JPH02247596A - Fast breeder - Google Patents

Fast breeder

Info

Publication number
JPH02247596A
JPH02247596A JP1067982A JP6798289A JPH02247596A JP H02247596 A JPH02247596 A JP H02247596A JP 1067982 A JP1067982 A JP 1067982A JP 6798289 A JP6798289 A JP 6798289A JP H02247596 A JPH02247596 A JP H02247596A
Authority
JP
Japan
Prior art keywords
vessel
reactor vessel
reactor
roof deck
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1067982A
Other languages
Japanese (ja)
Inventor
Takeshi Nitawaki
武志 仁田脇
Toshiaki Ikeuchi
池内 寿昭
Yoji Shibata
柴田 洋二
Noboru Nakao
昇 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1067982A priority Critical patent/JPH02247596A/en
Publication of JPH02247596A publication Critical patent/JPH02247596A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To reduce thermal stress by providing a roof deck which is joined with the opening part at the upper part of a safe container to seal the opening part and cools the safe container while the safe container is suspended by the opening part, and separating the opening part from the roof deck. CONSTITUTION:The safe container 2 is fixed and suspended while having its upper end stored in the roof deck 4 having a cooling function, its inside is sealed, and the upper end of the container 2 is separated from the roof deck 4. An auxiliary cylinder 5 is suspended from the roof deck along the side wall internal surface of a nuclear reactor container 1 and reaches the primary sodium liquid stored in the container 1. Consequently, only the hydrostatic pressure by a sodium cooling material is applied to the container 1 and high stress by a reactor core, etc., and a steep temperature gradient generated in the container 1 due to heating from below and cooling from above can be evaded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高速増殖炉の構造に係り、特にその中枢の原子
炉容器を、その原子炉容器を保護する安全容器により支
持する方式の高速増殖炉に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the structure of a fast breeder reactor, and particularly to a fast breeder reactor in which a core reactor vessel is supported by a safety vessel that protects the reactor vessel. Regarding furnaces.

〔従来の技術〕[Conventional technology]

従来の高速増殖炉原子炉容器の支持方法としては、例え
ば、NER8A発行の文献”The Creys−Ma
lville power plant (1985)
”に紹介されているように仏間のスーパーフェニックス
の如く、断面が略U字形の原子炉容器が、それの側部及
び底部を取り囲む断面略U字形の安全容器と共に、その
上端をルーフデツキにより蓋をされた状態で固定されて
吊り下げられている。そして、原子炉容器と安全容器は
それぞれ密閉されている。原子炉の炉心やその他の炉内
構造物は、炉心支持構造を介して原子炉容器にて支持さ
れる。原子炉容器には冷却材なる1次ナトリウムも収容
されており。
As a conventional fast breeder reactor reactor vessel support method, for example, the document "The Creys-Ma" published by NER8A
lville power plant (1985)
As introduced in ``Buddhism's Super Phoenix,'' a reactor vessel with a roughly U-shaped cross section is surrounded by a safety vessel with a roughly U-shaped cross section surrounding the sides and bottom, and the upper end is covered by a roof deck. The reactor vessel and safety vessel are each sealed tightly.The reactor core and other reactor internals are connected to the reactor vessel via the core support structure. The reactor vessel also contains primary sodium coolant.

この荷重もまた原子炉容器にて支持される。This load is also supported in the reactor vessel.

