JPH0224720B2 - - Google Patents

Info

Publication number
JPH0224720B2
JPH0224720B2 JP57062060A JP6206082A JPH0224720B2 JP H0224720 B2 JPH0224720 B2 JP H0224720B2 JP 57062060 A JP57062060 A JP 57062060A JP 6206082 A JP6206082 A JP 6206082A JP H0224720 B2 JPH0224720 B2 JP H0224720B2
Authority
JP
Japan
Prior art keywords
cylindrical body
resin
annular member
hollow body
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57062060A
Other languages
Japanese (ja)
Other versions
JPS58179637A (en
Inventor
Yoshinori Nozaki
Hideo Takamatsu
Akio Matsubara
Yukio Fukushima
Yoshiaki Sakatani
Tetsuya Yamamoto
Yoshio Ono
Mutsuo Inaguma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57062060A priority Critical patent/JPS58179637A/en
Publication of JPS58179637A publication Critical patent/JPS58179637A/en
Publication of JPH0224720B2 publication Critical patent/JPH0224720B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明は、高い曲げ荷重や圧縮荷重に耐えられ
るようにした複合材(例えば、炭素繊維とエポキ
シプリプレグ)製の軽量中空体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to lightweight hollow bodies made of composite materials (eg, carbon fiber and epoxy prepreg) that are adapted to withstand high bending and compressive loads.

このような中空体は、例えば衛星打上げ用ロケ
ツトにおいて3段ロケツトモータと衛星とを結合
している衛星分離部に用いられているが、ロケツ
トのペイロードが同一でも、より重い衛星の打上
げを可能にするため、上記中空体の強度を十分に
保ちながら、できるだけその軽量化をはかること
が求められている。
Such a hollow body is used, for example, in the satellite separation part that connects the three-stage rocket motor and the satellite in a satellite launch rocket, but even if the payload of the rocket is the same, it is possible to launch a heavier satellite. Therefore, it is required to reduce the weight of the hollow body as much as possible while maintaining sufficient strength.

ところで、複合材製の中空体は全金属製(例え
ばアルミニウム合金製)のものに比べて軽く作れ
るが、複合材製の外板を金属製のフレームで接続
すると全複合材製の場合に比べて重くなるという
問題点があり、また全複合材製の中空体でもその
壁部をコルゲート状に成形したのでは、端部を他
部品と結合する際の端末処理に困難をきたすとい
う問題点がある。
By the way, a hollow body made of composite material can be made lighter than one made entirely of metal (for example, aluminum alloy), but if a composite outer panel is connected with a metal frame, it will be lighter than one made entirely of composite material. There is a problem that it becomes heavy, and even if the hollow body is made entirely of composite materials, if the wall is formed into a corrugated shape, there is a problem that it is difficult to process the end when joining the end with other parts. .

さらに、全複合材製の中空体の壁部に補強用の
ストリンガを2次接着により取付ける場合は、剪
断強度が十分でなく、接着剤の重量がかさむとい
う問題点もある。
Furthermore, when a reinforcing stringer is attached to the wall of a hollow body made entirely of composite material by secondary bonding, there are also problems in that the shear strength is insufficient and the weight of the adhesive increases.

本発明は、上述の諸問題を解決して、十分な強
度を得ながら軽量化をはかれるようにした高荷重
用軽量中空体を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a lightweight hollow body for heavy loads that can achieve sufficient strength while reducing weight.

このため本発明の高荷重用軽量中空体は、筒状
本体と、その側壁に一体成形により設けられた補
助用ストリンガとをそなえるとともに、上記筒状
本体の端部周面に沿つて接着された環状部材をそ
なえ、上記環状部材が一方向に大きい強度を有す
る長繊維材を上記筒状部材の周方向のみに配設し
て成形されていることを特徴としている。
For this reason, the lightweight hollow body for high loads of the present invention includes a cylindrical body and an auxiliary stringer integrally molded on the side wall of the cylindrical body. The cylindrical member is characterized in that the annular member is formed by disposing a long fiber material having high strength in one direction only in the circumferential direction of the cylindrical member.

