagent
liquid
solution
calibration
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7143589A
Other languages
Japanese (ja)
Inventor
Yasushi Haketa
靖 羽毛田
Ryoichi Motohashi
本橋 亮一
Shuichi Aiba
合葉 修一
Kinji Gonda
権田 金治
Kazuto Kajiwara
梶原 一人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Electronics Ltd
Original Assignee
Toa Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Electronics Ltd filed Critical Toa Electronics Ltd
Priority to JP7143589A priority Critical patent/JPH02249970A/en
Publication of JPH02249970A publication Critical patent/JPH02249970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To prolong the life of a reagent and calibrating liquid by providing a reagent vessel connected to a detector in a thermostatic chamber which maintains the vessel at a room temp. or below. CONSTITUTION:After a sample liquid S is supplied by a pump 7 to an injector 10, the injector 10 is rotated to switch the flow passage to the flow passage of a carrier liquid C1 and the sample liquid S cut off in such a manner is inserted by the carrier liquid C1 fed by a pump 6 and is mixed 12. The flow passage of the sample liquid S is connected to the flow passage from a calibrat ing liquid vessel 1 by a 3-way valve 5 just before the pump 7. The calibrating liquid can be supplied to the ejector 10 in place of the sample liquid S by switching the 3-way valve 5 at the time of calibration. On the other hand, the reagent is supplied from the reagent vessel 2 by a pump 9 to another injector 11 and the reagent cut off by a similarly switching the injector 11 is inserted by the carrier liquid C2 and is mixed 13 by a pump 8. The liquid mixture from the mixers 12, 13 is further mixed 14 and is passed through a detector 15, from which the liquid mixture is discharged. This liquid mixture is processed 16 as an electrical signal and the concn. thereof is determined.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フローインジェクション分析法等を利用した
溶液成分濃度の測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for measuring the concentration of solution components using a flow injection analysis method or the like.

〔従来の技術〕[Conventional technology]

従来から行なわれている湿式分析を、フローインジェク
ション分析法等を利用して行なう各種の分析装置が開発
されている。
Various analytical devices have been developed that perform conventional wet analysis using flow injection analysis and the like.

例えば、フローインジェクション分析法を利用した溶液
成分測定装置は、流路の切り替え可能なインジェクター
を用いてサンプル液と試薬とを別々に採取し、インジェ
クターの流路を切り替えて反応器や測定セルないし検出
器への流路に供給して混合し、サンプル液と試薬の反応
による生成物を電極等で検出したり又は反応に伴なう発
光量を検出することにより、サンプル液中の被測定成分
の濃度を自動的に測定するもので、既に医療分野などを
中心に使用されている。
For example, a solution component measurement device that uses flow injection analysis uses an injector with a switchable flow path to collect sample liquid and reagent separately, and then switches the flow path of the injector to the reactor, measurement cell, or detector. The components to be measured in the sample solution can be detected by supplying the sample solution to the flow path of the sample solution and mixing them, and detecting the product of the reaction between the sample solution and the reagent using an electrode, etc., or by detecting the amount of luminescence accompanying the reaction. It automatically measures concentration and is already used mainly in the medical field.

かかるフローインジェクション分析装置等の測定装置で
は、測定に利用する反応や検出が温度の影響を受ける場
合、装置内に組込んだ反応器や測定セルないし検出器を
反応や検出に適した室温以上の一定温度に保つことによ
り、反応や検出への温度の影響を避けるようになってい
る。
In measurement devices such as flow injection analyzers, if the reaction or detection used for measurement is affected by temperature, the reactor, measurement cell, or detector built into the device should be kept at a temperature above room temperature suitable for the reaction or detection. By keeping the temperature constant, the influence of temperature on reaction and detection is avoided.

しかし、フローインジェクション分析Mlを含め従来の
溶液成分の測定装置では、反応に用いる試薬や校正液は
ガラスやプラスチックの容器に入れたまま装置近傍に置
かれているため、室温に放置された状態であった。
However, in conventional solution component measuring devices, including flow injection analysis Ml, reagents and calibration solutions used for reactions are placed near the device in glass or plastic containers, so they cannot be left at room temperature. there were.

