JPH02249004A - Process control method using neural circuit network model - Google Patents

Process control method using neural circuit network model

Info

Publication number
JPH02249004A
JPH02249004A JP7112389A JP7112389A JPH02249004A JP H02249004 A JPH02249004 A JP H02249004A JP 7112389 A JP7112389 A JP 7112389A JP 7112389 A JP7112389 A JP 7112389A JP H02249004 A JPH02249004 A JP H02249004A
Authority
JP
Japan
Prior art keywords
model
network model
input
neural network
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7112389A
Other languages
Japanese (ja)
Inventor
Tetsuya Otani
哲也 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP7112389A priority Critical patent/JPH02249004A/en
Publication of JPH02249004A publication Critical patent/JPH02249004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To attain optimizing control in a shorter time and more effectively by identifying a neural circuit network model for identification by means of the input/output of a process being the object of control, inputting a test signal to the identified neural circuit network model so as to execute linearization and forming the model of the process by means of the neural circuit network model. CONSTITUTION:The neural circuit network model for identification is identified by using the input/output of the process 1, and the test signal is impressed on the identified model 3 so as to execute linearization. The linear relation is substituted for an evaluation function, and a manipulated variable setting the evaluation function to be minimum is obtained in an optimizing controller 5. Thus, the process model for a multi input/output system can simply be obtained, and the optimum manipulated variable can be obtained. Then, an optimum solution can be obtained in a short time compared to optimizing control by a present control theory and conventional solution of optimizing problem.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、神経回路網を用いた新規なプロセス制御の
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a novel process control method using a neural network.

〈従来技術〉 神経回路網モデルの制御系への応用は、現在同定と最適
化問題の解決の2点において実現されている。
<Prior Art> The application of neural network models to control systems is currently being realized in two ways: identification and solving optimization problems.

同定とは、制御対象をモチリンクする、すなわち制御対
象と同じ入力を与えると、同じ出力か出てくる系を作り
出すことである。通常、あるプロセスに対する制御系を
設計する場合、まず制御対象をモチリンクするが、これ
に要する作業量は膨大である。また、膨大な作業を行っ
ても所望のモデルが得られないことか多い。これに対し
て、神経回路網モデルを用い、各種の学習方法を駆使す
ると、比較的容易にモデルか得られることが示されてい
る。
Identification means linking the controlled object, that is, creating a system that produces the same output when the same input as the controlled object is given. Normally, when designing a control system for a certain process, the objects to be controlled are first linked, but the amount of work required for this is enormous. Furthermore, even if a huge amount of work is performed, the desired model may not be obtained in many cases. On the other hand, it has been shown that a model can be obtained relatively easily by using a neural network model and making full use of various learning methods.

適切な制御を行うためには、最適化問題を解く必要があ
る。神経回路網モデルの一種であるHOpfeldモデ
ルを用いると、「エネルギー最小化の原理」を用いであ
る種の最適化問題が解けることが示されている。これを
利用して、プロセス制御系において最適操作量を求める
ことが考えられる6〈発明が解決すべき課題〉 しかしながら、神経回路網によるモデルは線形モデルで
はないので、制御理論で確立されている最適制御や局装
置の手法か使えない。従って、モデルが得られたたけで
は制御を行うことか出来ないという課題があった。
In order to perform appropriate control, it is necessary to solve an optimization problem. It has been shown that the HOpfeld model, which is a type of neural network model, can be used to solve certain optimization problems using the "principle of energy minimization." Using this, it is possible to find the optimal operation amount in a process control system.6 <Problem to be solved by the invention> However, since the neural network model is not a linear model, the optimal Control or station equipment methods cannot be used. Therefore, there was a problem in that it was not possible to perform control just by obtaining a model.

また、HOpfieldモデルによる最適化問題の解決
は、目的関数がニューロンの状態変数の2次形式で表現
出来るものに限られるので、制御方法に適用出来る場合
が限られるという課題もあった。
In addition, solving optimization problems using the HOpfield model is limited to cases in which the objective function can be expressed in a quadratic form of the state variables of neurons, so there is also the problem that there are limited cases in which it can be applied to control methods.

