JPH02248582A - Continuous layer, earthquake-proof wall structure for high-storied structure - Google Patents

Continuous layer, earthquake-proof wall structure for high-storied structure

Info

Publication number
JPH02248582A
JPH02248582A JP6607889A JP6607889A JPH02248582A JP H02248582 A JPH02248582 A JP H02248582A JP 6607889 A JP6607889 A JP 6607889A JP 6607889 A JP6607889 A JP 6607889A JP H02248582 A JPH02248582 A JP H02248582A
Authority
JP
Japan
Prior art keywords
columns
column
steel pipe
earthquake
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6607889A
Other languages
Japanese (ja)
Other versions
JPH0749732B2 (en
Inventor
Kiyoshi Tanaka
清 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP6607889A priority Critical patent/JPH0749732B2/en
Publication of JPH02248582A publication Critical patent/JPH02248582A/en
Publication of JPH0749732B2 publication Critical patent/JPH0749732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To raise the effectiveness of earthquake-proofing design by a method in which the accompanying columns of the lower floor of a continuous layer, earthquake-proof wall are formed in RC or SRC ones wound with steel tube and integrated through a share resistor part with the wall concrete. CONSTITUTION:The accompanying columns A of the lower floors in a continuous layer, earthquake-proof wall B are formed by arranging main reinforcing bars 2, core reinforcing bars 3, and hoops 4 in an angular steel tube 1 and then by placing high-strength concrete 5 into it. Shear keys 6 as shear resistors are welded to the periphery of the tube 1 to integrate the columns A with the reinforced concrete earthquake-proof wall B. The strength and toughness of the columns A of the lower floors can thus be improved, raising the effectiveness of a earthquake-proof design.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高層建造物における連層耐震壁構造に係るもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a continuous shear wall structure in a high-rise building.

(従来の技術) 従来の連層耐震壁は、一般に第13図及び第14図に示
すように、場所打ちコンクリートによって、壁板部(a
)と付帯柱(ロ)とを同時に打設して施工されている。
(Prior Art) Conventional multi-layer shear walls are generally made of cast-in-place concrete, as shown in Figures 13 and 14.
) and ancillary pillars (b) are cast at the same time.

而して前記付帯柱は一般に鉄筋コンクリート造か、鉄骨
鉄筋コンクリート造とし、柱はかぶりコンクリートによ
って被覆され、柱の軸方向圧縮力に対するコンクリート
の拘束力は、柱主筋(b、)囲繞するフープ筋(bz)
によって得られるように構成されている。
The accessory columns are generally made of reinforced concrete or steel-framed reinforced concrete, and the columns are covered with cover concrete, and the restraining force of the concrete against the column's axial compressive force is determined by the hoop reinforcement (b )
It is structured so that it can be obtained by

図中(a+)(at)は壁縦筋及び壁横筋、(C)は梁
である。
In the figure, (a+)(at) is a vertical wall reinforcement and a horizontal wall reinforcement, and (C) is a beam.

(発明が解決しようとする課題) 高層建造物内に配置される連層耐震壁には次の2つの応
力が生じる。
(Problems to be Solved by the Invention) The following two stresses occur in a multi-layer shear wall placed in a high-rise building.

(i)  鉛直荷重下では、付帯柱に圧縮軸力が作用す
る。この軸力は一般に他の柱に比して大きな値となる。
(i) Under vertical load, a compressive axial force acts on the attached column. This axial force is generally larger than that of other columns.

(ii )  地震荷重下では壁板部に剪断力を生じ、
同時に下層階の付帯柱には曲げモーメントによっ°〔生
じる圧縮軸力と引張軸力とが交互に作用すこの種の耐震
壁の地震荷重下での靭性は主として下層部の曲げ変形に
よって確保され、この曲げ変形は付帯柱の靭性、特に圧
縮力を受ける側の柱の靭性によって決まる。
(ii) Under earthquake load, shearing force is generated in the wall plate,
At the same time, compressive axial force and tensile axial force generated by bending moments act on the attached columns of the lower floors alternately.The toughness of this type of shear wall under seismic loads is mainly ensured by bending deformation of the lower floors. , this bending deformation is determined by the toughness of the attached column, especially the toughness of the column on the side receiving the compressive force.

