JPH02248615A - Engine piston - Google Patents

Engine piston

Info

Publication number
JPH02248615A
JPH02248615A JP1067585A JP6758589A JPH02248615A JP H02248615 A JPH02248615 A JP H02248615A JP 1067585 A JP1067585 A JP 1067585A JP 6758589 A JP6758589 A JP 6758589A JP H02248615 A JPH02248615 A JP H02248615A
Authority
JP
Japan
Prior art keywords
cavity
side wall
lip
fuel
inclination angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1067585A
Other languages
Japanese (ja)
Other versions
JP2697100B2 (en
Inventor
Takatomo Arifuku
有福 孝智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP1067585A priority Critical patent/JP2697100B2/en
Publication of JPH02248615A publication Critical patent/JPH02248615A/en
Application granted granted Critical
Publication of JP2697100B2 publication Critical patent/JP2697100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To prevent atomized fuel from adhering and residing before and behind a top dead center by forming a cavity side wall at an approximately right-angled inclination angle to a fuel atomizing line, and then a lip at the open end of a cavity. CONSTITUTION:The side wall 5 of a recessed cavity 2 in a piston top 20 is formed at an approximately right-angled inclination angle theta to a fuel atomizing line F from the axial side of the cavity 2. A protruding end 7 is edged into an arc shape at the open end of the cavity 2, and a lip 6 where the crossing angle of a lower surface 9 to a side wall 5 is equal to an inclination angle thetais provided. Moreover, a piston 1 is constructed by making the lip 6 and the side wall 5 continuous at a curved surface. Therefore, the connected portion of the side wall 5 and the lip 6 can be positioned outwards in a radial direction according to the size of the inclination angle theta of the side wall 5. As a result, the protruding length of the lip 6 is shortened, and all injecting fuel is supplied in the cavity 2 even under a low speed and a light duty. It is thus possible to prevent atomized fuel from adhering to the upper surface of the lip 6 in its liquid state.

Description

【発明の詳細な説明】 [産業上の利用分野1 この発明は、燃料噴霧を直接供給するキャビティをピス
トン頂部に形成したエンジンのピストンに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to an engine piston having a cavity formed at the top of the piston to directly supply fuel spray.

[従来の技術] 通常、ターボ過給機付ディーゼルエンジンの高出力を追
及する場合は、エンジンの最大出力点、即ち燃料流量最
大の点で過給機圧力を最大に設定し、その最大出力点で
発生する燃焼圧力がエンジンの機械的強度以下になるよ
うに圧縮比を下げるのが一般であり、低い圧縮比にする
ほど低燃費を期待できる。
[Prior Art] Normally, when pursuing high output from a turbocharged diesel engine, the supercharger pressure is set to the maximum at the maximum output point of the engine, that is, the point at which the fuel flow rate is maximum, and the maximum output point is Generally, the compression ratio is lowered so that the combustion pressure generated in the engine is less than the mechanical strength of the engine, and the lower the compression ratio, the lower the fuel consumption can be expected.

このように最大出力点でanマツチングさせたエンジン
は、低速・軽負荷域、即ち過給機圧力が低い範囲で圧縮
圧力、温度そして燃焼室(キャビティ)温度が低くなる
傾向を示す、一般に、インジェクションノズルから噴射
された燃料は、通常、ピストン側壁に衝突して跳返り火
炎中で完全燃焼し、側壁に付着した燃料もその火炎によ
って完全に蒸発または炭化してしまう、しかし、上述の
ようにターボ過給機エンジン用にマツチングさせた低圧
縮比エンジンでは、側壁に衝突して反射した燃料が未着
火であったり、側壁に付着した燃料の蒸発の遅れより、
より低温度の燃焼室底部に達して液化し、火炎に晒され
てキャビティ内に未燃燃料として浮遊し、これが排気行
程で排出されて青白煙(HC)、排気刺激臭を生む。
In an engine that is an-matched at the maximum output point in this way, the compression pressure, temperature, and combustion chamber (cavity) temperature tend to decrease in the low speed and light load range, that is, in the range where the supercharger pressure is low. Normally, the fuel injected from the nozzle collides with the side wall of the piston, rebounds, and burns completely in the flame, and the fuel that adheres to the side wall is also completely evaporated or carbonized by the flame.However, as mentioned above, in the case of a turbo In a low compression ratio engine matched for a supercharged engine, the fuel that collides with the side wall and is reflected may not be ignited, or the fuel adhering to the side wall may be delayed in evaporation.
It reaches the bottom of the combustion chamber, where the temperature is lower, where it liquefies, is exposed to flame, and floats in the cavity as unburned fuel, which is then exhausted during the exhaust stroke, producing blue-white smoke (HC) and a pungent exhaust odor.

この理由からディーゼルエンジンの低圧縮化は、フリク
ション低減、過給率アップによる高出力化が可能である
にもかかわらず採用に至っていない。
For this reason, lower compression in diesel engines has not been adopted, even though it is possible to increase output by reducing friction and increasing the supercharging rate.