このように原子炉容器及び安全容器がルーフデツキより
吊り下げられる形の吊り下げ支持方式の場合、原子炉容
器は、1次ナトリウムやその1次ナトリウムを覆うカバ
ーガスとしての1次アルゴンガスのバウンダリとしての
機能要求の他に、必要な荷重を支持する強度部材として
の機能も要求される6強度上、特に問題となるのは、第
一に、原子炉容器には、高温状態で長期にわたる引っ張
り応力とカバーガスによる内外差圧が作用し続けること
、 第二に、原子炉容器は、上部はルーフデツキ冷却系によ
り冷却され、下部は高温のナトリウムに接していること
から、特に液面近傍部に急激な温度勾配に伴なう大きな
熱応力が発生する、ということであり、これらの問題に
対し、従来は、原子炉容器を適度に冷却する等により低
温に保つとともに、温度勾配を抑えることで、原子炉容
器への熱的負荷を軽減し、構造健全性を成立させようと
している。
In the case of a suspension support system in which the reactor vessel and safety vessel are suspended from the roof deck, the reactor vessel is used as a boundary for primary sodium and primary argon gas as a cover gas covering the primary sodium. In addition to the functional requirements of the reactor vessel, it is also required to function as a strength member that supports the necessary load.6 In terms of strength, a particular problem is that first, the reactor vessel is subject to long-term tensile stress under high temperature conditions. Second, the upper part of the reactor vessel is cooled by the roof deck cooling system, and the lower part is in contact with high-temperature sodium. This means that a large thermal stress occurs due to a large temperature gradient.In order to solve these problems, conventional methods have been to keep the reactor vessel at a low temperature by appropriately cooling it, etc., and to suppress the temperature gradient. Efforts are being made to reduce the thermal load on the reactor vessel and maintain its structural integrity.

その他、yX子炉容器支持構造に関する公知例としては
、特開昭57−204490号公報、特開昭59−11
6094号公報、特開昭60−14198号公報等に開
示されたものがある。
In addition, as well-known examples regarding the yX reactor vessel support structure, there are Japanese Patent Application Laid-Open No. 57-204490 and Japanese Patent Application Laid-open No. 59-11.
There are those disclosed in Japanese Patent Application Laid-open No. 6094, Japanese Patent Application Laid-open No. 14198/1980, and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように、従来例のようなルーフデツキ吊り下げ支
持方式の原子炉容器では、その構造健全性に関し。
As mentioned above, there are concerns regarding the structural integrity of the conventional nuclear reactor vessel, which is supported by hanging from a roof deck.

第一に、原子炉容器には、高温状態で、長期にわたる引
っ張り応力と、カバーガスによる内外差圧が作用し続け
ること、 第二に、原子炉容器は特に液面近傍部に急激な温度勾配
に伴なう大きな熱応力が発生する。
Firstly, the reactor vessel is subject to long-term tensile stress and pressure differential between the inside and outside due to the cover gas at high temperatures.Secondly, the reactor vessel has a steep temperature gradient, especially near the liquid level. Large thermal stress is generated.

という問題があり、これらの問題に対し原子炉容器を冷
却して低温に保つなどの適当な対応策によりその構造を
成立させようとする設計がとられている。
There are problems such as these, and designs are being taken to solve these problems by taking appropriate measures such as cooling the reactor vessel and keeping it at a low temperature.

本発明の目的は、上記の問題を排除して、熱応力の軽減
できる構造を持ち、構造上より信頼性の高い原子炉容器
を有する高速増殖炉を提供することにある。
An object of the present invention is to eliminate the above-mentioned problems and provide a fast breeder reactor having a structure capable of reducing thermal stress and having a reactor vessel with higher structural reliability.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、炉心と該炉心を冷却するナトリウム冷却材
と該ナトリウム冷却材を覆うカバーガスとを収容する原
子炉容器と、該原子炉容器の外側面及び外底面を囲いか
つ該原子炉容器を支持する安全容器と、該安全容器上部
の開口部と接合して密閉し該開口部で前記安全容器を吊
り下げかつ該安全容器を冷却する冷却機能を有するルー
フデツキとを備え、前記原子炉容器上端の開口部は前記
ルーフデツキから分離していることを特徴とする高速増
殖炉により、達成される。
The above purpose is to provide a reactor vessel that accommodates a reactor core, a sodium coolant that cools the reactor core, and a cover gas that covers the sodium coolant; a roof deck that connects and seals an opening at the top of the safety vessel, suspends the safety vessel from the opening, and has a cooling function to cool the safety vessel; This is achieved by means of a fast breeder reactor, characterized in that the opening is separate from the roof deck.

そして、前記ルーフデツキにはそれに接合されて吊り下
げられ、かつ前記ナトリウム冷却材にまで達する補助筒
を設けるとよい。
Preferably, the roof deck is provided with an auxiliary tube that is connected to and suspended from the roof deck and that reaches the sodium coolant.