このため、酵素系の試薬を始め熱的に不安定な試薬や校
正液を用いる分析では、これらの試薬や校正液が夏期は
もちろん冬期でも暖房された室内において高められた周
囲の温度により劣化し、活性が急速に損なわれることと
なり、短期間で寿命に到って交換する必要がある等、保
守周期が極めて短い欠点があった。
For this reason, in analyzes that use thermally unstable reagents and calibration solutions, including enzyme-based reagents, these reagents and calibration solutions are susceptible to deterioration due to elevated ambient temperatures in heated rooms, not only in summer but also in winter. However, the maintenance cycle is extremely short, as the activity rapidly deteriorates and the service life reaches the end within a short period of time, requiring replacement.

又、酵素系試薬のように熱的に不安定試薬や校正液は、
室温に放置されると寿命が極端に短くなるので、試薬や
校正液の容器を70−インジェクション分析装置等の測
定装置に組込んで装置化することか不可能であった。
In addition, thermally unstable reagents and calibration solutions such as enzyme-based reagents
If left at room temperature, the lifespan will be extremely shortened, so it has been impossible to incorporate reagent and calibration solution containers into a measuring device such as a 70-injection analyzer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はかかる従来の事情に鑑み、熱的に不安定な試薬
や校正液の寿命を延ばすことができ、寿命ないし耐久性
の点から従来利用出来なかった試薬や校正液も使用しう
る溶液成分の測定装置を提供することを目的とする。
In view of such conventional circumstances, the present invention is a solution component that can extend the life of thermally unstable reagents and calibration solutions, and can also be used with reagents and calibration solutions that were previously unusable in terms of lifespan or durability. The purpose is to provide a measuring device for.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明においては、サンプル
液と試薬とを検出器に送給し、サンプル液と試薬との反
応を利用してサンプル液中の被測定成分の濃度を測定す
る装置において、管路を介して検出器に接続された試薬
容器が、試薬を保存に適した室温以下の温度に維持しう
る恒温槽内に設けられていることを特徴とする。
In order to achieve the above object, the present invention provides an apparatus for feeding a sample liquid and a reagent to a detector and measuring the concentration of a component to be measured in the sample liquid using the reaction between the sample liquid and the reagent. , the reagent container connected to the detector via a conduit is provided in a constant temperature bath capable of maintaining the reagent at a temperature below room temperature suitable for storage.

更に、校正も自動的に行なう場合には、管路を介して検
出器に接続された試薬容器及び校正液容器が、試薬及び
校正液を保存に適した室温以下の湿度に維持しうる同一
の又は別々の恒温槽内に設けられていることを特徴とす
る。
Furthermore, if calibration is also performed automatically, the reagent containers and calibration solution containers connected to the detector via piping must be identical and capable of maintaining the reagents and calibration solutions at a humidity below room temperature suitable for storage. Or, it is characterized by being provided in a separate constant temperature bath.

〔作用〕[Effect]

本発明の測定装置では、容器内に保存されている試薬及
び/又は校正液を夫々保存に適する室温以下の温度に維
持できるので、測定時はもちろん非測定時(不使用時を
含む)においても試薬や校正液の劣化を防ぐことが出来
る。その結果、熱的に不安定な試薬や校正液を装置内に
保持したままで、寿命を飛躍的に長くすることができる
In the measuring device of the present invention, the reagents and/or calibration solutions stored in the container can be maintained at a temperature below room temperature suitable for storage, so not only during measurement but also when not measuring (including when not in use). Deterioration of reagents and calibration solutions can be prevented. As a result, the life of the device can be dramatically extended while retaining thermally unstable reagents and calibration solutions within the device.

例えば、アデノシントリフォスフニー)(ATP)の分
析には、ルシフェリンとMg2+の存在下でルシフェラ
ーゼの触媒作用によってATPをアデノシンモノフォス
フェート(A M P)に分解し、下記反応に伴なう発
光量からATP濃度を測定する: AMP+オルトルシフェリン+Co  +ppi+hν
この分析方法は、上記反応の特異性が高く、発光分析法
がダイナミックレンジの広い有効な分析方法であるが、
使用するルシフェリンやルシフェラーゼが熱的に不安定
で耐久性に問題があるため、従来フローインジェクショ
ン法等による測定装置として装置化することが困斧であ
った。
For example, in the analysis of adenosine triphosphate (ATP), ATP is decomposed into adenosine monophosphate (AMP) by the catalytic action of luciferase in the presence of luciferin and Mg2+, and the amount of luminescence accompanying the following reaction is determined. Measure the ATP concentration from: AMP+orluciferin+Co+ppi+hν
This analytical method has high specificity for the above reaction, and emission spectrometry is an effective analytical method with a wide dynamic range.
Since the luciferin and luciferase used are thermally unstable and have durability problems, it has been difficult to convert them into measuring devices using conventional flow injection methods.