そこで、低圧縮比過給エンジンを得るためには、キャビ
ティに供給する燃料の状態(蒸発、分散、分布)を良好
な状態に制御し、正確な着火を生じさせて火炎伝播を図
らねばならない。
Therefore, in order to obtain a low compression ratio supercharged engine, it is necessary to control the state (evaporation, dispersion, distribution) of the fuel supplied to the cavity to be in a good state, and to cause accurate ignition and flame propagation.

この種の課題を前提とした提案には、本出願人提案の「
直接噴射式ディーゼル機関の燃焼室」(実開昭58−1
02720号公報)がある。
Proposals based on this type of problem include the applicant's proposal “
Combustion chamber of direct injection diesel engine
02720).

提案は、ピストン頂面にキャビティを凹設しそのキャビ
ティの入り口を形成する開口周縁に半径方向内方へ突出
されたリップを形成し、キャビティの側壁を燃料噴射ノ
ズルの燃料噴霧線に対して直角となるように形成し、キ
ャビティ底中央にトロイダル方向の攪拌流を生成する円
錐形状の突出部を形成して構成したもので、側壁に燃料
を直角に衝突させることによって、噴射燃料の一部分の
燃料の粒子をさらに細かく砕きつつ、側壁に対する燃料
の残部分がその側壁に薄膜状に付着して拡散するように
し、そして上記リップが、(Pl壁で粉砕した燃料、蒸
発した燃料そして薄膜状に付着させる燃料をキャビティ
内に閉込めようにしている。
The proposal involves recessing a cavity in the top surface of the piston, forming a lip protruding radially inward on the periphery of the opening that forms the entrance to the cavity, and making the side wall of the cavity perpendicular to the fuel spray line of the fuel injection nozzle. A conical protrusion that generates a toroidal stirring flow is formed at the center of the bottom of the cavity. By colliding the fuel at right angles with the side wall, a portion of the injected fuel is The remaining part of the fuel against the side wall adheres to the side wall in the form of a thin film and is dispersed while the particles of It is designed to trap the fuel inside the cavity.

つまり、提案は、燃料噴霧の微粒子化を促進して、着火
および火炎伝播に必要な混合気を生成する一方で、攪拌
流の強度に依存させて薄膜状の燃料及び側壁付近に存在
する蒸気を側壁側から剥離させ、これをキャビティの中
心側に運んで火炎を伝播させ、燃焼を良好にするように
している。
In other words, the proposal promotes atomization of the fuel spray to generate the mixture necessary for ignition and flame propagation, while relying on the strength of the stirring flow to reduce the thin film of fuel and vapor present near the sidewalls. The flame is peeled off from the side wall and carried to the center of the cavity to propagate the flame and improve combustion.

[発明が解決しようとする課Ill しかし、上述の提案を上述の低圧縮比高過給エンジンに
採用するためには、次の課題を解決する必要がある。
[Problems to be Solved by the Invention] However, in order to apply the above-mentioned proposal to the above-mentioned low compression ratio high supercharged engine, it is necessary to solve the following problem.

■ 低圧縮比高過給エンジンの燃焼圧力に対してリップ
の機械的強度を向上させる必要がある。
■ It is necessary to improve the mechanical strength of the lip against the combustion pressure of a low compression ratio, high supercharged engine.

■ エンジンの最大出力点は回転数が高く燃料噴射量も
多く噴射ポンプの角速度が大きいため動的な噴射タイミ
ングはかなり遅角する。
■ At the maximum output point of the engine, the engine speed is high, the amount of fuel injected is large, and the angular speed of the injection pump is large, so the dynamic injection timing is considerably retarded.

このため最大出力点で最適タイミングに設定すると低速
回転では動的な噴射時期が進角し、上死点前のかなり早
い時期から上死点後の遅い時期まで燃料が噴射されてピ
ストン頂面(リップ上面)に付着するため、過大量のH
C(青白煙)が発生する。
Therefore, if the optimum timing is set at the maximum output point, the dynamic injection timing will advance at low speeds, and fuel will be injected from quite early before top dead center to late after top dead center, and the top surface of the piston ( (upper surface of the lip), an excessive amount of H
C (blue-white smoke) is generated.

このため、付加装置として噴射時期を自動的に調節する
オートタイマ等が必要になる。
Therefore, an auto-timer or the like that automatically adjusts the injection timing is required as an additional device.

[課題を解決するための手段] この発明は上記課題を解決することを目的とし、ピスト
ン頂面に凹設するキャビティの側壁を、キャビティ軸心
側からの燃料噴霧線に対して略直角の傾斜角で形成し、
キャビティの開口縁に、突出端が円弧状に縁どられ下面
と該側壁との交角が上記傾斜角と同等範囲のリップを形
成し、リップと側壁とを曲面で連続させてエンジンのピ
ストンを構成したものである。
[Means for Solving the Problems] The present invention aims to solve the above problems, and the side wall of the cavity recessed in the top surface of the piston is inclined approximately at right angles to the fuel spray line from the cavity axis side. formed with corners,
The protruding end is framed in an arc shape on the opening edge of the cavity, and the intersecting angle between the lower surface and the side wall forms a lip having a range equivalent to the above-mentioned inclination angle, and the lip and the side wall are continuous with a curved surface to form an engine piston. This is what I did.

