JPH02246986A - In-vivo guiding tool - Google Patents

In-vivo guiding tool

Info

Publication number
JPH02246986A
JPH02246986A JP1068556A JP6855689A JPH02246986A JP H02246986 A JPH02246986 A JP H02246986A JP 1068556 A JP1068556 A JP 1068556A JP 6855689 A JP6855689 A JP 6855689A JP H02246986 A JPH02246986 A JP H02246986A
Authority
JP
Japan
Prior art keywords
living body
blood
probe
guide
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1068556A
Other languages
Japanese (ja)
Inventor
Isami Hirao
平尾 勇実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1068556A priority Critical patent/JPH02246986A/en
Publication of JPH02246986A publication Critical patent/JPH02246986A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow the free insertion and removal of an inserting material into and from a living body by providing a tubular body which is introduced into the desired section in a living body and has the flexibility to allow the insertion of the inserting material therein in the lower part of a communicating hole ad providing an elastic plug which can be repeatedly pierced by the inserting material in the front end part thereof. CONSTITUTION:A grape sugar sensor 14 is projected from the front end of a sensor probe 18 and the front end thereof is immersed through the elastic plug 11 provided at the front end of a guide tube 10 into blood 24 running in a blood vessel 13. The sensor 14 is pulled from the plug 11 by pulling the operating part of the probe 18 and is retreated into the probe 18 so as not to come into contact with the blood 24 in the case of stopping the measurement of the blood sugar value. Since the plug 11 consists of the elastic material, such as silicone rubber, which can be repeatedly pierced, the plug is tightly and hermetically closed after the sensor 14 is pulled. The back flow of the blood 24 through the plug 11 into the tube 10 is thus obviated. The infiltration of foreign matter into the living body is prevented if a cap body 12 is previously screwed into the communicating hole 6.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は経皮的に生体情報を取出したり、人工臓器にエ
ネルギを供給したり、患部に薬液を投与するときなどに
用いられる生体内案内具に関する。
Detailed Description of the Invention "Industrial Application Fields" The present invention is an in-vivo guide used for percutaneously extracting biological information, supplying energy to artificial organs, administering medicinal solutions to affected areas, etc. Regarding ingredients.

[従来の技術] 従来、生体皮下に一部埋入して血圧、血流速度、温度、
心電信号等の各種生体情報を取出すための電気的端子や
、生体内に埋め込まれた人工心臓、ペースメーカ等の人
工臓器へのエネルギ供給や生体電気刺激をするための電
気的端子、あるいは輸液、各種薬液等の注入2人工腎臓
透析等のための血流の取出し、注入口等として使用され
る生体内案内具が知られている。
[Conventional technology] Conventionally, a device was partially implanted under the skin of a living body to measure blood pressure, blood flow rate, temperature,
Electrical terminals for extracting various biological information such as electrocardiographic signals, electrical terminals for supplying energy to artificial organs such as artificial hearts and pacemakers implanted in living bodies, and electrical stimulation of living organisms, or infusions, BACKGROUND OF THE INVENTION In-vivo guide devices are known that are used as an inlet for blood flow extraction, injection, etc. for injection of various drug solutions, 2 artificial kidney dialysis, and the like.

この種の生体内案内具としては、特開昭60−9276
8号公報や特開昭63−189164号公報に示される
ように、生体内外を電気的に連通ずるための金線、銀線
、白金線2合金線、カーボンファイバ等の導電性部材を
案内具本体に設けられた連通孔内に固定し、この導電性
部材を生体内0的部位もしくはその近傍へと導いている
As this type of in-vivo guide device, Japanese Patent Application Laid-Open No. 60-9276
As shown in Japanese Patent No. 8 and Japanese Patent Application Laid-Open No. 189164/1989, conductive members such as gold wire, silver wire, platinum wire 2 alloy wire, carbon fiber, etc. for electrical communication between inside and outside of a living body are used as guide tools. The conductive member is fixed within a communication hole provided in the main body, and is guided to the target site in the living body or its vicinity.