また前記補助筒の前記ナトリウム冷却材の液面より上の
レベルに該補助筒の側板を板厚方向に貫通する連通口を
設けることが有効である。
It is also effective to provide a communication port that penetrates the side plate of the auxiliary cylinder in the thickness direction at a level above the liquid level of the sodium coolant in the auxiliary cylinder.

さらに前記原子炉容器と補助筒との間にナトリウム冷却
材の溢水を防止する溢水抑制構造を設けることがよく、
その溢水抑制構造はメツシュを重ね合わせたものがよい
Further, it is preferable that an overflow suppression structure is provided between the reactor vessel and the auxiliary cylinder to prevent sodium coolant from overflowing,
The flood suppression structure should preferably consist of overlapping meshes.

〔作用〕[Effect]

原子炉容器を支持した安全容器をルーフデツキから吊り
下げ、かつ原子炉容器の上部開口部をルーフデツキから
分離した高速増殖炉においては、原子炉容器の側壁はそ
の上端が自由端になっているので、はぼ内部のナトリウ
ム冷却材の静水圧しか受けない。また原子炉容器の内外
の空間は連通されているため、内外のガス圧に差がなく
、原子炉容器にはガス圧による応力も生じない。
In a fast breeder reactor in which the safety vessel supporting the reactor vessel is suspended from the roof deck and the upper opening of the reactor vessel is separated from the roof deck, the upper end of the side wall of the reactor vessel is a free end. It receives only the hydrostatic pressure of the sodium coolant inside the tank. Furthermore, since the spaces inside and outside the reactor vessel are communicated with each other, there is no difference in gas pressure between the inside and outside, and no stress is generated in the reactor vessel due to gas pressure.

ルーフデツキから吊り下げられた安全容器については、
その側壁は原子炉容器、炉心、ナトリウム冷却材、安全
容器自身等の荷重を受け、さらにルーフデツキはそれら
の全荷重をうけることになる。そして安全容器はルーフ
デツキの冷却機能荷より冷却される。
Regarding safety containers suspended from roof decks,
The side walls bear the loads of the reactor vessel, core, sodium coolant, safety vessel itself, etc., and the roof deck bears all of these loads. The safety container is then cooled by the roof deck's cooling function.

ルーフデツキからナトリウム冷却材に達する補助筒を設
けた場合、補助筒はナトリウム冷却材のスロッシングを
抑制し、また補助筒に連通孔を設ければ原子炉容器内外
のガス圧差がなくなるので原子炉容器にカバーガスによ
る応力が生じない。
If an auxiliary cylinder is provided that reaches the sodium coolant from the roof deck, the auxiliary cylinder will suppress sloshing of the sodium coolant, and if a communication hole is provided in the auxiliary cylinder, there will be no difference in gas pressure between the inside and outside of the reactor vessel. No stress is generated by cover gas.

原子炉容器と補助筒の間には溢水抑制構造例えばメツシ
ュを重ね合わせた構造のものを設ければ、その溢水抑制
構造は原子炉容器内部のナトリウム冷却材が外に溢れる
ことを抑制し、かつカバーガスを原子炉容器と安全容器
の間を流通させる。
If an overflow suppression structure is provided between the reactor vessel and the auxiliary cylinder, such as a structure in which meshes are overlapped, the overflow suppression structure will suppress the sodium coolant inside the reactor vessel from overflowing to the outside, and Flowing cover gas between the reactor vessel and the safety vessel.

〔実施例〕〔Example〕

以下、第1図〜第8図を参照しながら、本発明の実施例
について説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 8.

第1図に本発明による原子炉容器支持方式の高速増殖炉
の第1実施例を示す、原子炉容器1は断面が略U字形で
あり、その原子炉容器1の側部及び底部の外側を取り囲
む安全容器2の内底に設けられた原子炉容器支持構造3
により支持されている。安全容器2は、その上端を冷却
機能を有するルーフデツキ4に蓋された状態で固定され
て吊り下げられ、その内部は密閉されている。一方原子
炉容器2の上端はルーフデツキ4とは分離されている。
FIG. 1 shows a first embodiment of a fast breeder reactor with a reactor vessel support system according to the present invention. Reactor vessel support structure 3 provided on the inner bottom of the surrounding safety vessel 2
Supported by The safety container 2 is suspended with its upper end covered by a roof deck 4 having a cooling function, and the inside thereof is sealed. On the other hand, the upper end of the reactor vessel 2 is separated from the roof deck 4.