従って前記従来の連層耐震壁では、付帯柱にかかる圧縮
力(鉛直荷重時の軸力+地震荷重時の軸力)が、同付帯
柱の一軸圧縮強度かそれ以上の値に達すると、圧縮靭性
が急激に低下し、その結果、曲げ靭性も低下するため、
耐震壁の耐震性能を確保するのが困難となってくる。
Therefore, in the conventional multi-layer shear wall, when the compressive force (axial force during vertical load + axial force during seismic load) applied to the attached column reaches the uniaxial compressive strength of the attached column or more, the Because the toughness decreases rapidly and as a result, the bending toughness also decreases.
It becomes difficult to ensure the seismic performance of seismic walls.

本発明は前記従来技術の有する問題点に鑑みて提案され
たもので、その目的とする処は、高層建造物における連
層耐震壁の下層階の付帯柱の強度及び靭性を改善し、連
層耐震壁の耐震設計上の有効性を向上せしめる点にある
The present invention was proposed in view of the problems of the prior art, and its purpose is to improve the strength and toughness of attached columns on the lower floors of multi-story shear walls in high-rise buildings, and to The purpose is to improve the effectiveness of earthquake-resistant design of earthquake-resistant walls.

(課題を解決するための手段) 前記の目的を達成するため、本発明に係る高層建造物に
おける連層耐震壁構造は、連層耐震壁における下階層の
付帯柱を、鋼管巻きRC造またはSRC造柱より構成す
るとともに、前記鋼管に付設した剪断抵抗部材を介して
前記付帯柱と壁部コンクリートとを一体化して構成され
ている。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the multi-story shear wall structure in a high-rise building according to the present invention is such that the attached columns on the lower floor of the multi-story shear wall are made of steel pipe-wrapped RC or SRC. It is constructed of pillars, and the additional pillars and wall concrete are integrated through shear resistance members attached to the steel pipes.

(作用) 本発明によれば前記したように、連層耐震壁における下
階層の付帯柱を、鋼管巻きRC造またはSRC造柱より
構成したことによって、付帯柱の圧縮靭性を向上し、同
付帯柱に前記鋼管外周に付設された剪断抵抗部材を介し
て一体化された耐震壁の曲げ靭性も、大幅に向上する。
(Function) According to the present invention, as described above, by configuring the accessory columns on the lower floor of the multi-story shear wall from steel pipe-wrapped RC or SRC columns, the compressive toughness of the accessory columns is improved, and the accessory columns are The bending toughness of the shear wall integrated with the column via the shear resistance member attached to the outer periphery of the steel pipe is also significantly improved.

(実施例) 以下本発明を図示の実施例について説明する。(Example) The present invention will be described below with reference to the illustrated embodiments.

第1図及び第2図において、(A)は高層建造物におけ
る連層耐震壁における鋼管巻きRC造の付帯柱で、角型
鋼管(1)内に柱主筋(2)、芯柱筋(3)と帯筋(4
)とが配筋され、高強度コン外リート(5)が打設され
ている。
In Figures 1 and 2, (A) is an auxiliary column made of steel pipe-wrapped RC construction for a continuous shear wall in a high-rise building, with main column reinforcement (2) and core column reinforcement (3 ) and stirrup (4
) are reinforced and a high-strength concrete outer reit (5) is placed.

なお鋼管巻きRC造柱は従来のRC造柱のフープの代り
に鋼管を外周に巻きつけたもので、柱頭、柱脚で縁切り
されている。
In addition, steel pipe-wrapped RC columns have steel pipes wrapped around the outer periphery instead of the hoops of conventional RC columns, and are edged by the column capital and column base.

図中Xはこの縁切り部である。X in the figure is this edge cutting part.

前記付帯柱(A)は鋼管(1)の外周面に溶接によって
植設された、前記剪断抵抗部材を構成するシャーキ−(
6)を介して鉄筋コンクリート造耐震壁(B)と一体化
されている。
The attached column (A) is a shear key (forming the shear resistance member) that is implanted by welding on the outer peripheral surface of the steel pipe (1).
6) is integrated with the reinforced concrete shear wall (B).