C発明が解決しようとする課WJ] しかしながら、上記従来の生体内案内具にあっては、生
体内外を電気的に連通ずるための導電性部材や、各種生
体情報を計#1するためのセンサ隻を案内具本体に設け
た連通孔に固定したままの状態で、生体内に留置してい
た。案内具本体は生体親和性のある部材で形成したもの
があるが、導電性部材やセンサは生体親和性部材で形成
するわけにはいかず、各種生体情報の取出しゃ、埋め込
み型人工臓器へのエネルギの供給等、生体内案内具を長
期にわたって使用する場合、導電性部材やセンサの生体
内での劣化が避けられず、また導電性部材やセンサの連
通孔との固定部での損傷も免れなかった。そして、生体
内での劣化や連通孔固定部での損傷が生じた場合は、わ
ざわざ外科的処置を行なって導電性部材やセンサを交換
しなければならず、また劣化や損傷に限らず、センシン
グ項目やセンシング部位を変更するためにセンサを交換
する場合も同様に外科的処置が余儀なくされ、患者への
侵襲は多大なものであった。
Problem to be solved by the invention C WJ] However, the conventional in-vivo guide device described above does not include a conductive member for electrical communication between the inside and outside of the living body, and a sensor for collecting various biological information. The vessel was left in the living body while being fixed to a communication hole provided in the guide body. The main body of the guide device is sometimes made of biocompatible materials, but the conductive members and sensors cannot be made of biocompatible materials, and if various biological information is extracted, the energy input to the implantable artificial organ cannot be made. When using an in-vivo guide device for a long period of time, such as when supplying a Ta. If deterioration occurs in the living body or damage occurs at the fixing part of the communication hole, it is necessary to undergo surgical treatment to replace the conductive member or sensor. When replacing a sensor to change an item or a sensing site, a similar surgical procedure is required, which is extremely invasive to the patient.

本発明は上記事情に着目してなされたもので、生体内に
導かれる導電性部材やセンサといった挿入物の生体内へ
の挿入、抜去が自在に行なえ、−度固定した生体内案内
具を何度も着脱する必要のない生体内案内具を提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and allows inserts such as conductive members and sensors to be guided into the living body to be freely inserted into and removed from the living body. It is an object of the present invention to provide an in-vivo guide device that does not require frequent attachment and detachment.

[課題を解決するための手段および作用]上記目的を達
成するために、本発明の生体内案内具においては、その
連通孔の下部に生体内口的部位もしくはその近傍に導び
かれ内部に導電性部材やセンサといった挿入物を通す可
撓性を有する管状体を設けるとともに、この管状体の先
端部に上記挿入物により繰返し穿針可能な弾性栓を設け
ることで、生体内に導かれる1−2導電性部材やセンサ
等の挿入物を生体内へ自在に挿入、抜去するものである
[Means and effects for solving the problem] In order to achieve the above object, the in-vivo guide device of the present invention has a conductive device at the bottom of the communication hole that is guided to the in-vivo ostium or its vicinity. By providing a flexible tubular body through which an insert such as a sexual member or a sensor passes, and providing an elastic stopper at the tip of this tubular body that can be repeatedly punctured by the insert, the 1- 2. Inserts such as conductive members and sensors can be freely inserted and removed from the living body.