そして原子炉容器1の側壁内面に沿って。and along the inner surface of the side wall of the reactor vessel 1.

補助筒5がルーフデツキから吊り下げられ、原子炉容器
1の収容するナトリウム冷却材としての1次ナトリウム
液面まで達している。
The auxiliary cylinder 5 is suspended from the roof deck and reaches the level of the primary sodium liquid contained in the reactor vessel 1 as a sodium coolant.

第1図に示す構造によれば、1次ナトリウム中の炉心6
やその他の炉内構造物の荷重は1次ナトリウムの荷重と
ともに原子炉容器1に伝達され。
According to the structure shown in FIG. 1, the core 6 in primary sodium
The loads of the reactor internals and other internal structures are transmitted to the reactor vessel 1 together with the primary sodium load.

さらに原子炉容器支持構造3を介して安全容器2に伝達
される。したがって、この原子炉容器1は上記の荷重を
、従来例の原子炉容器がその上端のルーフデツキの吊り
下がり部分で受は持っていたようには、支持しなくても
よい。
It is further transmitted to the safety vessel 2 via the reactor vessel support structure 3. Therefore, this reactor vessel 1 does not have to support the above-mentioned load as the conventional reactor vessel does by the hanging portion of the roof deck at its upper end.

このように、原子炉容器1を安全容器2で支持すること
により、原子炉容器1の上端部には1次ナトリウム、炉
心6等の荷重による引っ張り力が作用しなくなる。
By supporting the reactor vessel 1 with the safety vessel 2 in this manner, tensile force due to the loads of the primary sodium, the reactor core 6, etc. does not act on the upper end of the reactor vessel 1.

また、補助筒5の1次ナトリウム液面から上の位置に連
通孔5aを設けて原子炉容器1と安全容器2の空間を連
通させたので、従来のように1次ナトリウムを覆うカバ
ーガスによる原子炉容器内外の圧力差もなくなり、原子
炉容器1にはガス圧による内圧も外圧も作用しなくなる
In addition, a communication hole 5a is provided above the primary sodium liquid level in the auxiliary cylinder 5 to communicate the space between the reactor vessel 1 and the safety vessel 2. The pressure difference between the inside and outside of the reactor vessel disappears, and neither internal pressure due to gas pressure nor external pressure acts on the reactor vessel 1.

以上の作用により、原子炉容器に長期的に作用するのは
、1次ナトリウムによる静水圧のみとなることから、原
子炉容器の構中健全性の点からその信頼性が向上するこ
ととなる。
Due to the above-mentioned effects, only the hydrostatic pressure caused by primary sodium acts on the reactor vessel over a long period of time, which improves the reliability of the reactor vessel in terms of structural integrity.

さらに、原子炉容器1の上部は、ルーフデツキ4とは分
離されており、この場合、従来の吊り下げ方式のように
、原子力圧力容器上部が冷却されることがないのでナト
リウム液面近傍に急激な温度勾配が生ずることがない。
Furthermore, the upper part of the nuclear reactor vessel 1 is separated from the roof deck 4, and in this case, unlike in the conventional suspension system, the upper part of the nuclear pressure vessel is not cooled, so that the upper part of the nuclear reactor vessel 1 is not cooled down rapidly near the sodium liquid level. No temperature gradients occur.

このことは、原子炉容器の構造健全性確保という点から
は、原子炉容器を適当に冷却する必要がなくなることに
つながり、従来のような炉壁保護構造、例えば原子炉容
器のナトリウム液面近傍に設けた冷却構造あるいは熱遮
へい構造を簡単な構造のものに置きかえて合理化できる
可能性がある。
From the perspective of ensuring the structural integrity of the reactor vessel, this means that there is no need to properly cool the reactor vessel, and conventional reactor wall protection structures, such as those near the sodium liquid level in the reactor vessel, are no longer necessary. It may be possible to rationalize the cooling structure or heat shielding structure provided in the system by replacing it with a simpler structure.