[作用] キャビティの側壁を、キャビティ軸心側からの燃料噴震
線に対して略直角の傾斜角で形成し、キャビティの開口
縁に、下面と側壁との交角がその傾斜角と同等範囲で、
かつ突出端を円弧状に縁どるリップを形成すると、側壁
の傾斜角の大きさに応じて側壁とリップの接続部分を半
径方向外方に位置させることができる。この結果、リッ
プの突出長さが短縮され、低速・軽負荷時にあってもキ
ャビティ内に噴射燃料の全てが供給されるようになる。
[Function] The side wall of the cavity is formed with an inclination angle approximately perpendicular to the fuel injection line from the cavity axis side, and the intersection angle between the lower surface and the side wall is within the same range as the inclination angle at the opening edge of the cavity. ,
In addition, by forming a lip that frames the protruding end in an arc shape, the connecting portion between the side wall and the lip can be positioned radially outward depending on the magnitude of the inclination angle of the side wall. As a result, the protruding length of the lip is shortened, and all of the injected fuel can be supplied into the cavity even at low speeds and light loads.

したがって低速・軽負荷時において燃料噴霧がリップの
上面に液状態に付着することがなく、ICの排出量が大
巾に減少する。またリップの突出長が短縮し、かつリッ
プと側壁との接続部を曲面で接続すると、圧力に対する
曲げモーメント等が減少し、応力集中度が減少するから
、リップの機械的強度は大幅に増加する。
Therefore, at low speeds and light loads, the fuel spray does not adhere to the upper surface of the lip in a liquid state, and the amount of exhaust from the IC is greatly reduced. In addition, by shortening the protruding length of the lip and connecting the lip and the side wall with a curved surface, the bending moment due to pressure is reduced, and the degree of stress concentration is reduced, so the mechanical strength of the lip is significantly increased. .

このような燃焼室にあって軸心側から供給された燃料噴
震は、側壁に衝突し、噴霧の一部が反射して拡散し、一
部がその側壁に燃料膜として付着し拡散する0反射及び
拡散の程度は、コーナ及びH壁の燃料噴震線に対する傾
斜角によって一義的に決定するが、これを略直角の傾斜
とすると燃料噴霧の中心鵬対象として反射及び拡散がな
され、その程度もほぼ均一になる。
In such a combustion chamber, the fuel jet supplied from the shaft center side collides with the side wall, part of the spray is reflected and diffused, and part of it adheres to the side wall as a fuel film and spreads. The degree of reflection and diffusion is uniquely determined by the angle of inclination of the corner and H wall with respect to the fuel injection line, but if this angle is set at a nearly right angle, reflection and diffusion will occur from the center of the fuel spray, and the degree of becomes almost uniform.

一方、リップ下面と上記側壁とは上記側壁の傾斜角と同
等範囲の傾斜角で接続され且つこれらの接続部分を連続
する曲面で接続するから、圧縮行程終期においてキャビ
ティ内に導入し側壁に沿って上昇するスキッシュ流をそ
の曲面の終端で剥離させ、再度キャビティの底面側へ反
転させるようになる。この結果、側壁に付着した燃料膜
は次第に側壁から剥離されつつ蒸気化し、衝突によって
微粒子化し蒸気化した燃料と共に、そのスキッシュ流中
に巻込まれ上下方向に旋回する。
On the other hand, since the lower surface of the lip and the side wall are connected at an inclination angle in the same range as the inclination angle of the side wall, and these connecting parts are connected by a continuous curved surface, the lip is introduced into the cavity at the end of the compression stroke and is The rising squish flow is separated at the end of the curved surface and reversed again toward the bottom of the cavity. As a result, the fuel film adhering to the side wall is gradually peeled off from the side wall and vaporized, and together with the fuel that has been atomized and vaporized by the collision, it is caught in the squish flow and swirls in the vertical direction.

したがって、燃料噴霧及び混合気化した燃料の燃焼室外
への流出は未然に防止され、リップ下に着火性、火炎の
伝播性能の優れた混合気(予混合気)を分布させるよう
になる。つまり、低速・軽負荷にあっても部分的にリッ
チな混合気を分布させることができ、圧縮比を下げても
迅速な着火と比較的急速な火炎伝播燃焼が可能になり、
HCの排出量を大巾に減少できる。
Therefore, the fuel spray and the mixed vaporized fuel are prevented from flowing out of the combustion chamber, and a mixture (premixture) with excellent ignitability and flame propagation performance is distributed under the lip. In other words, even at low speeds and light loads, it is possible to distribute a partially rich mixture, and even when the compression ratio is lowered, rapid ignition and relatively rapid flame propagation combustion are possible.
HC emissions can be greatly reduced.