以下、図面により本発明の一実施例としての高
荷重用軽量中空体について説明すると、第1図は
その斜視図、第2図は第1図の―矢視断面
図、第3図はその製作工程図である。
Hereinafter, a lightweight hollow body for heavy loads as an embodiment of the present invention will be explained with reference to the drawings. Fig. 1 is a perspective view thereof, Fig. 2 is a sectional view taken in the direction of - arrow in Fig. 1, and Fig. 3 is its fabrication. It is a process diagram.

第1,2図に示すように、複合積層材としての
強化プラスチツクで作られた筒状本体1はその端
部において上部フランジ2および下部フランジ3
を有し、また筒状本体1の内側壁には、これと同
じ複合積層材から成る多数の補強用ストリンガ4
が一体成形により列設されている。
As shown in FIGS. 1 and 2, a cylindrical body 1 made of reinforced plastic as a composite laminate has an upper flange 2 and a lower flange 3 at its ends.
The inner wall of the cylindrical body 1 has a large number of reinforcing stringers 4 made of the same composite laminated material.
are arranged in a row by integral molding.

さらに、この筒状本体1の上部フランジ2に
は、フイラメントワインデイング法で炭素繊維の
ごとき一方向に大きい強度を有する長繊維材を筒
状本体1の周方向のみに配設して成形された環状
部材5が、常温接着剤により接着して取付けられ
ている。なお、上記長繊維材は、ロービング
(roving)処理などにより生成される。
Further, the upper flange 2 of the cylindrical body 1 is formed by disposing a long fiber material such as carbon fiber having high strength in one direction only in the circumferential direction of the cylindrical body 1 using a filament winding method. An annular member 5 is attached by adhesively using a room-temperature adhesive. Note that the long fiber material is produced by a roving process or the like.

次に、本発明の高荷重軽量中空体の製作工程に
つき、第3図を参照して説明する。
Next, the manufacturing process of the high-load, lightweight hollow body of the present invention will be explained with reference to FIG.

(工程1) ストリンガ用モールドは、工程7の完了後に離
脱するので、離型性のよいテフロンを使用する。
またマンドレルおよびシリンダは金属製のものを
使用する。
(Step 1) Since the stringer mold will be removed after Step 7 is completed, Teflon, which has good mold releasability, is used.
Also, the mandrel and cylinder are made of metal.

(工程2) マンドレルおよびシリンダとカーボンFRPと
の離型をよくするために、マンドレルおよびシリ
ンダにシリコン塗布、シリコン塗布焼付け等の離
型処理を行なう。
(Step 2) In order to improve the release of the carbon FRP from the mandrel and cylinder, the mandrel and cylinder are subjected to mold release treatment such as silicon coating and silicon coating baking.

(工程3) 工程1で準備されたモールドおよびシリンダ
に、それぞれエポキシプリプレグを積層させレジ
ンの吸い取りを行なつて、ストリンガおよび筒状
本体の成形を行なう。
(Step 3) Epoxy prepreg is laminated on the mold and cylinder prepared in Step 1, and the resin is sucked off to form a stringer and a cylindrical body.

特に、筒状本体のフランジ部分については積層
枚数が多く(全積層枚数は110ply)、一度にレジ
ンを吸い取ることは困難なため、二度にわけてレ
ジンの吸い取りを行なう。
In particular, the flange portion of the cylindrical body has a large number of layers (the total number of layers is 110 plies), and it is difficult to vacuum the resin at once, so the resin is vacuumed in two parts.

一般に180℃硬化タイプのエポキシ樹脂では120
℃×30分程度でよい。このレジン吸い取りは、各
積層体を最終的硬化のための組付け前に成形品寸
度(厚さ)近くにするために行なわれるもので、
いわゆるプリプレグ中の余剰樹脂を吸い取ること
(脱レジン)である。
Generally, 120 for 180℃ curing type epoxy resin.
℃ x 30 minutes is sufficient. This resin blotting is done to make each laminate close to the molded product size (thickness) before assembly for final curing.
This is the so-called removal of resin from the prepreg (resin removal).

このレジン吸い取りを行なうと、つぎの利点が
ある。
This resin blotting has the following advantages.

(1) 組付け時のマツチイングが容易になる。(1) Matching during assembly becomes easier.

(2) 硬化後の寸法精度が向上する。(2) Improved dimensional accuracy after curing.

(3) 硬化時のブリーダクロスが不要になる。(3) No need for a bleeder cloth during curing.