一方、原子炉容器1の上端をルーフデツキ4から分離し
た場合、その上部は地震時にロッキングを生じやすくな
る。したがって原子炉容器1の内側に近接してルーフデ
ツキ4から吊り下げられた補助筒5を設置し、X子炉容
器1と直接に又は間接的に干渉させることで、このロッ
キングを防止する。この補助筒5はまた、地震時の液面
スロッシングにより、原子炉容器外へナトリウムが溢水
するのを抑制する効果もある。原子炉容器1外へのナト
リウム溢水をさらに抑制するためには、原子炉容器1と
補助筒5の間隙部にメツシュ等を詰め込んだ溢水抑制構
造7を設置しておく。
On the other hand, if the upper end of the reactor vessel 1 is separated from the roof deck 4, the upper end is likely to lock during an earthquake. Therefore, this locking can be prevented by installing an auxiliary cylinder 5 suspended from the roof deck 4 close to the inside of the reactor vessel 1 and interfering directly or indirectly with the X reactor vessel 1. This auxiliary cylinder 5 also has the effect of suppressing sodium from overflowing outside the reactor vessel due to liquid level sloshing during an earthquake. In order to further suppress sodium overflow to the outside of the reactor vessel 1, an overflow suppression structure 7 filled with mesh or the like is installed in the gap between the reactor vessel 1 and the auxiliary cylinder 5.

第2図〜第4図により原子炉容器支持構造3を説明する
。第2図は第1図の■−■矢視図であり、原子炉容器1
の底部外側には中心から放射状に適切な数例えば8個の
縦リブ8が設けられ、それに対応して安全容器2の底部
内側にも、半径方向に凹形の縦リブ9が設置されている
The reactor vessel support structure 3 will be explained with reference to FIGS. 2 to 4. Figure 2 is a view from the ■-■ arrow in Figure 1, and shows the reactor vessel 1.
An appropriate number, for example, eight vertical ribs 8 are provided on the outside of the bottom of the safety container 2 radially from the center, and correspondingly, concave vertical ribs 9 are provided on the inside of the bottom of the safety container 2 in the radial direction. .

第3図(第1図の■−■断面図)と第4図(第3図のI
V−IV断面図)に示すように、原子炉容器の縦リブ8
は各箇所に1枚構造、安全容器の縦リブ9はそれをはさ
むように2′枚構造とすることにより、原子炉容器1と
安全容器2の円周方向への振れを防止する。一方、径方
向には、原子炉容器1、安全容器2の両容器の温度差に
よる熱膨張差により、変位差が生じるため、この変位逃
がす、または吸収する構造としておく必要がある。その
ため、本実施例では、径方向へは自由となる縦リブ8,
9を用いることで、この相対変位を逃がす構造としてい
る。したがって1M子炉容器1側の縦リブ8の頂部が安
全容器2側の縦リブ9の底部に設けた摺動部材10面上
を摺動することにより、相対変位を円滑に逃がせるよう
にしておく、また、これらの縦リブ8,9は円周方向に
適切な数だけ配置することにより、原子炉容1I11と
安全容器2の軸ずれを防ぐことができる。
Figure 3 (■-■ cross section of Figure 1) and Figure 4 (I of Figure 3)
As shown in V-IV sectional view), the vertical rib 8 of the reactor vessel
The vertical ribs 9 of the safety vessel have a structure of one plate at each location, and the vertical ribs 9 of the safety vessel have a structure of 2' plates sandwiching the vertical ribs 9 to prevent swinging of the reactor vessel 1 and the safety vessel 2 in the circumferential direction. On the other hand, in the radial direction, a displacement difference occurs due to a difference in thermal expansion due to a temperature difference between the reactor vessel 1 and the safety vessel 2, so it is necessary to have a structure to release or absorb this displacement. Therefore, in this embodiment, the vertical ribs 8, which are free in the radial direction,
9 is used to create a structure that allows this relative displacement to escape. Therefore, by sliding the top of the vertical rib 8 on the 1M sub-reactor vessel 1 side on the surface of the sliding member 10 provided at the bottom of the vertical rib 9 on the safety vessel 2 side, relative displacement can be smoothly released. Furthermore, by arranging an appropriate number of these vertical ribs 8 and 9 in the circumferential direction, misalignment of the axis between the reactor volume 1I11 and the safety vessel 2 can be prevented.