しかし、本発明によれば発光試薬であるルシフェリン・
ルシフェラーゼ溶液などの寿命を飛躍的に延ばすことが
出来るので、上記試薬を組込んだ測定装置を構成するこ
とが可能である。
However, according to the present invention, the luminescent reagent luciferin
Since the life of the luciferase solution etc. can be dramatically extended, it is possible to construct a measuring device incorporating the above reagent.

又、ルシフェリンやルシフェラーゼよりも熱的安定性に
優れた試薬類であっても、室温で使用するよりは室温よ
り低い温度に維持して使用した方が好ましいものが多数
あり、これらの試薬類を用いる測定装置では、試薬類の
交換等のための保守期間を大幅に伸ばすことも可能であ
る。
Furthermore, even if there are reagents that have better thermal stability than luciferin or luciferase, there are many that are preferable to be used at a temperature lower than room temperature than at room temperature. With the measuring device used, it is also possible to significantly extend the maintenance period for replacing reagents, etc.

尚、使用する試薬や校正液によって温度による劣化の程
度が異なるので、試薬容器や校正液容器を収納した恒温
槽の設定温度は、使用する試薬や校正液に応じて夫々定
めることが好ましいが、通常は4σ程度又はそれ以下の
温度とする。但し、試薬や校正液が凍結するほど低い温
度は当然避けねばならない。
Note that the degree of deterioration due to temperature varies depending on the reagent and calibration solution used, so it is preferable to set the temperature setting of the constant temperature bath containing the reagent container and calibration solution container depending on the reagent and calibration solution used. The temperature is usually about 4σ or lower. However, it is of course necessary to avoid temperatures so low that the reagents and calibration solutions freeze.

かかる恒温槽としては、例えば冷却機能を有する温度調
節可能な恒温槽が好適に使用出来る。
As such a constant temperature bath, for example, a constant temperature bath having a cooling function and whose temperature can be adjusted can be suitably used.

〔実施例〕〔Example〕

第1図は本発明装置の一具体例であり、ATPをフロー
インジェクション分析法により自動分析するための測定
装置である。
FIG. 1 shows a specific example of the device of the present invention, which is a measuring device for automatically analyzing ATP using a flow injection analysis method.

校正液容器1にはATP校正液が、及び試薬容器2には
ルシフェラーゼ、ルシフェリン及びMg2+ヲ含むルシ
フェリン・ルシフェラーゼ溶液カ満だされ、夫々温度調
節可能な恒温槽3及び4に別々に収納されている。
The calibration solution container 1 is filled with an ATP calibration solution, and the reagent container 2 is filled with a luciferin/luciferase solution containing luciferase, luciferin, and Mg2+, and these are stored separately in temperature-adjustable thermostats 3 and 4, respectively. .

ATPを含むサンプル液Sをポンプ7によりインジェク
ター10に供給した後、インジェクター10を回転して
流路をキャリア液0  (pH7,75のHEPIC8
緩衝液)の流路に切り替えることにより、切り取られた
サンプル液Sはポンプ6により送給されるキャリア液C
に挾まれて混合器12に送られ混合される。又、サンプ
ル液Sの流路はポンプ7の手前で校正液容器1からの流
路と三方弁5で接続され、校正時には三方弁5を切り替
えてサンプル液Sの代りに校正液をインジェクター10
に供給できるようになっている。
After the sample liquid S containing ATP is supplied to the injector 10 by the pump 7, the injector 10 is rotated to fill the flow path with carrier liquid 0 (HEPIC8 with pH 7.75).
By switching to the flow path of the buffer solution), the cut sample solution S is transferred to the carrier solution C fed by the pump 6.
It is sandwiched between the two and sent to the mixer 12 where it is mixed. In addition, the flow path of the sample liquid S is connected to the flow path from the calibration liquid container 1 by a three-way valve 5 before the pump 7, and during calibration, the three-way valve 5 is switched and the calibration liquid is injected into the injector 10 instead of the sample liquid S.
It is now possible to supply