図中(7)は壁縦筋、(8)は壁横筋、(9)は幅止め
筋、(lO)は壁コンクリート、(C)は梁である。
In the figure, (7) is the wall vertical reinforcement, (8) is the wall horizontal reinforcement, (9) is the width stop reinforcement, (lO) is the wall concrete, and (C) is the beam.

なお前記付帯柱(A)における角型鋼管(1)の代りに
、円型鋼管を使用してもよい。
Note that a circular steel pipe may be used instead of the square steel pipe (1) in the accessory column (A).

前記実施例において付帯柱(A)を鋼管巻きRC造柱と
したのは、圧縮軸力による圧縮靭性を向上させることを
目的とするものであり、このように付帯柱(A)の圧縮
靭性を向上すると、耐震壁(B)の曲げ靭性が大幅に向
上される。
In the above example, the attached column (A) was made of a steel pipe-wrapped RC column for the purpose of improving the compressive toughness due to compressive axial force. When improved, the bending toughness of the shear wall (B) is significantly improved.

ここで前記付帯柱(A)を構成する鋼管巻きRC造柱、
SRC造柱について説明する。
Here, a steel pipe-wrapped RC column constituting the attached column (A),
The SRC pillars will be explained.

鋼管巻きRC造柱またはSRC造柱は、柱頭・柱脚にお
いて鋼管が縁切されており直接鋼管は軸方向(特に圧縮
軸力)には負荷されないようになっている。
In a steel pipe-wrapped RC column or SRC column, the steel pipe is cut off at the column capital and column base, so that the steel pipe is not directly loaded in the axial direction (particularly compressive axial force).

これに反して従来の鋼管コンクリート柱は、柱頭・柱脚
で鋼管が横架材と接続されており、鋼管に直接軸方向力
が負荷される。
On the other hand, in conventional steel pipe concrete columns, the steel pipe is connected to the horizontal members at the column capital and column base, and axial force is directly applied to the steel pipe.

第6図乃至第8図は前記鋼管巻きRC造柱、SRC造柱
と、鋼管コンクリート柱との実験例を示し、第6図は鋼
管コンクリート柱、第7図は鋼管巻きRC造柱またはS
RC造柱を示し、第6図の鋼管コンクリート柱は、加力
開始時より鋼管に圧縮軸力が負荷されるため、最大加荷
重時には、第8図のyに示す如く鋼管の局所座屈を誘発
し、それ以降の靭性を確保するのが困難となってくる。
Figures 6 to 8 show experimental examples of the above-mentioned steel pipe-wrapped RC columns, SRC columns, and steel pipe concrete columns.
In the steel pipe concrete column shown in Figure 6, which shows an RC column, compressive axial force is applied to the steel pipe from the start of loading, so when the maximum load is applied, local buckling of the steel pipe is caused as shown in y in Figure 8. After this, it becomes difficult to ensure toughness.

これに対して、第7図の鋼管巻きRC造柱またはSRC
造柱は、鋼管は直接軸方向(特に圧縮軸力)には負荷さ
れないため、鋼管は主として柱周方向に引張抵抗力によ
り内部コンクリートを拘束する役割を果す。
In contrast, steel pipe-wrapped RC columns or SRC columns shown in Fig. 7
In column construction, steel pipes are not directly loaded in the axial direction (particularly compressive axial force), so the steel pipes mainly play the role of restraining the internal concrete by tensile resistance in the column circumferential direction.

第6図に示す鋼管コンクリート柱と第7図に示す鋼管巻
きRC造柱またはSRC造柱の荷重に対する変形特性の
違いを第9図に示す。
FIG. 9 shows the difference in deformation characteristics under load between the steel pipe concrete column shown in FIG. 6 and the steel pipe-wrapped RC column or SRC column shown in FIG. 7.

次に第10図乃至第12図について本発明の作用効果を
詳細に説明する。
Next, the effects of the present invention will be explained in detail with reference to FIGS. 10 to 12.