〔実施例] 以下、本発明の第1の実施例につき第1図ないし第4図
を参照して説明する。
[Embodiment] A first embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は本発明の生体内案内具1を示し、その案内具本
体2は生体外に定置される上部フランジ3と、生体内に
埋入される下部フランジ4およびこれら上部フランジ3
と下部フランジ4とを連結するシャフト部5を一体成形
してなる。シャフト部5のほぼ中心部には上部フランジ
3および下部フランジ4に開口し生体内外を連通ずる連
通孔6が穿設されている。案内具本体2の材質としては
、ハイドロキシアパタイト、β−TCP、  アルミナ
FIG. 1 shows an in-vivo guide device 1 of the present invention, and the guide device body 2 includes an upper flange 3 to be placed outside the living body, a lower flange 4 to be implanted in the living body, and these upper flanges 3.
A shaft portion 5 connecting the lower flange 4 and the lower flange 4 is integrally molded. A communication hole 6 is provided at approximately the center of the shaft portion 5 and is open to the upper flange 3 and the lower flange 4 and communicates between the inside and outside of the living body. The materials of the guide body 2 include hydroxyapatite, β-TCP, and alumina.

ジルコニア等の生体為害性のないセラミック材料、ある
いはポリエーテルサルホン、ポリエチレン。
Non-toxic ceramic materials such as zirconia, polyether sulfone, and polyethylene.

ポリプロピレン、弗素樹脂等の高分子材料が用いられ、
もしくは」1記高分子材料の生体組織と接する外表面に
リン酸カルシウム系化合物またはセラミック粉末等を露
出させてなる。また、下部フランジ4の外周部には案内
具本体2を生体皮膚組織7に一時的に固定するときに用
いられる縫合糸8を通す縫合孔9が複数穿設されている
Polymer materials such as polypropylene and fluororesin are used,
Or, a calcium phosphate compound, ceramic powder, etc. is exposed on the outer surface of the polymeric material mentioned above in contact with living tissue. Further, a plurality of suture holes 9 are bored in the outer circumferential portion of the lower flange 4, through which suture threads 8 used for temporarily fixing the guide main body 2 to the biological skin tissue 7 are passed.

そして、上記連通孔6の下部にはシリコンゴム。The lower part of the communicating hole 6 is filled with silicone rubber.

ポリウレタン等の可撓性を有する部材からなる案内チュ
ーブ10の一端が接菅剤等により接着固定されている。
One end of a guide tube 10 made of a flexible member such as polyurethane is adhesively fixed with a sealing agent or the like.

また、この案内チューブ10の他端側内部にはそのチュ
ーブ10内に挿入された挿入物により繰返し穿針可能な
シリコンゴム、PVAハイドロゲル等の高含水ゴム等か
らなる弾性栓11が接着剤等により気密に接着固定され
ている。
Further, inside the other end of the guide tube 10, there is an elastic plug 11 made of high water content rubber such as silicone rubber or PVA hydrogel, which can be repeatedly punctured by an insert inserted into the tube 10, and an adhesive or the like. It is airtightly glued and fixed.

さらに、上記連通孔6の上部にはその連通孔6および案
内チューブ10内を通じて生体内に異物が侵入するのを
防ぐ蓋体12が着脱自在に螺着されている。
Further, a lid 12 is removably screwed onto the upper part of the communication hole 6 to prevent foreign matter from entering the living body through the communication hole 6 and the guide tube 10.

次に、このような構成の生体内案内具1を用いてたとえ
ば糖尿病患者の血糖値モニタリングに使用する場合を以
下に示す。まず、第2図に示すように、案内具本体2の
上部フランジ3を生体皮膚組織7外に定置させた状態で
下部フランジ4を皮下に埋入し、生体皮膚組ta7外か
ら下部フランジ4の縫合孔9に縫合糸8を通してこれを
縫い合せ、案内具本体2を生体皮膚組織7に固定する。
Next, a case will be described below in which the in-vivo guide device 1 having such a configuration is used, for example, for monitoring the blood sugar level of a diabetic patient. First, as shown in FIG. 2, with the upper flange 3 of the guide body 2 placed outside the living skin tissue 7, the lower flange 4 is implanted subcutaneously, and the lower flange 4 is inserted from outside the living skin tissue ta7. The suture thread 8 is passed through the suture hole 9 and sewn up to fix the guide main body 2 to the living skin tissue 7.