一方、試薬は試薬容器2からポンプ9により別のインジ
ェクター11に供給され、上記と同様にインジェクター
11を切り替えることにより、切り取られた試薬はキャ
リア液C(キャリア液Cト同一)に挾まれてポンプ8に
より混合器13に送られ混合される。
On the other hand, the reagent is supplied from the reagent container 2 to another injector 11 by the pump 9, and by switching the injector 11 in the same way as above, the cut out reagent is sandwiched in the carrier liquid C (carrier liquid C is the same) and pumped. 8 to a mixer 13 for mixing.

混合器12から送り出されたサンプル液Sを含む混合液
と、混合器13から送り出された試薬を含む混合液とは
合流し、更に混合器14で混合され、検出器15を通過
して排出される。検出器15では反応に伴なう発光量が
化学発光検出器等により検出され、電気信号として処理
装置16に送られ、データ処理されてATP濃度が求め
られるようになっている。
The mixed liquid containing the sample liquid S sent out from the mixer 12 and the mixed liquid containing the reagent sent out from the mixer 13 are combined, further mixed in the mixer 14, passed through the detector 15, and discharged. Ru. In the detector 15, the amount of luminescence accompanying the reaction is detected by a chemiluminescence detector or the like, and is sent as an electrical signal to the processing device 16, where the data is processed and the ATP concentration is determined.

この自動測定装置において、校正液容器1を納めた恒温
槽3の温度を4σ(条件1)、室温(条件2)及び30
 C” (条件3)に設定し、上記各条件での10″m
 o l/lのATP校正液の時間経過に伴なう残存活
性の変化を測定した。尚、ATP校正液の残存活性は、
測定の都度調整した10  mollIATP溶液をサ
ンプル液Sの流路から吸引して得られた検出器15の出
力と、三方弁5を切り替えて校正液容器1から吸引した
ATP校正液で得られた検出器15の出力との比から求
めた。又、ルシフェリン・ルシフェラーゼ溶液は測定の
都度一定濃度に調整したものを用いた。
In this automatic measuring device, the temperature of the constant temperature bath 3 containing the calibration solution container 1 is set to 4σ (condition 1), room temperature (condition 2) and 30℃.
C” (condition 3) and 10”m under each of the above conditions.
Changes in the residual activity of the 0 l/l ATP calibration solution over time were measured. In addition, the residual activity of the ATP calibration solution is
The output of the detector 15 obtained by sucking 10 mol IATP solution adjusted each time for measurement from the flow path of the sample liquid S, and the detection obtained with the ATP calibration solution sucked from the calibration solution container 1 by switching the three-way valve 5. It was determined from the ratio with the output of the device 15. Furthermore, the luciferin/luciferase solution used was adjusted to a constant concentration each time the measurement was performed.

第2図に示した結果から判るように、ATPの残存活性
が1/2になる経過時間を寿命の目安として比較すると
、条件3では僅かに9日及び条件2では16日であるの
に対して、本発明による条件1では37日と寿命が倍以
上になった。
As can be seen from the results shown in Figure 2, when comparing the elapsed time when the residual activity of ATP reaches 1/2 as a guideline for lifespan, it is only 9 days under condition 3 and 16 days under condition 2. Therefore, under condition 1 according to the present invention, the lifespan was more than doubled to 37 days.

又、同様に試薬容器2を納めた恒温槽4の温度を4C”
(条件1)、室温(条件2)及び30C(条件3)に設
定し、上記各条件での時間経過に伴なうルシフェリン・
ルシフェラーゼ溶液の残存活性の変化を測定した0ルシ
フエリンeルシフエラーゼ溶液はルシフェラーゼ(I 
U/@/ ) 、ルシフェリン(2X 10= mol
/l )及びMg”(10mol/l)を含む溶液とし
た。尚、この場合のATP溶液は測定の都度調整した1
0−6m o l/lの濃度のものを用いた。
Similarly, the temperature of the constant temperature bath 4 containing the reagent container 2 was set to 4C.
(Condition 1), room temperature (Condition 2), and 30C (Condition 3).
Changes in the residual activity of the luciferase solution were measured.
U/@/ ), luciferin (2X 10= mol
/l) and Mg'' (10 mol/l).The ATP solution in this case was adjusted for each measurement.
A concentration of 0-6 mol/l was used.