[実施例] 以下、この発明の好適一実施例を添付図面に基づいて説
明する。
[Embodiment] A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図及び第2図に示すように、小型直接噴射デーゼル
エンジンに採用される一般のピストン1には、ピストン
頂面20に軸心方向に窪んだキャビティ2が形成される
。実施例にあってキャビティ2は水平断面が四角形に形
成され、そのキャビティ2のほぼ軸心上に燃料噴射ノズ
ル3が配設される。この燃料噴射ノズル3の噴口部4に
は円周方向に等間隔をおいて上記キャビティ2の角数と
同数の噴口が開口され、各噴口から対向する側壁または
、コーナへ半径方向外方向でかつ斜め下方へ燃料噴霧を
噴射するように構成される。
As shown in FIGS. 1 and 2, a general piston 1 employed in a small direct injection diesel engine has a cavity 2 recessed in the axial direction on the top surface 20 of the piston. In this embodiment, the cavity 2 has a rectangular horizontal cross section, and the fuel injection nozzle 3 is disposed approximately on the axis of the cavity 2. The nozzle portion 4 of the fuel injection nozzle 3 has the same number of nozzles as the number of corners of the cavity 2 at equal intervals in the circumferential direction. It is configured to inject fuel spray diagonally downward.

さて、キャビティ2の各側壁5は、噴口からの燃料噴霧
線Fに対して一定角度範囲の傾斜角θを成して形成され
ている。つまり、各側壁5は斜め上方を向く傾斜面を成
す、この側壁面の傾斜角θは、上記燃料噴射ノズル3か
らの燃料噴霧線Fに対して略直角、具体的には90°〜
110°の範囲の傾斜角とし、かつ、その傾斜面の深さ
方向の間隔は、上記燃料噴霧Fの上下方向の拡散間隔j
2と同等かあるいはそれ以上とする。キャビティ2の底
面11はキャビティ2の中心軸02上に水平面を基準と
して隆起した円錐形状の突出部13によって形成する。
Now, each side wall 5 of the cavity 2 is formed to form an inclination angle θ within a certain angle range with respect to the fuel spray line F from the nozzle. That is, each side wall 5 forms an inclined surface facing obliquely upward, and the inclination angle θ of this side wall surface is approximately perpendicular to the fuel spray line F from the fuel injection nozzle 3, specifically, from 90° to
The angle of inclination is in the range of 110°, and the interval in the depth direction of the inclined surface is equal to the vertical diffusion interval j of the fuel spray F.
It shall be equal to or greater than 2. The bottom surface 11 of the cavity 2 is formed by a conical protrusion 13 raised on the central axis 02 of the cavity 2 with respect to the horizontal plane.

ただし、その突出部13の頂点は、キャビティの高さ方
向の中間位置近傍にあるようにし、キャビティ2内にト
ロイダル方向の旋回流を生成するようにする。
However, the apex of the protrusion 13 is located near the middle position in the height direction of the cavity, so that a swirling flow in the toroidal direction is generated within the cavity 2.

一方、キャビティ2の入り口10を形成する開口周縁に
は、開口周縁に沿ってリップ6を形成する。リップ6は
、半径方向内方へ突出させて形成し、その突出端7は、
リップ6の半径方向外方に中心を置く円弧で丸く縁どり
、リップ6の下面と上記側壁との接続は、これらの交角
が上記傾斜角と同等範囲内となるように接続する。また
、この接続部分の位置は上記ピストンが上死点位置のと
き燃料噴霧の到達点が上記側壁の上下方向の中間にある
ような位置に設定する。さらに、側壁5とリップ下面9
とは、圧縮行程終期にリップ6によって生成されるスキ
ッシュ流Vをリップ下面9側から剥離させてキャビティ
2の底面側に反転させることのできる曲率の円弧で滑ら
かに接続し、底面と突出部13の底との接続部分も円弧
で滑らかに接続する。但し、リップ下面9と側壁5とを
接続する曲面と、リップ先端7を丸く縁どる円弧との間
に直線部分を形成する。
On the other hand, a lip 6 is formed along the opening periphery forming the entrance 10 of the cavity 2 . The lip 6 is formed to protrude radially inward, and its protruding end 7 is
It is rounded with an arc centered radially outward of the lip 6, and the lower surface of the lip 6 and the side wall are connected such that their intersection angle is within the same range as the inclination angle. Further, the position of this connecting portion is set so that when the piston is at the top dead center position, the arrival point of the fuel spray is located midway in the vertical direction of the side wall. Furthermore, the side wall 5 and the lower lip surface 9
means that the squish flow V generated by the lip 6 at the end of the compression stroke is separated from the lip lower surface 9 side and is smoothly connected with an arc of curvature that can be reversed to the bottom surface side of the cavity 2, and the bottom surface and the protrusion 13 The connection part with the bottom of the is also connected smoothly with an arc. However, a straight line portion is formed between the curved surface connecting the lip lower surface 9 and the side wall 5 and the circular arc that roundly frames the lip tip 7.