第10図は各種柱の軸方向荷重と軸方向圧縮歪度との関
係を示す曲線を示し、K+は従来の鉄筋コンクリート柱
の場合を示し、hは角型鋼管を使用した鋼管巻きRC造
またはSRC造柱の場合を示し、K、Iは円型鋼管を使
用した鋼管巻きRC造またはSRC造柱の場合を示す、
この図から鋼管巻きRC造またはSRC造柱が従来の鉄
筋コンクリート柱に対して圧縮軸力による圧縮靭性が大
きいことが判る。
Figure 10 shows curves showing the relationship between axial load and axial compressive strain for various columns, where K+ indicates the case of a conventional reinforced concrete column, and h indicates the case of a steel pipe-wrapped RC structure using square steel pipes or SRC. Indicates the case of pillar construction, K and I indicate the case of steel pipe-wrapped RC construction or SRC construction pillar using circular steel pipes,
This figure shows that steel pipe-wrapped RC or SRC columns have greater compressive toughness due to compressive axial force than conventional reinforced concrete columns.

なお図中に、、に、及びに、は夫々後記の。tcに相当
する。
In the figure, , , and 2 are respectively described later. Corresponds to tc.

第11図は連層耐震壁に地震時に軸力N、曲げモーメン
トM、及び剪断力Qが使用した際の耐震壁断面の歪分布
を示し、図中ゎε。は圧縮側の在来型鉄筋コンクリート
柱コンクリートの圧縮歪1、ε0は引張側の在来型鉄筋
コンクリート柱の柱筋の引張歪を示し1.ε8はこれに
伴なう壁筋の引張歪である。
Figure 11 shows the strain distribution in the cross section of the shear wall when axial force N, bending moment M, and shear force Q are applied to the multi-layer shear wall during an earthquake, and ゎε in the figure. is the compressive strain 1 of the conventional reinforced concrete column on the compression side, and ε0 is the tensile strain of the column reinforcement of the conventional reinforced concrete column on the tension side.1. ε8 is the tensile strain of the wall reinforcement associated with this.

而して付帯柱を角型鋼管または円型鋼管を使用した鋼管
巻きRC造またはSRC造柱とすることによって、柱コ
ンクリートの圧縮歪はCt’CIC’ cとなり、柱筋
の引張歪はLg’C+tffi’。となる、なお、ε′
1.tε″0は壁筋の引張歪である。
By making the attached column a steel pipe-wrapped RC or SRC column using square steel pipes or circular steel pipes, the compressive strain of the column concrete becomes Ct'CIC' c, and the tensile strain of the column reinforcement becomes Lg'C+tffi'. In addition, ε′
1. tε″0 is the tensile strain of the wall reinforcement.

従って第11図に示すように耐震壁の曲げ曲率は従来型
鉄筋コンクリート柱の場合のφ8よりφ′ユまたはφ#
0と増大する。
Therefore, as shown in Figure 11, the bending curvature of the shear wall is φ'Y or φ#, rather than φ8 in the case of conventional reinforced concrete columns.
Increases to 0.

第12図は耐震壁の曲げモーメント−曲げ曲率の関係図
を示し、K11は在来型鉄筋コンクリート付帯柱を有す
る場合、172は角型鋼管を使用した鋼管巻きRC造ま
たはSRC造付帯柱を有する場合、gl、は円型鋼管を
使用した鋼管巻きRC造またはSRC造付°帯柱を有す
る場合を示す、上図より明らかなように、前記実施例に
おける如く付帯柱を角型鋼管、円型鋼管を使用した鋼管
巻きRC造またはSRC造柱とすることによって、同付
帯柱の圧縮靭性を向上し、耐震壁の曲げ曲率を増大する
ことによって、同耐震壁の曲げ靭性が大幅に向上される
Figure 12 shows the relationship between bending moment and bending curvature of shear walls, where K11 has conventional reinforced concrete attached columns, and 172 has steel pipe-wrapped RC or SRC attached columns using square steel pipes. , gl indicates a case where a steel pipe-wrapped RC structure or SRC structure is attached to a strap using a circular steel pipe. By using steel pipe-wrapped RC or SRC columns, the compressive toughness of the attached columns is improved, and by increasing the bending curvature of the shear wall, the bending toughness of the shear wall is greatly improved.