第5図には、第1図の変形として炉心6を原子炉容器1
の横から支持する場合に用いる本発明の第2実施例を示
す、炉心6の支持方式及び原子炉容器支持構造3以外は
、第1図と同様である。
In FIG. 5, as a modification of FIG. 1, the reactor core 6 is replaced with the reactor vessel 1.
The second embodiment of the present invention is the same as that shown in FIG. 1 except for the support method of the reactor core 6 and the reactor vessel support structure 3, which is used when supporting the reactor from the side.

第6図、第7図には、第5図の第2実施例における原子
炉容器支持構造3の構造例を示す。原子炉容器1の縦リ
ブ8と安全容器の縦リブ9を、両容器の側部に設置する
以外は、第3図、第4図に示すのと同様の構造1機能と
なる。
6 and 7 show structural examples of the reactor vessel support structure 3 in the second embodiment shown in FIG. 5. The structure 1 function is similar to that shown in FIGS. 3 and 4, except that the vertical ribs 8 of the reactor vessel 1 and the vertical ribs 9 of the safety vessel are installed on the sides of both vessels.

第8図には、第1図及び第5図に示したナトリウム溢水
抑制構造7の構造例を示す、ナトリウム溢水抑制構造7
は、原子炉容器1と補助筒5の間隙の全周に亘り、かつ
ナトリウム液面より上のレベルに設けられる。そして原
子炉容器1の内周面に設けられた取付座11と、補助筒
5の外周面に設けた取付座12との間に、メツシュ13
等をはさみ、ボルト等で固定する。
FIG. 8 shows a sodium overflow suppressing structure 7 showing an example of the structure of the sodium overflow suppressing structure 7 shown in FIGS. 1 and 5.
is provided over the entire circumference of the gap between the reactor vessel 1 and the auxiliary cylinder 5 and at a level above the sodium liquid level. A mesh 13 is provided between the mounting seat 11 provided on the inner peripheral surface of the reactor vessel 1 and the mounting seat 12 provided on the outer peripheral surface of the auxiliary cylinder 5.
etc., and secure with bolts, etc.

両取付座11.12は、カバーガスの通り抜けが可能な
ように多孔板で構成する。さらに、メツシュ13の軸方
向長さは、両取付座11.12間のギヤツブ輻より若干
長めのものを用い、設置時に圧縮締めつけをすることに
より、ナトリウムの溢水径路となるような不必要なすき
間をなくすようにしておく。
Both mounting seats 11, 12 are constructed of perforated plates so that cover gas can pass therethrough. Furthermore, the axial length of the mesh 13 is slightly longer than the gear spacing between the two mounting seats 11 and 12, and by compressing and tightening it during installation, unnecessary gaps that could become a path for sodium overflow can be avoided. Try to eliminate it.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高速増殖炉は、炉心、ナトリウム冷却
材等を収容する原子炉容器を安全容器で支持し、その安
全容器をルーフデツキから吊しかつ冷却する構造とし、
かつ原子炉容器をルーフデツキから分離した形としたの
で、IM子炉容器にはナトリウム冷却材による静水圧し
かかからず、従来の原子炉容器をルーフデツキから吊り
下げた型の高速増殖炉に見られるような、炉心、ナトリ
ウム冷却材等の荷重により原子炉容器に発生する高い応
力や下からの加熱および上からの冷却により原子炉容器
に生ずる急激な温度勾配を回避することができ、また原
子炉容器と安全容器の各空間を連通させる構造としたの
で、原子力容器にかかるカバーガス圧の作用を排除する
ことができ、高速増殖炉の構造健全性の点から、信頼性
の向上を図ることができる。
According to the present invention, a fast breeder reactor has a structure in which a reactor vessel containing a reactor core, sodium coolant, etc. is supported by a safety vessel, and the safety vessel is suspended from a roof deck for cooling.
In addition, because the reactor vessel is separated from the roof deck, only the hydrostatic pressure from the sodium coolant is applied to the IM child reactor vessel, which is similar to that seen in conventional fast breeder reactors in which the reactor vessel is suspended from the roof deck. It is possible to avoid the high stress generated in the reactor vessel due to the load of the reactor core, sodium coolant, etc., as well as the rapid temperature gradient that occurs in the reactor vessel due to heating from below and cooling from above. Since the structure allows communication between the spaces in the vessel and the safety vessel, it is possible to eliminate the effect of cover gas pressure on the nuclear vessel, which improves reliability in terms of the structural integrity of the fast breeder reactor. can.