なお、環状部材についてはフイラメントワイン
デイング法のため、レジンの吸い取りは行なわれ
ない。
Note that the resin is not sucked off for the annular member because of the filament winding method.

工程3における筒状本体についてのバツギイン
グの説明図における符号aはシリンダ壁を示し、
b,cおよびdはそれぞれバツギイング材として
のバキユームフイルム(ナイロン)、ブリーダク
ロス(ガラスクロス)およびピルプライ(ナイロ
ンクロス)を示し、eはプリプレグ、fはシール
を示す。
The symbol a in the explanatory diagram of butting the cylindrical body in step 3 indicates the cylinder wall,
b, c, and d indicate vacuum film (nylon), bleeder cloth (glass cloth), and pill ply (nylon cloth) as binding materials, e indicates prepreg, and f indicates seal.

(工程4) 筒状本体フランジ部分については、第一次積層
してから、レジンの吸い取りを行なつたのち、そ
の上に第二次積層を行なう。
(Step 4) For the flange portion of the cylindrical main body, after the first lamination is performed, the resin is blotted, and then the second lamination is performed thereon.

第二次のレジンの吸い取りは、工程6の硬化時
にレジンの吸い取りができるので、ここでのレジ
ンの吸い取りは不要である。
The second resin blotting can be done during curing in step 6, so the resin blotting here is not necessary.

(工程5) 本体にストリンガを組付ける。バツギイング工
程3と同じ方法で行なう。ただし、レジンの吸い
取りは工程4の第二次積層した部分だけとする。
(Step 5) Assemble the stringer to the main body. It is carried out in the same manner as Butging Step 3. However, the resin should be blotted only from the second laminated area in step 4.

(工程6) 硬化(1例として180℃×2時間、90psi)はプ
リプレグレジンの硬化特性に合わせて温度および
時間をセツト(1例として180℃×2時間)する。
圧力はオートクレーブなどを用いて3.5〜7Kg/
cm2ゲージ圧を加えると繊維含有率の多いボイドの
少ない成形品が得られる。
(Step 6) For curing (for example, 180°C x 2 hours, 90psi), the temperature and time are set (for example, 180°C x 2 hours) according to the curing characteristics of the prepreg resin.
The pressure is 3.5-7Kg/using an autoclave etc.
By applying cm 2 gauge pressure, molded products with high fiber content and few voids can be obtained.

(工程7) ストリンガ用のモールドを離脱する。(Step 7) Remove the stringer mold.

(工程8) 工程9で接着される、フイラメントワインデイ
ング法で成形した環状部材と、筒状本体のフラン
ジ部分とを加工する。
(Step 8) Process the annular member formed by the filament winding method and the flange portion of the cylindrical body to be bonded in Step 9.

(工程9) プリプレグのレジンと親和性(Affinity)のよ
い常温型接着剤を使用して、筒状本体の端部周面
に沿い環状部材を接着する。
(Step 9) Using a room-temperature adhesive that has good affinity with the prepreg resin, adhere the annular member along the circumferential surface of the end of the cylindrical body.

なお、筒状本体の断面形状は、円形のほか角形
など、適宜の中空形状とすることができる。
Note that the cross-sectional shape of the cylindrical body may be circular, square, or any other suitable hollow shape.

このようにして製作された本発明の中空体は、
複合材によるセミモノコツク構造となり、軽量
で、しかも高強度が得られるのであつて、特にそ
の筒状本体の端部においては、フイラメントワイ
ンデイング法で一方向に大きい強度を有する長繊
維材を上記筒状本体の周方向のみに配設し成形し
た環状部材を接着することにより、軽量化をはか
りながら、高い強度と剛性とが得られるのであ
る。
The hollow body of the present invention manufactured in this way is
It has a semi-monocot structure made of composite material, which is lightweight and has high strength.Especially at the end of the cylindrical body, a long fiber material having high strength in one direction is used by filament winding method to form the cylindrical shape. By bonding the molded annular members arranged only in the circumferential direction of the main body, high strength and rigidity can be obtained while reducing the weight.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図は本発明の一実施例としての高荷重
用軽量中空体を示すもので、第1図はその斜視
図、第2図は第1図の―矢視断面図、第3図
はその製作工程図である。 1…筒状本体、2…上部フランジ、3…下部フ
ランジ、4…ストリンガ、5…環状部材。
Figures 1 and 2 show a lightweight hollow body for heavy loads as an embodiment of the present invention, with Figure 1 being a perspective view thereof, Figure 2 being a cross-sectional view taken along the - arrow in Figure 1, and Figure 3 is a diagram of its manufacturing process. DESCRIPTION OF SYMBOLS 1... Cylindrical main body, 2... Upper flange, 3... Lower flange, 4... Stringer, 5... Annular member.