結果を第3図に示した。ルシフェリン・ルシフェラーゼ
溶液の残存寿命が172になる経過時間を寿命の目安と
して比較すると、条件3では僅かに1日及び条件2でも
4日であるのに対して、本発明による条件1では10日
を超え、4σに維持することで寿命が飛躍的に延びるこ
とが判る。
The results are shown in Figure 3. Comparing the elapsed time when the remaining lifespan of the luciferin-luciferase solution becomes 172 as a lifespan guideline, it is only 1 day in condition 3 and 4 days in condition 2, whereas it is only 10 days in condition 1 according to the present invention. It can be seen that the lifespan is dramatically extended by exceeding the 4σ value and maintaining it at 4σ.

尚、夜間など装置不使用時には、校正液容器1及び試薬
容器2は装置から取り外し、冷蔵庫で適温に保存した。
When the apparatus was not in use, such as at night, the calibration solution container 1 and reagent container 2 were removed from the apparatus and stored at an appropriate temperature in a refrigerator.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、溶液成分測定装置に利用する試薬や校
正液の寿命を飛躍的に長くすることができ、従来は寿命
が短く装置化が困璧とされていた試薬類を利用した測定
装置の提供が可能となり、測定対象物質の範囲を拡大す
ることが出来る。
According to the present invention, the lifespan of reagents and calibration solutions used in a solution component measuring device can be dramatically extended, and a measuring device that uses reagents that were conventionally considered to have a short lifespan and was difficult to develop into a device. The range of substances to be measured can be expanded.

同時に又、従来から装置化されている試薬類であっても
、その寿命の長期化により測定装置の保守周期を大幅に
長くすることが出来る。
At the same time, even if the reagents are conventionally used as devices, the maintenance cycle of the measuring device can be significantly lengthened by extending their lifespan.

更に、ルシフェリン・ルシフェラーゼなどのように試薬
類は極めて高価な場合が多いが、寿命を長期化させるこ
とによって経済的にも極めて有利になる。
Furthermore, reagents such as luciferin and luciferase are often extremely expensive, but by extending their lifetime, they are extremely advantageous economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一具体例を示す概略構成図である。第
2図はATP校正液の保持温度の違いによる残存活性と
経過時間の関係を示すグラフであり、第3図はルシフェ
リン・ルシフェラーゼ溶液の保持温度の違いによる残存
活性と経過時間の関係を示すグラフである。 1・・校正液容器   2・・試薬容器3.4・・恒温
槽   5・・三方弁 6.7.8.9・・ポンプ 10.11・・インジェクター 12.13.14・・混合器 15・・検出器    16・・処理装置手 続 補 正置 (自発) 平成2年5月25日 経過時間 (日) 1゜ 事件の表示 平成 発明の名称 年 特 許 願第71435 溶液成分の測定装置 号 よ 補正をする者 事件との関係
FIG. 1 is a schematic configuration diagram showing a specific example of the present invention. Figure 2 is a graph showing the relationship between residual activity and elapsed time depending on the holding temperature of the ATP calibration solution, and Figure 3 is a graph showing the relationship between residual activity and elapsed time depending on the holding temperature of the luciferin/luciferase solution. It is. 1. Calibration liquid container 2. Reagent container 3.4. Constant temperature bath 5. Three-way valve 6.7.8.9. Pump 10.11. Injector 12.13.14. Mixer 15.・Detector 16...Processing equipment procedure correction equipment (voluntary) Elapsed time (days) on May 25, 1990 1゜Indication of incident Name of Heisei invention Year Patent Application No. 71435 Solution component measuring device No. Correction Relationship with cases involving persons who commit crimes

Claims (2)