また、ルーフデツキからナトリウム冷却材に達する補助
筒を設け、補助筒と原子炉容器の間に溢水抑制構造を設
けることにより、ナトリウム冷却材が原子炉容器から外
にとび出ることを防ぐことができる。
Furthermore, by providing an auxiliary cylinder that reaches the sodium coolant from the roof deck and providing a water overflow suppression structure between the auxiliary cylinder and the reactor vessel, it is possible to prevent the sodium coolant from spilling out from the reactor vessel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による第1実施例の高速増殖炉を示す図
、第2図は第1図のn−n矢視図で原子炉容器支持構造
の配置図、第3図および第4図は第1実施例の原子炉容
器支持構造の断面図、第5図は本発明による第2実施例
の高速増殖炉を示す図、第6図および第7図は第2実施
例の原子炉容器支持構造の断面図、第8図は第1図およ
び第5図のナトリウム溢水構造を示す図である。 1・・・原子炉容器、2・・・安全容器、3・・・原子
炉容器支持構造、4・・・ルーフデツキ、5・・・補助
筒、5a・・・連通口、6・・・炉心、7・・・ナトリ
ウム溢水抑制構造、8・・・縦リブ、9・・・縦リブ、
10・・・摺動部材、11・・・取付座、12・・・取
付座、13・・・メツシュ。 第 図 1 :原子P2宕t1 2:安全官器 3:#子す戸客器支nm−,先 4°ルーフチ17キ メ′戸 曳・ 5:予電B力簡 7:溢水ネどp朱りL晦゛j1 5a:JJL孔 第 図 第2図 (π−■矢予見) 第 図 (V−VUfr面) 第 図 (■−■l!a面]
FIG. 1 is a diagram showing a fast breeder reactor according to a first embodiment of the present invention, FIG. 2 is a view taken along arrow nn in FIG. is a sectional view of the reactor vessel support structure of the first embodiment, FIG. 5 is a diagram showing the fast breeder reactor of the second embodiment according to the present invention, and FIGS. 6 and 7 are the reactor vessel of the second embodiment. A cross-sectional view of the support structure, FIG. 8, is a view showing the sodium flooding structure of FIGS. 1 and 5. DESCRIPTION OF SYMBOLS 1... Reactor vessel, 2... Safety vessel, 3... Reactor vessel support structure, 4... Roof deck, 5... Auxiliary cylinder, 5a... Communication port, 6... Reactor core , 7... Sodium overflow suppression structure, 8... Vertical ribs, 9... Vertical ribs,
DESCRIPTION OF SYMBOLS 10...Sliding member, 11...Mounting seat, 12...Mounting seat, 13...Mesh. Figure 1: Atomic P2 t1 2: Safety organ 3: #Chisudoor guest equipment support nm-, tip 4° roof top 17 grains door pull 5: Pre-power B force letter 7: Overflow net p red L 晦゛j1 5a: JJL hole diagram Figure 2 (π-■ arrow prediction) Figure (V-VUfr plane) Figure (■-■l!a plane]

Claims (1)