高強度コンクリートは横方向の拘束力がない場合には、
最大圧縮強度以降は急激な破壊に至るため、靭性を期待
することはできない。しかし前記実施例の如く、適量の
鋼管を被覆することによって、大幅な圧縮靭性の改善を
期待することができる。(第10図参照) なお一般に付帯柱以外の隅柱を除く部材には精々400
〜500kg/cj程度の圧縮強度を有するコンクリー
トを使用すればよいので、それ以上の高強度コンクリー
トを別途場所打ちすることは合理的でなく、PC化する
ほうがよい。
When high-strength concrete has no lateral restraint,
After the maximum compressive strength is reached, rapid fracture occurs, so toughness cannot be expected. However, as in the above embodiments, by coating an appropriate amount of steel pipe, a significant improvement in compressive toughness can be expected. (See Figure 10) In general, members other than accessory columns and other than corner pillars have a maximum of 400
Since it is sufficient to use concrete having a compressive strength of about 500 kg/cj, it is not reasonable to separately cast concrete with a higher strength than that in place, and it is better to use PC.

第3図は本発明の他の実施例を示し、角型鋼管(1)内
に社主筋(2)と帯筋(4)とが配筋され、高強度コン
クリート(5)を填装されたプレキャスト鋼管コンクリ
ート柱の柱芯部に設けた中空部に、現場打鉄筋コンクリ
ート部(11)を設けてなる鋼管巻きRC造付帯柱にお
ける前記角型鋼管(1)に溶接したシャーキ−(6)に
よって、鉄筋コンクリート造耐震壁(B)と一体化した
ものである。
Figure 3 shows another embodiment of the present invention, in which main bars (2) and tie bars (4) are arranged inside a square steel pipe (1) and filled with high-strength concrete (5). By means of a shark (6) welded to the square steel pipe (1) in a steel pipe-wrapped RC attached column in which a cast-in-place reinforced concrete part (11) is provided in a hollow part provided in the column core of a precast steel pipe concrete column, It is integrated with the reinforced concrete shear wall (B).

図中、前記実施例と均等部分には同一符号が附されてい
る。
In the figure, parts equivalent to those of the above embodiment are given the same reference numerals.

第4図に示す実施例は、角型鋼管(1)内に第1図の実
施例における芯柱筋(3)の代りに鉄骨柱(12)を配
設し、高強度コンクリート(5)を打設して鋼管巻きS
RC造の付帯柱を構成したものである。
In the embodiment shown in Fig. 4, a steel column (12) is arranged inside the square steel pipe (1) instead of the core column reinforcement (3) in the embodiment of Fig. 1, and high-strength concrete (5) is installed. Casting and winding steel pipe S
It is made up of attached columns made of RC construction.

図中前記各実施例と均等部分には同一符号が附されてい
る。
In the drawings, parts equivalent to those of the above embodiments are given the same reference numerals.

第5図に示す実施例は、角型鋼管(1)内に柱主筋(2
)と帯筋(4)とを配筋し、高強度コンクリート(5)
が填装されたプレキャスト鋼管コンクリート柱の柱芯部
に設けた中空部に、柱鉄骨(13)を配設するとともに
、現場打コンクリート(14)を打設して、鋼管巻きS
RC造付帯柱を構成したものである。
In the embodiment shown in Fig. 5, the main column reinforcement (2
) and stirrups (4) to form high-strength concrete (5).
A column steel frame (13) is installed in the hollow part provided in the column core of the precast steel pipe concrete column loaded with steel pipe S.
It is made up of RC attached pillars.

図中、前記各実施例と均等部分には同一符号が附されて
いる。
In the figure, parts equivalent to those of the above embodiments are given the same reference numerals.

(発明の効果) 本発明は前記したように連層耐震壁における下階層の付
帯柱を、鋼管巻きRC造またはSRC造柱より構成した
ことによって、前記付帯柱の圧縮靭性を向上し、同付帯
柱に前記鋼管に付設された剪断抵抗部材を介して一体化
された耐震壁の曲げ靭性を大幅に向上し、連層耐震壁の
耐震設計上の有効性を向上するものである。
(Effects of the Invention) As described above, the present invention improves the compressive toughness of the attached column by configuring the attached column on the lower floor of the multi-story shear wall from a steel pipe-wrapped RC structure or SRC column. The bending toughness of the shear wall integrated with the column via the shear resistance member attached to the steel pipe is greatly improved, and the effectiveness of the seismic design of the multilayer shear wall is improved.