ところで側面5と突出部の底との接続部分とが決定する
半径方向の間隔D2と半径方向に対向する上記リップの
突出端間の間隔D1との関、係は、D、>D2とし、ま
た、半径方向に対向するリップ6の下面と上記側壁との
接続部間の間隔り、と上記キャビティの最大深さHとの
関係は、D3/H44とする。尚、上記キャビティ2の
角コーナ14,15,16.17は隣接する側壁5相互
をそれぞれ円周方向の曲面19.20.21゜22で滑
らかに接続して形成するが、この曲面19〜22も燃料
噴霧線に対しては90°〜110゜範囲の傾斜面で形成
する。
By the way, the relationship between the radial distance D2 determined by the connecting portion between the side surface 5 and the bottom of the protrusion and the distance D1 between the radially opposing protruding ends of the lips is D,>D2, and , the relationship between the distance between the connecting portions between the lower surface of the lip 6 and the side wall that face each other in the radial direction, and the maximum depth H of the cavity is D3/H44. The corners 14, 15, 16.17 of the cavity 2 are formed by smoothly connecting the adjacent side walls 5 with curved surfaces 19, 20, and 21 degrees 22 in the circumferential direction, respectively. It is also formed with an inclined surface in the range of 90° to 110° with respect to the fuel spray line.

以上のように構成すると、上記リップ下面9゜上記側壁
5下部そして突出部13によってリップ下面9下には、
キャビティ2内に供給される燃焼用の空気の旋回流S、
をトロイダル方向の攪拌流S2としつつ、上下方向には
、圧縮行程終期のスキッシュ流Vを導入する空間24(
以下スワール旋回部という)を形成する。
With the above configuration, the lower lip surface 9 is located below the lip lower surface 9 by the lower part of the side wall 5 and the protrusion 13.
swirling flow S of combustion air supplied into the cavity 2;
is the stirring flow S2 in the toroidal direction, and a space 24 (in the vertical direction) into which the squish flow V at the end of the compression stroke is introduced
(hereinafter referred to as a swirl part).

次に作用を説明する。Next, the effect will be explained.

ピストン頂面に凹設するキャビティ2の側壁5を、キャ
ビティ軸心側からの燃料噴霧線Fに対して90°〜11
00範囲の傾斜角θで形成し、キャビティ2の開口縁に
、リップ6の下面9と側壁5との交角βがその傾斜角θ
と同等範囲でりγプロを形成し、そのリップ6の突出端
7を円弧状に縁どると、側壁5とリップ下面9との接続
部分は、側壁5と突出部13との接続部分に対して半径
方向外方に位置するようになり、さらに、底面と突出部
13の底との接続部分とが決定する半径方向の間隔D2
と半径方向に対向する上記リップ6の突出端7間の間隔
D+とめ関係をD I> D tとすると、ピストン1
の土兄点前近傍で噴射を開始し上死点後の近傍で噴射が
終了する燃料噴霧Fは、その飛翔途上で飛翔を阻害され
ることなくキャビティ2内に供給されるようになる。こ
の結果、低速・軽負荷時にあっても燃料噴霧Fがリップ
6の上面に付着することがない。
The side wall 5 of the cavity 2 recessed in the top surface of the piston is set at an angle of 90° to 11° with respect to the fuel spray line F from the cavity axis side.
00 range, and the intersection angle β between the lower surface 9 of the lip 6 and the side wall 5 is the angle θ of the opening of the cavity 2.
If a γ pro is formed in the same range as , and the protruding end 7 of the lip 6 is framed in an arc shape, the connection part between the side wall 5 and the lower lip surface 9 will be equal to the connection part between the side wall 5 and the protrusion 13. and the radial distance D2 determined by the bottom surface and the connection portion between the bottom of the protrusion 13.
If the distance D + stopper relationship between the protruding ends 7 of the lips 6 facing each other in the radial direction is D I > D t, then the piston 1
The fuel spray F, which starts to be injected in the vicinity of the dome point and ends in the vicinity after the top dead center, is supplied into the cavity 2 without being hindered during its flight. As a result, the fuel spray F does not adhere to the upper surface of the lip 6 even at low speeds and light loads.

一方、リップ下面9と上記側壁5とを連続する曲面で接
続すると、圧縮行程終期においてキャビティ2内に導入
し側9.5に沿って上昇するスキッシュ流Vをその曲面
の終端で剥離させ、再度キャビティ2の底側へ反転させ
るようになる。この結果、側壁5に付着した燃料膜は次
第に側壁5から剥離されつつ蒸気化し、衝突によって微
粒子化し蒸気化した燃料と共に、そのスキッシュ流V中
に巻込まれ上下方向に旋回する。したがって、底側に液
として滞留することがなくHCの排出量が減少する。
On the other hand, if the lower lip surface 9 and the side wall 5 are connected by a continuous curved surface, the squish flow V that is introduced into the cavity 2 and rises along the side 9.5 at the end of the compression stroke is separated at the end of the curved surface and is again It will now be turned over to the bottom side of cavity 2. As a result, the fuel film adhering to the side wall 5 is gradually peeled off from the side wall 5 and vaporized, and together with the fuel that has been atomized and vaporized by the collision, is caught in the squish flow V and swirls in the vertical direction. Therefore, HC does not remain as a liquid on the bottom side, and the amount of HC discharged is reduced.