〈発明の目的〉 この発明の目的は、神経回路網モデルの特徴である学習
機能、自己組織化機能を用いて最適な制御を行うプロセ
ス制御方法を堤供することにある。
<Objective of the Invention> An object of the present invention is to provide a process control method that performs optimal control using the learning function and self-organizing function that are characteristics of the neural network model.

く課題を解決する為の手段〉 前記課題を解決する為に本発明では、制御対象であるプ
ロセスの入出力で同定用神経回路網モデルを同定し、こ
の同定された神経回路網モデルにテスト信号を入力して
線形化し、この線形関係を最適化制御装置の評価関数に
代入して、この評価関数を最小にするような操作量を求
めるようにしたものである。
Means for Solving the Problems> In order to solve the above problems, the present invention identifies a neural network model for identification at the input/output of a process to be controlled, and applies a test signal to the identified neural network model. is input and linearized, this linear relationship is substituted into the evaluation function of the optimization control device, and the manipulated variable that minimizes this evaluation function is determined.

く作用〉 神経回路網モデルでプロセスのモデルを作る事により、
従来の最適化制御をより短時間でかつ効果的に実行する 〈実施例〉 この発明はパックプロパゲーション等の学習方法を用い
て同定用の神経回路網モデルをプロセスの入出力で同定
し、このモデルから操作量とプロセス量の線形関係を求
めて、この線形関係を用いて最適化制御の手法により最
適な操作量を求めるものである。第1図に本発明に係る
神経回路網を用いたプロセス制御方法の構成を示す。第
1図において、1は制御対象であるプロセスであり、操
作量が入力されてプロセス量を出力する。このプロセス
1は制御周期に比べてその時定数が十分短く、前回の操
作の影響が制御周期の間に落ち着く静的なものであると
する。また、多入力多出力のプロセスを考える。従って
、離散時間形式で表現すると、 yk+1=F′(IIJk)  ・・・・・・・・・(
1)k:サンプル時刻 +uk:N次元の入力(操作量)ベクトル(ul、・・
・・・・、uN) yb:M次元の出力(プロセス量)ベクトル(y  、
・・・・・・、yH) F=プロセスの入出力特性を表す関数ベクトル で表わすことが出来る。2はプロセス1の入出力データ
を教師信号としてモデルを自己組織化していく学習法則
であり、例えばパックプロパゲーション学習法則が用い
られる。パックプロパゲーション学習法則は公知のもの
であり、例えばり、E、Ru1elhart、G、E、
旧nton and R,J、Will+als、”L
earn+ng Representaions by
 Back−Propagating Errors”
Nature Vol、323,533−536(19
86)に記載されている。3はプロセス1の同定用神経
回路網モデルであり、多層のパーセプトロン形の神経回
路網モデルでモデル化したものである。この同定用神経
回路網モデル3は次の(2)式で表わされ、そのパラメ
ータは学習法則2で調整される。
By creating a process model using a neural network model,
Executing conventional optimization control in a shorter time and more effectively (Example) This invention uses a learning method such as pack propagation to identify a neural network model for identification based on the input and output of a process, and The linear relationship between the manipulated variable and the process variable is determined from the model, and this linear relationship is used to determine the optimal manipulated variable using an optimization control method. FIG. 1 shows the configuration of a process control method using a neural network according to the present invention. In FIG. 1, numeral 1 is a process to be controlled, into which a manipulated variable is input and a process variable is output. It is assumed that this process 1 has a sufficiently short time constant compared to the control period, and is a static process in which the influence of the previous operation settles down during the control period. Also, consider a process with multiple inputs and multiple outputs. Therefore, when expressed in discrete time format, yk+1=F'(IIJk) ・・・・・・・・・(
1) k: sample time + uk: N-dimensional input (operated amount) vector (ul,...
..., uN) yb: M-dimensional output (process amount) vector (y,
..., yH) F=can be expressed as a function vector representing the input/output characteristics of the process. 2 is a learning law that self-organizes a model using the input/output data of process 1 as a teacher signal; for example, a pack propagation learning law is used. Pack propagation learning laws are well known, for example, E. Ruelhart, G.E.
Former nton and R, J, Will+als, “L
earn+ng Representations by
"Back-Propagating Errors"
Nature Vol, 323, 533-536 (19
86). 3 is a neural network model for identification of process 1, which is modeled using a multilayer perceptron type neural network model. This identification neural network model 3 is expressed by the following equation (2), and its parameters are adjusted according to the learning law 2.