【特許請求の範囲】[Claims] (1)サンプル液と試薬とを検出器に送給し、サンプル
液と試薬との反応を利用してサンプル液中の被測定成分
の濃度を測定する装置において、管路を介して検出器に
接続された試薬容器が、試薬を保存に適した室温以下の
温度に維持しうる恒温槽内に設けられていることを特徴
とする溶液成分の測定装置。
(1) In a device that sends a sample liquid and a reagent to a detector and measures the concentration of a component to be measured in the sample liquid using the reaction between the sample liquid and the reagent, the sample liquid and reagent are sent to the detector via a pipe line. 1. An apparatus for measuring solution components, characterized in that a connected reagent container is provided in a constant temperature bath capable of maintaining the reagent at a temperature below room temperature suitable for storage.
(2)サンプル液又は校正液と試薬とを検出器に送給し
、サンプル液又は校正液と試薬との反応を利用してサン
プル液中又は校正液中の被測定成分の濃度を測定する装
置において、管路を介して検出器に接続された試薬容器
及び校正液容器が、試薬及び校正液を保存に適した室温
以下の温度に維持しうる同一の又は別々の恒温槽内に設
けられていることを特徴とする溶液成分の測定装置。
(2) A device that sends a sample solution or calibration solution and a reagent to a detector and measures the concentration of the component to be measured in the sample solution or calibration solution using the reaction between the sample solution or calibration solution and the reagent. In this method, a reagent container and a calibration solution container connected to a detector via a conduit are provided in the same or separate thermostatic chambers capable of maintaining the reagent and calibration solution at a temperature below room temperature suitable for storage. A device for measuring solution components, characterized in that:
JP7143589A 1989-03-23 1989-03-23 Instrument for measuring solution component Pending JPH02249970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7143589A JPH02249970A (en) 1989-03-23 1989-03-23 Instrument for measuring solution component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7143589A JPH02249970A (en) 1989-03-23 1989-03-23 Instrument for measuring solution component

Publications (1)

Publication Number Publication Date
JPH02249970A true JPH02249970A (en) 1990-10-05

Family

ID=13460456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7143589A Pending JPH02249970A (en) 1989-03-23 1989-03-23 Instrument for measuring solution component

Country Status (1)

Country Link
JP (1) JPH02249970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107245A (en) * 2006-10-26 2008-05-08 Kanagawa Acad Of Sci & Technol Flow-injection analysis device
JP2019095411A (en) * 2017-11-28 2019-06-20 オルガノ株式会社 Flow injection analysis method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107245A (en) * 2006-10-26 2008-05-08 Kanagawa Acad Of Sci & Technol Flow-injection analysis device
JP2019095411A (en) * 2017-11-28 2019-06-20 オルガノ株式会社 Flow injection analysis method and device

Similar Documents

Publication Publication Date Title
US5258285A (en) Method for detection of bacterial concentration in a sample
US5185263A (en) Method for calibration of a measurement apparatus
Wilson Automatic estimation of urea using urease and alkaline phenol
CN205581046U (en) Torrid zone aquaculture water body BOD surveys device on line based on little biosensor
Kawashima et al. Potentiometric enzyme electrode for uric acid
EP0704052B1 (en) Determination of toxicity
CN105738361B (en) Permanganate index automatic analyzer and analysis method in water
EP0957366B1 (en) Method for measuring substances involved in enzyme reactions
JPH02249970A (en) Instrument for measuring solution component
Poole et al. Comparison of new chemical method of determining isonicotinoyl hydrazide in serum with microbiological assay
Gamborg et al. Flow-injection bioluminescent determination of ATP based on the use of the luciferin-luciferase system
McLean et al. Evaluation of an automated creatininase creatinine procedure
JP2000287699A (en) Method of counting bacterial cells and apparatus therefor
US5776780A (en) Method for quantitatively measuring white blood cells esterase activity in urine
Sung-Ping et al. Fluorometric enzymatic determination of serum creatinine on the surface of silicone-rubber pads
JP2008501121A (en) Assay system using in situ formation of diazo reagent
US3409508A (en) Method for analysis of urea in biological fluids
US5141869A (en) Automated bioluminescence microbial monitor
US3592741A (en) Method for analysis of urea
JPS6136184B2 (en)
JP2001050932A (en) Ammonium nitrogen concentration measurement method and device
JPS62238454A (en) Microorganism
Fedden et al. The diffusion constant of Cypridina luciferase
JP3010385B2 (en) γ-GTP measurement reagent
CN206192891U (en) Online real -time detection device of oxide always remains