【特許請求の範囲】 1、炉心と該炉心を冷却するナトリウム冷却材と該ナト
リウム冷却材を覆うカバーガスとを収容する原子炉容器
と、該原子炉容器の外側面及び外底面を囲いかつ該原子
炉容器を支持する安全容器と、該安全容器上部の開口部
と接合して密閉し該開口部で前記安全容器を吊り下げか
つ該安全容器を冷却する冷却機能を有するルーフデッキ
とを備え、前記原子炉容器上端の開口部は前記ルーフデ
ッキから分離していることを特徴とする高速増殖炉。 2、前記ルーフデッキに接合されて吊り下げられ、かつ
前記ナトリウム冷却材にまで達する補助筒を設けたこと
を特徴とする請求項1記載の高速増殖炉。 3、前記補助筒の側板で前記ナトリウム冷却材の液面よ
り上の部分に該側板の板厚方向に貫通する連通孔を設け
たことを特徴とする請求項2記載の高速増殖炉。 4、前記原子炉容器と補助筒との間にナトリウム冷却材
の溢水を防止する溢水抑制構造を設けたことを特徴とす
る請求項2又は3記載の高速増殖炉。 5、前記溢水抑制構造はメッシュを重ね合わせたもので
あることを特徴とする請求項4記載の高速増殖炉。
[Claims] 1. A reactor vessel that accommodates a reactor core, a sodium coolant that cools the core, and a cover gas that covers the sodium coolant; comprising: a safety vessel that supports a reactor vessel; and a roof deck that connects and seals an opening at the top of the safety vessel, suspends the safety vessel from the opening, and has a cooling function that cools the safety vessel; A fast breeder reactor, wherein the opening at the upper end of the reactor vessel is separated from the roof deck. 2. The fast breeder reactor according to claim 1, further comprising an auxiliary tube that is connected to and suspended from the roof deck and reaches the sodium coolant. 3. The fast breeder reactor according to claim 2, wherein a communication hole is provided in a side plate of the auxiliary cylinder at a portion above the liquid level of the sodium coolant, the communicating hole passing through the side plate in the thickness direction. 4. The fast breeder reactor according to claim 2 or 3, further comprising an overflow suppression structure for preventing sodium coolant from overflowing between the reactor vessel and the auxiliary cylinder. 5. The fast breeder reactor according to claim 4, wherein the overflow suppression structure is formed by overlapping meshes.
JP1067982A 1989-03-20 1989-03-20 Fast breeder Pending JPH02247596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1067982A JPH02247596A (en) 1989-03-20 1989-03-20 Fast breeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1067982A JPH02247596A (en) 1989-03-20 1989-03-20 Fast breeder

Publications (1)

Publication Number Publication Date
JPH02247596A true JPH02247596A (en) 1990-10-03

Family

ID=13360701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1067982A Pending JPH02247596A (en) 1989-03-20 1989-03-20 Fast breeder

Country Status (1)

Country Link
JP (1) JPH02247596A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198996A (en) * 1987-09-10 1989-04-17 Westinghouse Electric Corp <We> Liquid metal cooled reactor and preheating of closed bottom of sodium tank thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198996A (en) * 1987-09-10 1989-04-17 Westinghouse Electric Corp <We> Liquid metal cooled reactor and preheating of closed bottom of sodium tank thereof

Similar Documents

Publication Publication Date Title
JP2634738B2 (en) Passive cooling system for liquid metal-cooled reactors with back-up cooling channels
JPH06503885A (en) Nuclear reactor equipment, its core containment, and emergency cooling methods for nuclear reactor equipment
US5406602A (en) Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability
US3945887A (en) Heat-insulating lining for a fast reactor
FR2620559A1 (en) BOTTOM SUPPORTED LIQUID METAL NUCLEAR REACTOR
US3945165A (en) Heat-insulating system for a fast reactor shield slab
JPH02247596A (en) Fast breeder
US4022658A (en) Thermal shield system for the primary vessel suspension strake of a fast reactor
US3995918A (en) System for bearing a nuclear reactor vessel cooled by liquid metal
US4226676A (en) Liquid metal cooled nuclear reactors
US4116765A (en) Liquid metal cooled nuclear reactor
US4081322A (en) Device for thermal insulation of a prestressed concrete vessel which affords resistance to the pressure of a vaporizable fluid contained in said vessel
US4666652A (en) Fast neutron nuclear reactor comprising a suspended sealing slab and main vessel
US4657732A (en) High temperature reactor with spherical fuel elements
US3769161A (en) Reactor vessel supporting device
JP6197374B2 (en) Primary containment vessel
US4348356A (en) Reactor vessel support system
JPH08129089A (en) Water immersion type marine nuclear reactor
JP3964489B2 (en) Gas filled assembly
JPS62184391A (en) Tank type reactor
JPH0735882A (en) Liquid metal cooled fast reactor
JPS58135993A (en) Device for decreasing heat siphon effect in fast neutron type reactor
Marcotte et al. Liquid metal cooled nuclear reactor
JPS58219494A (en) Reactor container
JP2837874B2 (en) Liquid metal cooled fast neutron reactor