Yl(+1=NN (1’uk)  ・・・・= (2
)NNはNeural Network (神経回路網
)を表すy  、luよは(1)式に同じ に+1 この同定用神経回路網モデル3にはテスト信号が印加さ
れ、4に示すようにその入出力感度から線形モデルが作
成される。5は公知の最適化制御装置であり、目標値及
びプロセス量が入力され、2次形式の評価関数を最小に
する操作量を演算してプロセス1に出力する。
Yl(+1=NN (1'uk)...= (2
) NN represents Neural Network (y), and lu = +1 as in equation (1). A test signal is applied to this identification neural network model 3, and its input/output sensitivity is calculated as shown in 4. A linear model is created from Reference numeral 5 denotes a known optimization control device, into which a target value and a process amount are input, and calculates a manipulated variable that minimizes a quadratic evaluation function and outputs it to the process 1.

同定用神経回路網モデル3にはプロセス1の入力である
操作量及び出力であるプロセス量が入力され、これらの
入力により自己組織化によりモデル3内の結合が変化し
、プロセス1のモデルが作成される。すなわち、プロセ
ス1と同一の入力(操作量)が入力されると、同一の出
力(プロセス量)が出力されるモデルを作成する事が出
来る。
The input neural network model 3 for identification is input with the manipulated variable as the input of process 1 and the process variable as the output, and these inputs change the connections within model 3 through self-organization, creating the model of process 1. be done. That is, it is possible to create a model that outputs the same output (process amount) when the same input (operation amount) as in process 1 is input.

このモデルは前記(2)式によって表わすことが出来る
。但し、このままでは取扱に不便なので、テスト信号を
印加してモデル3の感度を調べることにより、前記(2
)式を線形化する。すなわち、”k+1 = (c5 
NN/、)+u、 ) −n1H2・lu k  ・・
・・・・・・・(3)と置く。ZはMXNの行列であり
、Iukからy/kt1への感度を表わす。すなわち、
その要素Zh。
This model can be expressed by equation (2) above. However, since it is inconvenient to handle as it is, by applying a test signal and checking the sensitivity of Model 3, the above (2)
) to linearize the equation. That is, "k+1 = (c5
NN/,)+u, )-n1H2・lu k...
Put it as (3). Z is a matrix of MXN and represents the sensitivity from Iuk to y/kt1. That is,
The element Zh.

はU・からyhへの感度である。この行列Zのj列のベ
クトル(旧・からJへの感度)をIN  と置くと、 Ill = (NN (luk+α1i−−NN (+
uk))/α φ・ 二N次元の第i単位ベクトル α・ :U の変動量 で求める事か出来る。
is the sensitivity from U. to yh. Letting the vector of the j column of this matrix Z (sensitivity from old to J) be IN, Ill = (NN (luk+α1i−−NN (+
uk))/α φ・2N-dimensional i-th unit vector α・ :U It can be found by the amount of variation.

次に、最適化制御装置5の動作を説明する。静的なモデ
ルを考えているので、最適化制御装置5は操作量の大き
さと、次のサンプル時刻で集束した制御量の目標値から
、偏差の大きさを考えた次の評価関数Jを最小にする操
作量ベクトルuhを計算する。
Next, the operation of the optimization control device 5 will be explained. Since we are considering a static model, the optimization control device 5 minimizes the next evaluation function J considering the magnitude of deviation from the magnitude of the manipulated variable and the target value of the controlled variable converged at the next sample time. Calculate the manipulated variable vector uh.