Claims (1)

【特許請求の範囲】[Claims] 1 筒状本体と、その側壁に一体成形により設け
られた補強用ストリンガとをそなえるとともに、
上記筒状本体の端部周面に沿つて接着された環状
部材をそなえ、上記環状部材が一方向に大きい強
度を有する長繊維材を上記筒状本体の周方向のみ
に配設して成形されていることを特徴とする、高
荷重用軽量中空体。
1. It has a cylindrical body and a reinforcing stringer integrally formed on the side wall thereof, and
The cylindrical body has an annular member glued along the peripheral surface of the end thereof, and the annular member is formed by arranging a long fiber material having high strength in one direction only in the circumferential direction of the cylindrical body. A lightweight hollow body for heavy loads.
JP57062060A 1982-04-14 1982-04-14 Light hollow body for high load Granted JPS58179637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57062060A JPS58179637A (en) 1982-04-14 1982-04-14 Light hollow body for high load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57062060A JPS58179637A (en) 1982-04-14 1982-04-14 Light hollow body for high load

Publications (2)

Publication Number Publication Date
JPS58179637A JPS58179637A (en) 1983-10-20
JPH0224720B2 true JPH0224720B2 (en) 1990-05-30

Family

ID=13189203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57062060A Granted JPS58179637A (en) 1982-04-14 1982-04-14 Light hollow body for high load

Country Status (1)

Country Link
JP (1) JPS58179637A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7527222B2 (en) * 2004-04-06 2009-05-05 The Boeing Company Composite barrel sections for aircraft fuselages and other structures, and methods and systems for manufacturing such barrel sections

Also Published As

Publication number Publication date
JPS58179637A (en) 1983-10-20

Similar Documents

Publication Publication Date Title
US6458309B1 (en) Method for fabricating an advanced composite aerostructure article having an integral co-cured fly away hollow mandrel
EP2301840B1 (en) Integrated aircraft structure in composite material
US5451377A (en) Composite structures and methods of manufacturing such structures
US9284035B2 (en) Composite tubular-reinforced integrated structural panels with mutually intersecting stiffeners and fabrication processes
US5897739A (en) Method for making honeycomb core composite articles
US9370921B2 (en) Composite radius fillers and methods of forming the same
EP0720529B1 (en) A complex composite sandwich structure having a laminate disposed therein and a method for making the same
US7097731B2 (en) Method of manufacturing a hollow section, grid stiffened panel
US20070176327A1 (en) Method of manufacturing an elongate structural element configured for stiffening a shell structure, and a method for manufacturing a rigid shell structure integrated with at least one elongate stiffening element
EP0823374A2 (en) One piece spacecraft frame
JPH04301410A (en) Manufacture of composite material product having complicate form
JP2963198B2 (en) Reinforcement with elliptical end for composite structural members and molding method in its manufacture
US7625618B1 (en) Advanced composite aerostructure article having a braided co-cured fly away hollow mandrel and method for fabrication
EP2159038A1 (en) Method and tool for producing composite-material structures
EP2455214B1 (en) Method for making a fitting for joining the edges of composite sandwich panels
US8192574B1 (en) Process for bonding a vented hollow component
US7138031B2 (en) Mandrel and method for manufacturing composite structures
JP2001030997A (en) Compound material wing, and its manufacture
JPH0224720B2 (en)
JPH058316A (en) Manufacture of structural body made of composite material
JP2685549B2 (en) Manufacturing method of fiber reinforced plastic truss structure
JPH11192991A (en) Structure of frp monocock frame for bicycle and its manufacture
JP2627094B2 (en) Rotor for centrifuge and method for manufacturing the same
JP2740219B2 (en) Method for manufacturing composite material structure
CN115519805A (en) Honeycomb sandwich structure revolution body fairing integral forming method