このように、燃料噴霧F及び混合気化した燃料のキャビ
ティ2外への流出は未然に防止され、リップ下に着火性
、火炎の伝播性能の優れた混合気(予混合気)を分布さ
せるようになる。つまり、低速・軽負荷にあっても部分
的にリッチな混合気を分布させて、迅速な着火と比較的
急速な火炎伝播燃焼が可能になり、第3図に示すように
低速・軽負荷時の燃料流量(Q)においてHCを200
ppm以上低減できるようになる。
In this way, the fuel spray F and the mixed vaporized fuel are prevented from flowing out of the cavity 2, and a mixture (premixture) with excellent ignitability and flame propagation performance is distributed under the lip. Become. In other words, even at low speeds and light loads, it is possible to distribute a partially rich air-fuel mixture, allowing quick ignition and relatively rapid flame propagation combustion, as shown in Figure 3. 200 HC at a fuel flow rate (Q) of
It becomes possible to reduce the amount by more than ppm.

ところでキャビイ2を五角形の水平断面に形成し、各コ
ーナへ燃料噴霧を供給するように構成すると、HCをさ
らに減少できるようになる。
By the way, if the cavity 2 is formed to have a pentagonal horizontal cross section and configured to supply fuel spray to each corner, HC can be further reduced.

つまり、旋回流SLとして導入される旋回流の強度を角
数の増加に応じピストン頂面で減衰して燃料噴霧Fの貫
徹力を相対的に増加させ、各コーナに対する燃料の到達
率を増加させることができる一方で、燃料噴霧Fの噴霧
飛翔距離J+を、リップ先端7間距離りを同一とし、か
つ、従来例のようにキャビティ2の辺となる側壁5に円
周方向に対してほぼ直角に供給するように構成した四角
形キャビティ2の場合と比較すると、」1=0.323
 Dからj 、 =0.353 Dに増加させて空気に
対する混合時間を増加させ、突出部13周りに火炎伝播
に必要な拡散混合気が生成されるようになる。またこれ
は、拡散混合気の生成量の増加に反比例して、側l11
5への燃料の到達量を減少させるようにも機能する。、
この結果、低速・軽負荷にあって噴射時期を実質的に遅
角調節することになり、ピストン1の実圧縮比を増加さ
せた場合と同等の結果を得ることができるから、側壁5
の燃料膜厚を薄くして側壁5の過度の冷却を防止する。
In other words, the strength of the swirling flow introduced as the swirling flow SL is attenuated at the top surface of the piston as the number of corners increases, thereby relatively increasing the penetration force of the fuel spray F, and increasing the rate of fuel reaching each corner. On the other hand, the spray flying distance J+ of the fuel spray F is set so that the distance between the lip tips 7 is the same, and the side wall 5 which is the side of the cavity 2 is set at a substantially right angle to the circumferential direction as in the conventional example. Compared to the case of square cavity 2 configured to supply ``1=0.323
The mixing time for air is increased by increasing D to j = 0.353 D, and a diffused mixture necessary for flame propagation is generated around the protrusion 13. Also, this is inversely proportional to the increase in the amount of diffused mixture produced, and the side l11
It also functions to reduce the amount of fuel reaching 5. ,
As a result, the injection timing is substantially retarded at low speeds and light loads, and the same result as when the actual compression ratio of the piston 1 is increased can be obtained.
Excessive cooling of the side wall 5 is prevented by reducing the thickness of the fuel film.

つまり、壁面の蒸発能力は低速・軽負荷時にあっても一
定以上に維持されるようになる。
In other words, the evaporation capacity of the wall surface is maintained above a certain level even at low speeds and light loads.

したがって各コーナ内には、スワール旋回部24内を部
分的にリッチ濃度の混合気を生成するゾーンとして活用
できるようになり、コーナの円周方向前後のスワール旋
回部24内には、火炎伝播に適した濃度の拡散混合気が
存在するようになる。つまり、低速・軽負荷運転時のキ
ャビティ2内の燃焼条件(混合気の濃度、キャビティ内
雰囲気温度等)が改善され、HCの排出量が減少する。
Therefore, inside each corner, the inside of the swirl turning section 24 can be used as a zone that partially generates a rich mixture. A diffused mixture of suitable concentration will now exist. In other words, the combustion conditions (air-fuel mixture concentration, cavity internal atmosphere temperature, etc.) within the cavity 2 during low-speed, light-load operation are improved, and the amount of HC discharged is reduced.