J=+uk−P ・+uk十(Yk+I  Y) ” 
・Q■ (yl、+1−y)  ・・・・・・・・・(4)P:
操作量の重み行列(対角行列) Q:制御量の重み行列(対角行列) 1uえ :時刻にの操作量ベクトル Vk:時刻にの制御量ベクトル テ:制御量の目標値ベタ1〜ル この評価関数はIIJ Hとyk+1の関係が明らかで
ないと評価出来ない。その為、この式に線形化した同定
用神経回路網モデル3の関係式(前記(3)式)を代入
すると、 J=+uH”−P−ru  +(Z・+uk−y)”Q
・ (2・+uk y) になる。この式に重み付き最小2乗法と同様の手続きを
施してJを最小化するIll kを求めると、T   
       −I    T+u  = (P十Z 
 −Q−Z)  ・Z  −Q−yh となり、最適な操作量を求めることができる。
J=+uk-P ・+uk ten (Yk+I Y)”
・Q■ (yl, +1-y) ・・・・・・・・・(4) P:
Weight matrix of manipulated variables (diagonal matrix) Q: Weight matrix of controlled variables (diagonal matrix) 1u: Manipulated variable vector at time Vk: Controlled variable vector at time The evaluation function cannot be evaluated unless the relationship between IIJH and yk+1 is clear. Therefore, by substituting the relational expression (formula (3) above) of the linearized neural network model 3 for identification into this equation, we get J=+uH"-P-ru +(Z・+uk-y)"Q
・It becomes (2・+uk y). Applying a procedure similar to the weighted least squares method to this equation to find Ill k that minimizes J, we get T
-I T+u = (P0Z
-Q-Z) ・Z -Q-yh, and the optimum operation amount can be found.

第2図に全体のアルゴリズムのフローチャートを示す。FIG. 2 shows a flowchart of the entire algorithm.

最初に、従来の制御方式、例えばPID制御などを用い
て操作量を出力すると共に、プロセスの入出力データ’
/に+1−1ukを収集する。次に、この入出力デ′−
タVk+1、LLIkを用いてバックプロパゲーション
などの学習法則を適用して、同定用神経回路網モデル3
を決定する。すなわち、前記(2)式のNNを決定する
。この作業はモデルが同定されるまで続けられる。モデ
ルが同定されると、この同定したモデルにテスト信号を
加えて感度を調べ、同定用神経回路網モデル3の線形モ
デルの係数を求める。すなわち、前記(3)式の行列Z
の各要素を求める。次に、この線形関係を前記(4)式
の2次形式の評価関数に代入し、この評価関数Jを最小
にする操作1hを求めて出力する。
First, a conventional control method such as PID control is used to output the manipulated variable and process input/output data'
Collect +1-1uk on /. Next, this input/output data
Neural network model 3 for identification by applying learning laws such as backpropagation using data Vk+1 and LLIk.
Determine. That is, NN of the above equation (2) is determined. This process continues until the model is identified. Once the model is identified, a test signal is added to the identified model to check its sensitivity, and the coefficients of the linear model of the identification neural network model 3 are determined. In other words, the matrix Z in equation (3) above
Find each element of . Next, this linear relationship is substituted into the quadratic evaluation function of equation (4), and the operation 1h that minimizes this evaluation function J is determined and output.

次に、この神経回路網を用いたプロセス制御方法を抄紙
機の幅方向の厚さのプロフィール制御に応用した例を示
す。抄紙機では、製品である紙の幅方向の絶乾坪量のプ
ロフィールを測定し、このプロフィールが目標値に一致
するようにパルプの吐き出し口であるスライスリップの
開度のプロフィールを制御する。すなわち、スライスリ
ップの開度ベクトルを’7に+1−絶乾坪量ベクトルを
川にとすると、 y/に−[yt 、 yz 、・・・・・・・・・・・
・、、yt、1]”となる。ここに、Aは干渉行列であ
り、ある部分のスライスリップの開度を変えると、その
周辺の絶乾坪量まで変化するので、通常下記のようなバ
ンド対角行列になる。
Next, we will show an example in which the process control method using this neural network is applied to control the thickness profile in the width direction of a paper machine. In a paper machine, the profile of absolute dry basis weight in the width direction of the paper product is measured, and the opening profile of the slicing lip, which is the outlet for pulp, is controlled so that this profile matches a target value. In other words, if the opening vector of the slice lip is '7' + 1 - the absolute dry basis weight vector is River, then y/ is - [yt , yz , ......
・,,yt,1]".Here, A is an interference matrix, and if you change the opening degree of the slice lip in a certain part, the absolute dry basis weight of the surrounding area will also change, so it is usually as follows. It becomes a banded diagonal matrix.

この様なプロセスを非干渉化するなめに、スライスリッ
プの開度操作量の変動分ΔIu kを次のようにして求
める。
In order to make such a process non-interfering, the variation ΔIuk of the opening degree manipulation amount of the slice lip is determined as follows.