請求項2の発明は、鋼管巻きRC造またはSRC造付帯
柱における鋼管に高強度コンクリートを打設したことに
よって、同コンクリートを鋼管により横方向から拘束し
て、大幅な圧縮靭性の改善を図ったものである。
The invention as claimed in claim 2 achieves a significant improvement in compressive toughness by pouring high-strength concrete into the steel pipes of the steel pipe-wrapped RC construction or SRC construction accessory columns, thereby restraining the concrete from the lateral direction by the steel pipes. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る高層建造物における連層・ 耐震
壁構造の一実施例を示す横断平面図、第2図はその縦断
面図、第3図は本発明の他の実施例を示す横断平面図、
第4図及び第5図は夫々本発明の更に他の実施例におけ
る付帯柱部分の横断平面図、第6図及び第7図は夫々鋼
管コンクリート柱及び鋼管巻きRC造またはSRC造柱
の正面図、第8図は圧縮軸力による鋼管コンクリート柱
の変形状態を示す正面図、第9図は前記各柱の軸力と軸
方向変形との関係を示す図、第10図乃至第12図は本
発明の作用説明図で、第10図は付帯柱の軸方向圧縮歪
度と軸方向荷重との関係を示す図、第11図は耐震壁断
面の歪分布図、第12図は耐震壁の曲げモーメントと曲
げ曲率との関係を示す図、第13図及び第14図は夫々
従来の連層耐震壁構造を示す横断平面回航に一部縦断正
面図である。 (^)・・・付帯柱、   (B)・・・耐震壁、(1
)・・・角型鋼管、   (5)・・・高強度コンクリ
ート、(6)・・・シャーキ− 代理人 弁理士 岡 本 重 文 外2名 Jgt説 !P12閃 sq図 piro閃 嘉11悶
Fig. 1 is a cross-sectional plan view showing one embodiment of the multi-story shear wall structure in a high-rise building according to the present invention, Fig. 2 is a longitudinal cross-sectional view thereof, and Fig. 3 is a diagram showing another embodiment of the present invention. cross-sectional plan,
FIGS. 4 and 5 are cross-sectional plan views of an accessory column portion in still another embodiment of the present invention, and FIGS. 6 and 7 are front views of a steel pipe concrete column and a steel pipe-wrapped RC or SRC column, respectively. , Figure 8 is a front view showing the state of deformation of a steel pipe concrete column due to compressive axial force, Figure 9 is a diagram showing the relationship between the axial force and axial deformation of each column, and Figures 10 to 12 are the main views. Figure 10 is a diagram showing the relationship between the axial compressive strain of the attached column and the axial load, Figure 11 is a strain distribution diagram of a cross section of a shear wall, and Figure 12 is a diagram showing the bending of the shear wall. FIGS. 13 and 14, which show the relationship between moment and bending curvature, are partially vertical front views taken in a transverse plane and showing conventional multi-layer shear wall structures, respectively. (^)...Additional column, (B)...Shear wall, (1
)...Square steel pipe, (5)...High-strength concrete, (6)...Sharkey Agent Patent attorney Shige Okamoto 2 people outside the JGT theory! P12 sq figure piro senka 11 agony

Claims (2)