着火が開始すると、火炎が円周方向に伝播され、比較的
急速に燃焼する。即ち燃焼温度が上昇して一定のエンジ
ン出力が確保され、HCの排出量が減少する。
Once ignition begins, the flame propagates circumferentially and burns relatively quickly. That is, the combustion temperature increases, a constant engine output is ensured, and the amount of HC emissions decreases.

次に、上述のキャビティ2を備えたピストン1を、低圧
縮比過給エンジン用として採用した場合のHCの排出量
に関する四角形のキャビティ2と五角形のキャビティを
第4図乃至第7図に示すテストデータに基づいて比較す
る。
Next, the square cavity 2 and the pentagonal cavity were tested as shown in FIGS. 4 to 7 regarding the amount of HC discharged when the piston 1 equipped with the cavity 2 described above is adopted for use in a low compression ratio supercharged engine. Compare based on data.

第4図は、回転数が変化しても四角形のキャビティ2に
対して五角形のキャビティの性能が優れていること、ま
た、回転数の大小を問わず四角形のキャビティ2に対し
て五角形のキャビティの性能が優れていることを示し、
第5図は回転数、圧縮比を固定し、噴射時期を変化させ
た場合において、噴射時期を上死点前約18°とすると
HCの排出量が減少することを示している。
Figure 4 shows that the performance of the pentagonal cavity is superior to the rectangular cavity 2 even when the rotational speed changes, and that the performance of the pentagonal cavity is superior to the rectangular cavity 2 regardless of the rotational speed. It shows that the performance is excellent,
FIG. 5 shows that when the rotational speed and compression ratio are fixed and the injection timing is varied, the amount of HC discharged decreases when the injection timing is set to about 18 degrees before top dead center.

一方、第6図及び第7図は、回転数11000RP。On the other hand, in FIGS. 6 and 7, the rotation speed is 11,000 RP.

2200 RPMにおけるHCの排出量と圧縮比εとの
関係を調べたものである。この結果、各回転数について
圧縮比εを下げることによってHCの排出量が減少する
ことが確認できた。
The relationship between the amount of HC discharged and the compression ratio ε at 2200 RPM was investigated. As a result, it was confirmed that the amount of HC discharged was reduced by lowering the compression ratio ε for each rotation speed.

以上の結果から明らかなように、上述のような構成の五
角形のキャビティは、低圧縮比エンジンに好適であり、
圧縮比εを約15.4、燃料の噴射時期を約18°(B
TDC)とすると、着実な着火と火炎伝播燃焼が保障さ
れるようになる。
As is clear from the above results, the pentagonal cavity configured as described above is suitable for low compression ratio engines.
The compression ratio ε is approximately 15.4, and the fuel injection timing is approximately 18° (B
TDC), steady ignition and flame propagation combustion are guaranteed.

したがって、低圧縮比エンジンにおいて自動タイマを用
いて噴射時期の調整必要性がなく、低速・低負荷運転に
あっても青白煙(HC)、刺激臭を減少でき、燃費を向
上できる。
Therefore, there is no need to adjust the injection timing using an automatic timer in a low compression ratio engine, and even during low speed and low load operation, blue white smoke (HC) and irritating odor can be reduced, and fuel efficiency can be improved.

尚、上記テストデータから明らかなように四角形のキャ
ビティ2を形成・する場合には、四角形を対角線上に拡
大して各コーナ14〜17へ燃料噴霧を供給するように
すれば、その燃焼性能(HC等)を向上できる。
As is clear from the above test data, when forming the square cavity 2, expanding the square diagonally and supplying fuel spray to each corner 14 to 17 improves combustion performance ( HC, etc.) can be improved.

[発明の効果] 以上説明したことから明らかなように、リップの強度を
大巾に向上すると共に、上死点の前後における燃料噴霧
のピストン頂面の付着、キャビティ底に液として滞留す
ることを防止してHCの排出量を大巾に低減できる。
[Effects of the Invention] As is clear from the above explanation, the strength of the lip is greatly improved, and the fuel spray is prevented from adhering to the top surface of the piston before and after top dead center and from remaining as liquid at the bottom of the cavity. By preventing this, the amount of HC discharged can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の好適一実施例を示す断面図、第2図
は第1図のIf−n線矢視図、第3図はHC性能を示す
性能線図、第4図乃至第7図は四角形と五角形のHC性
能を示す性能線図である。 図中、1はピストン、2はキャビティ、5は側壁、6は
リップ、14〜18はコーナである。 特許出願人  いすず自動車株式会社
FIG. 1 is a sectional view showing a preferred embodiment of the present invention, FIG. 2 is a view taken along the If-n line in FIG. 1, FIG. 3 is a performance diagram showing HC performance, and FIGS. The figure is a performance diagram showing the HC performance of quadrilateral and pentagonal shapes. In the figure, 1 is a piston, 2 is a cavity, 5 is a side wall, 6 is a lip, and 14 to 18 are corners. Patent applicant Isuzu Motors Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、ピストン頂面に凹設するキャビティの側壁を、キャ
ビティ軸心側からの燃料噴霧線に対して略直角の傾斜角
で形成し、キャビティの開口縁に、突出端を円弧状に縁
どり下面と該側壁との交角が上記傾斜角と同等範囲のリ
ップを形成し、リップと側壁とを曲面で連続させてなる
エンジンのピストン。
1. The side wall of the cavity recessed in the top surface of the piston is formed at an angle of inclination approximately perpendicular to the fuel spray line from the cavity axis side, and the protruding end is framed in an arc shape at the opening edge of the cavity to form a lower surface. An engine piston formed by forming a lip whose intersecting angle with the side wall is within the same range as the inclination angle, and the lip and the side wall are continuous on a curved surface.
JP1067585A 1989-03-22 1989-03-22 Engine piston Expired - Lifetime JP2697100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1067585A JP2697100B2 (en) 1989-03-22 1989-03-22 Engine piston