Δlug =Q  (s ) ・M ・Δ’pkGc 
 (s ) : P Iコントローラの伝達関数M:非
干渉化の為の分配係数行列(=A−1)Δy/に=目標
値と測定値の偏差 しかし、この様な方法では (1)干渉行列Aは場所によって形が違ったり、位置対
応がずれたりして、必すしも前記(5)式のようになら
ない。
Δlug = Q (s) ・M ・Δ'pkGc
(s): Transfer function M of PI controller: Distribution coefficient matrix for non-interference (=A-1) Δy/ = deviation between target value and measured value However, in such a method, (1) interference matrix A may have a different shape depending on the location, or the positional correspondence may deviate, so that it is not necessarily as shown in equation (5) above.

(2)モデルを確定的に表現しているため、プロセスの
動特性を考慮していない。
(2) Since the model is expressed deterministically, the dynamic characteristics of the process are not considered.

(3)MがAと同じような対称なバンド対角行列になら
ない場合がある。
(3) M may not be a symmetric band diagonal matrix like A.

などの欠点がある。そこで、前述した神経回路網モデル
を用いた制御方法を適用することにより、これらの欠点
を除去出来る。この場合、同定用神経回路網モデル3と
して、パーセットロン形神経回路網モデルを用いる。こ
れを用いる理由は、抄紙機の干渉特性が側抑制結合を持
つ神経回路網モデルに酷似しているためである。なお、
側抑制結合とは、入力地点近回のニューロンに対しては
正、その両側のニューロンに対しては負のシナプス結合
を持つものであり、錯視現象やマツハ効果の説明等の説
明に有効とされているものである。制御方法自体は前述
した方法と同じなので、説明を省略する。この様な制御
では、プロセスの特性を線形、干渉特性が対称・対角か
つ一様というような理想化をしなくても制御が出来るの
で、より質の高い制御が実現出来る。
There are drawbacks such as. Therefore, by applying the control method using the neural network model described above, these drawbacks can be eliminated. In this case, a percetron neural network model is used as the identification neural network model 3. The reason for using this is that the interference characteristics of the paper machine closely resemble a neural network model with lateral inhibitory connections. In addition,
Lateral inhibitory connections have positive synaptic connections to neurons near the input point and negative synaptic connections to neurons on both sides, and are said to be effective in explaining optical illusion phenomena and the Matsuha effect. It is something that The control method itself is the same as the method described above, so the explanation will be omitted. In this type of control, control can be achieved without idealizing the process characteristics to be linear and the interference characteristics to be symmetrical, diagonal, and uniform, so that higher quality control can be achieved.

なお、学習法則はバックプロパゲーションの外にCP 
N (Counter Propagation Ne
twork ) 、ART’(八daptive Re
5pance Theory)などを適用することが出
来る。
In addition, the learning law uses CP in addition to backpropagation.
N (Counter Propagation Ne
twork), ART'(8 adaptive Re
5pance Theory) etc. can be applied.

また、抄紙機ではスライスリップの開度に制限かある場
合があるので、操作量に制約条件を付けるようにしても
よい。
Further, in some paper machines, there may be restrictions on the opening degree of the slicing lip, so a constraint condition may be attached to the amount of operation.

〈発明の効果〉 以上、実施例に基づいて具体的に説明したように、この
発明では同定用神経回路網モデルをプロセスの入出力を
用いて同定し、この同定したモデルにテスト信号を印加
して線形化し、この線形関係を評価関数に代入して、こ
の評価関数を最小にする操作量を求めるようにした。そ
の為、多入力多出力系に対してもプロセスモデルが簡単
に得られ、最適操作量を求めることが出来る。
<Effects of the Invention> As explained above in detail based on the embodiments, in this invention, a neural network model for identification is identified using the input/output of a process, and a test signal is applied to this identified model. This linear relationship is then substituted into the evaluation function to find the amount of operation that minimizes the evaluation function. Therefore, a process model can be easily obtained even for a multi-input multi-output system, and the optimum operation amount can be determined.

また、現在制御理論による最適化制御や、通常の最適化
問題の求解法に比べて、短い演算時間で最適解を求める
ことか出来る。
Furthermore, compared to optimization control based on current control theory or conventional methods for solving optimization problems, it is possible to obtain an optimal solution in a shorter calculation time.