【特許請求の範囲】[Claims] (1)連層耐震壁における下階層の付帯柱を、鋼管巻き
RC造またはSRC造柱より構成するとともに、前記鋼
管に付設した剪断抵抗部材を介して前記付帯柱と壁部コ
ンクリートとを一体化してなることを特徴とする高層建
造物における連層耐震壁構造。
(1) Ancillary columns on the lower floor of the multi-story shear wall are composed of steel pipe-wrapped RC or SRC columns, and the ancillary columns and wall concrete are integrated through shear resistance members attached to the steel pipes. A continuous shear wall structure for high-rise buildings characterized by
(2)前記鋼管巻きRC造またはSRC造付帯柱は鋼管
内に高強度コンクリートを打設して構成された請求項1
記載の高層建造物における連層耐震壁構造。
(2) Claim 1, wherein the steel pipe-wrapped RC or SRC attached pillar is constructed by pouring high-strength concrete into a steel pipe.
Continuous shear wall structure in the mentioned high-rise building.
JP6607889A 1989-03-20 1989-03-20 Multi-story earthquake-resistant wall structure in high-rise building Expired - Lifetime JPH0749732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6607889A JPH0749732B2 (en) 1989-03-20 1989-03-20 Multi-story earthquake-resistant wall structure in high-rise building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6607889A JPH0749732B2 (en) 1989-03-20 1989-03-20 Multi-story earthquake-resistant wall structure in high-rise building

Publications (2)

Publication Number Publication Date
JPH02248582A true JPH02248582A (en) 1990-10-04
JPH0749732B2 JPH0749732B2 (en) 1995-05-31

Family

ID=13305456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6607889A Expired - Lifetime JPH0749732B2 (en) 1989-03-20 1989-03-20 Multi-story earthquake-resistant wall structure in high-rise building

Country Status (1)

Country Link
JP (1) JPH0749732B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754425A (en) * 1993-08-12 1995-02-28 Kajima Corp Sc earthquake resisting wall
CN102900169A (en) * 2012-10-16 2013-01-30 清华大学 Concrete-filled steel tube combined shear wall and construction process thereof
CN103790265A (en) * 2014-01-28 2014-05-14 江苏建筑职业技术学院 Method for manufacturing and assembling prefabricated concrete filled steel tube core column stiffening shear wall
CN103790266A (en) * 2014-01-28 2014-05-14 江苏建筑职业技术学院 Concrete filled steel tube core column reinforced prefabricated assembly type shear wall unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754425A (en) * 1993-08-12 1995-02-28 Kajima Corp Sc earthquake resisting wall
CN102900169A (en) * 2012-10-16 2013-01-30 清华大学 Concrete-filled steel tube combined shear wall and construction process thereof
CN103790265A (en) * 2014-01-28 2014-05-14 江苏建筑职业技术学院 Method for manufacturing and assembling prefabricated concrete filled steel tube core column stiffening shear wall
CN103790266A (en) * 2014-01-28 2014-05-14 江苏建筑职业技术学院 Concrete filled steel tube core column reinforced prefabricated assembly type shear wall unit
CN103790266B (en) * 2014-01-28 2016-04-13 江苏建筑职业技术学院 Steel tube concrete core pillar is put more energy into prefabricated assembled shear-wall element

Also Published As

Publication number Publication date
JPH0749732B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
JP2001303584A (en) Structure for connecting head of foundation pile with footing
JPH02248582A (en) Continuous layer, earthquake-proof wall structure for high-storied structure
JP2002013248A (en) Concrete column with built-in continuous fiber reinforced pipe
JPS6145042A (en) Mold frame for casting concrete
JPH07116790B2 (en) Precast concrete beams
JP2005030195A (en) Structure and its construction method
JPS6035700Y2 (en) reinforced concrete column
JPH0415855B2 (en)
JPS5817052Y2 (en) reinforced concrete column
JPS6321605Y2 (en)
JPH078673Y2 (en) Composite beam structure
JPH0420457B2 (en)
JP2548614B2 (en) Reinforcement structure of member using high strength steel frame
JP3700129B2 (en) Joint structure of composite structure and construction method thereof
JPH0813848A (en) Structure of boundary column base for multistory shear wall
JPH08232394A (en) Light-weight structural material
JPH0448145B2 (en)
JPH03166443A (en) Building structure
JPH05222766A (en) Building method
JPH07119501B2 (en) Concrete pillar material
JPH07150554A (en) Steel pipe pile and method for installing it
JPH05321399A (en) Steel-pipe concrete pole
JPS6012500B2 (en) Construction method of reinforced concrete frame frame
JPH0326746B2 (en)
JP2822845B2 (en) Structure of box-type embedded column base