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1067585A JP2697100B2 (en) 1989-03-22 1989-03-22 Engine piston

Publications (2)

Publication Number Publication Date
JPH02248615A true JPH02248615A (en) 1990-10-04
JP2697100B2 JP2697100B2 (en) 1998-01-14

Family

ID=13349140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1067585A Expired - Lifetime JP2697100B2 (en) 1989-03-22 1989-03-22 Engine piston

Country Status (1)

Country Link
JP (1) JP2697100B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1528233A1 (en) * 2003-11-03 2005-05-04 Renault s.a.s. Piston for a combustion chamber for reducing soot emission
EP1614874A1 (en) * 2004-07-09 2006-01-11 Renault s.a.s. Internal combustion engine having a piston with truncated cone wall cavity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474012A (en) * 1977-11-24 1979-06-13 Hino Motors Ltd Combustion chamber for diesel engine
JPS58102720A (en) * 1981-12-15 1983-06-18 Matsushita Electric Works Ltd Synthetic resin molded product
JPS58189321U (en) * 1982-06-10 1983-12-16 日産自動車株式会社 Direct injection diesel engine
JPS59150942U (en) * 1983-03-28 1984-10-09 日産自動車株式会社 Combustion chamber of direct injection diesel engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474012A (en) * 1977-11-24 1979-06-13 Hino Motors Ltd Combustion chamber for diesel engine
JPS58102720A (en) * 1981-12-15 1983-06-18 Matsushita Electric Works Ltd Synthetic resin molded product
JPS58189321U (en) * 1982-06-10 1983-12-16 日産自動車株式会社 Direct injection diesel engine
JPS59150942U (en) * 1983-03-28 1984-10-09 日産自動車株式会社 Combustion chamber of direct injection diesel engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1528233A1 (en) * 2003-11-03 2005-05-04 Renault s.a.s. Piston for a combustion chamber for reducing soot emission
FR2861809A1 (en) * 2003-11-03 2005-05-06 Renault Sas PISTON FOR COMBUSTION CHAMBER FOR REDUCING SOOT EMISSIONS
EP1614874A1 (en) * 2004-07-09 2006-01-11 Renault s.a.s. Internal combustion engine having a piston with truncated cone wall cavity
FR2872855A1 (en) * 2004-07-09 2006-01-13 Renault Sas INTERNAL COMBUSTION ENGINE COMPRISING A PISTON HAVING A TRUNCONIC WALL CAVITY

Also Published As

Publication number Publication date
JP2697100B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
US7121253B2 (en) Cylinder injection type internal combustion engine, control method for internal combustion engine, and fuel injection valve
US5058548A (en) Combustion chamber of an internal combustion engine
JPH01219311A (en) Injection engine in spark ignition cylinder
US6286477B1 (en) Combustion chamber for direct-injected spark-ignited engines with swirl airflows
JPH0114405B2 (en)
JPH07150944A (en) Combustion chamber structure for direct injecting type diesel engine
JPH07102976A (en) Inter-cylinder injection type spark ignition engine
JP2770376B2 (en) Engine piston
JPH02248615A (en) Engine piston
JP3781536B2 (en) Combustion chamber structure of in-cylinder injection engine
JPS6093115A (en) Combustion chamber in direct injection type internal-combustion engine
JP2560337B2 (en) Direct injection diesel engine
JPH04292525A (en) Direct injection type internal combustion engine
JPH11210468A (en) Combustion chamber for direct injection type diesel engine
JPS60147526A (en) Direct-injection type diesel engine
JP4075471B2 (en) In-cylinder direct injection internal combustion engine
JPS603311Y2 (en) Combustion chamber of direct injection diesel engine
JP2587370Y2 (en) In-cylinder direct injection spark ignition engine
JPH11210469A (en) Cylinder injection type spark ignition engine
JPS603312Y2 (en) Combustion chamber of direct injection diesel engine
JP2521900B2 (en) Spark ignition internal combustion engine
JPH05321795A (en) Fuel supplying device for engine
JPH03194117A (en) Combustion chamber for internal combustion engine
JPS63255510A (en) Direct fuel injection type diesel internal combustion engine
JPH0723537Y2 (en) Combustion chamber of direct injection diesel engine