さらに、同定用モデルを線形化するようにしたので、非
線形のプロセスに対しても適用できる。
Furthermore, since the identification model is linearized, it can also be applied to nonlinear processes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る神経回路網を用いたプロセス制御
方法の一実施例を示す構成図、第2図は制御の手順を示
すフローチャートである。 1・・・プロセス、2・・・学習法則、3・・・同定用
神経回路網モデル、5・・・最適化制御装置。
FIG. 1 is a block diagram showing an embodiment of a process control method using a neural network according to the present invention, and FIG. 2 is a flowchart showing a control procedure. 1... Process, 2... Learning law, 3... Neural network model for identification, 5... Optimization control device.

Claims (1)

【特許請求の範囲】[Claims]  制御対象であるプロセスの入出力によって同定用神経
回路網モデルを同定し、この同定された神経回路網モデ
ルにテスト信号を入力して線形化して、この線形関係を
最適化制御装置の評価関数に代入し、この評価関数が最
小になるような操作量を求めるようにしたことを特徴と
する神経回路網を用いたプロセス制御方法。
A neural network model for identification is identified based on the input and output of the process to be controlled, a test signal is input to the identified neural network model, linearized, and this linear relationship is used as the evaluation function of the optimization control device. 1. A process control method using a neural network, characterized in that the amount of operation is determined such that the evaluation function is minimized.
JP7112389A 1989-03-23 1989-03-23 Process control method using neural circuit network model Pending JPH02249004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7112389A JPH02249004A (en) 1989-03-23 1989-03-23 Process control method using neural circuit network model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7112389A JPH02249004A (en) 1989-03-23 1989-03-23 Process control method using neural circuit network model

Publications (1)

Publication Number Publication Date
JPH02249004A true JPH02249004A (en) 1990-10-04

Family

ID=13451478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7112389A Pending JPH02249004A (en) 1989-03-23 1989-03-23 Process control method using neural circuit network model

Country Status (1)

Country Link
JP (1) JPH02249004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195257A1 (en) * 2016-05-09 2017-11-16 株式会社日立製作所 Electronic control device and method for building numerical model

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144203A (en) * 1982-02-22 1983-08-27 Hitachi Ltd Plant controlling system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144203A (en) * 1982-02-22 1983-08-27 Hitachi Ltd Plant controlling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195257A1 (en) * 2016-05-09 2017-11-16 株式会社日立製作所 Electronic control device and method for building numerical model

Similar Documents

Publication Publication Date Title
EP1021752B1 (en) Model-free adaptive process control
US5400247A (en) Adaptive cross-directional decoupling control systems
Yazdizadeh et al. Adaptive time delay neural network structures for nonlinear system identification
CN101452258A (en) Adaptive controller independent to model and control method thereof
Kusumoputro et al. System identification and control of pressure process rig system using Backpropagation Neural Networks
Rigatos et al. Flatness-based adaptive fuzzy control of electrostatically actuated MEMS using output feedback
Souza et al. On building local models for inverse system identification with vector quantization algorithms
Kasparian et al. Model reference based neural network adaptive controller
JP2674167B2 (en) Process control method using neural network model
JPH02249004A (en) Process control method using neural circuit network model
Mousavi Takami et al. Adaptive control of cold rolling system in electrical strips production system with online-offline predictors
Ferreira et al. Choice of RBF model structure for predicting greenhouse inside air temperature
Kusumoputro et al. Performance characteristics of an improved single neuron PID controller using additional error of an inversed control signal
Chang et al. Intelligent integration of SPC/EPC for quality control and fault diagnosis
Huang et al. The application of wavelet neural networks to nonlinear predictive control
Xia et al. Nonlinear adaptive predictive control based on orthogonal wavelet networks
Kansha et al. Adaptive IMC controller design using linear multiple models
JPH03201008A (en) Gain scheduling controller
Kim et al. An adaptive neurocontroller with modified chaotic neural networks
Imai Design of local linear models using PID Tuning According to error
Hsu et al. A neural network-based adaptive algorithm on the single EWMA controller
Kim et al. Quality prediction by neural network for pulp and paper processes
JPH06119002A (en) Process control performance detection device and process controller
Shim et al. Intelligent controller design for the flatness control in a cold rolling process
KR102005455B1 (en) Robust nonlinear control method with low-complexity