なお、この縫合糸8は術後約10口で抜糸する。そして
、生体内案内具1の案内チューブ10の先端を患者の血
管13内に挿入留置してこの血管13に縫合固定してお
く。糖尿病患者の血糖値を計at+するには先端に微小
針型ブドウ糖センサ14を備え、また生体外には操作部
15、電流電圧変換型増幅器16およびモニタ17を備
えたセンサプローブ18を用いる。ここで、微小針型ブ
ドウ糖センサ14は、第4図に示すように、銀メツキし
たスレンレススチール管でできた陰極19内に、ガラス
管20内に封入された白金線からなる陽極21を熱固定
し、さらに陰極19の先端に固定化ブドウ糖酸化酵素層
22とポリウレタン膜23とを形成してなる。そして、
センサプローブ18を案内具本体2の連通孔6を通じて
案内チューブ10内に挿入し、さらにセンサプローブ1
8の操作部15を押込んで、第3図に示すように、セン
サプローブ18の先端からブドウ糖センサ14を突出さ
せ、これを案内チューブ10の先端に設けた弾性栓11
を貫通して、その先端を血管13内を流れる血液24中
に浸漬させる。血液24と接触したブドウ糖センサ14
は血液24中のブドウ糖濃度−1応じて励起電力が変化
し、生体外の増幅器16およびこれに接続したモニタ1
7を通してこの変化量を読取ることで、随時、患者の血
糖値を知ることができる。しかして、血糖値の計測を停
止する場合は、センサプローブ18の操作部15を引張
ることで、血液24中に浸漬していたブドウ糖センサ1
4を弾性栓11から引抜いてセンサプローブ18内に退
避させ、血液24とは接触しない状態にする。このとき
、弾性栓11はシリコンゴムや高含水ゴム等の繰返し穿
針可能な弾性部材からなるので、ブドウ糖センサ14を
引抜いた後はち密に密閉され、血液24が弾性栓11を
通じて案内チューブ10内に逆流することはない。そし
て、使用後はセンサプローブ18を案内チューブ10お
よび連通孔6より抜去し、蓋体12を案内具本体2の連
通孔6にねじ込んでおけば、異物が連通孔6および案内
チューブ10内を通じて生体内に侵入することを防止で
きる。
Note that this suture thread 8 is removed approximately 10 times after the surgery. Then, the distal end of the guide tube 10 of the in-vivo guide device 1 is inserted and left in the patient's blood vessel 13 and fixed to this blood vessel 13 by suture. To measure the blood sugar level of a diabetic patient, a sensor probe 18 equipped with a microneedle glucose sensor 14 at its tip, and an operating section 15, a current-voltage conversion amplifier 16, and a monitor 17 is used outside the body. Here, as shown in FIG. 4, the microneedle type glucose sensor 14 has an anode 21 made of a platinum wire sealed in a glass tube 20 that is heat-fixed in a cathode 19 made of a silver-plated stainless steel tube. Furthermore, an immobilized glucose oxidase layer 22 and a polyurethane film 23 are formed at the tip of the cathode 19. and,
Insert the sensor probe 18 into the guide tube 10 through the communication hole 6 of the guide main body 2, and then insert the sensor probe 1
8, the glucose sensor 14 protrudes from the tip of the sensor probe 18, as shown in FIG.
, and its tip is immersed in the blood 24 flowing inside the blood vessel 13 . Glucose sensor 14 in contact with blood 24
The excitation power changes depending on the glucose concentration -1 in the blood 24, and the excitation power changes depending on the glucose concentration in the blood 24.
By reading this amount of change through 7, the patient's blood sugar level can be known at any time. To stop measuring the blood sugar level, the glucose sensor 1 immersed in the blood 24 can be stopped by pulling the operation part 15 of the sensor probe 18.
4 is pulled out from the elastic stopper 11 and retracted into the sensor probe 18 so that it does not come into contact with the blood 24. At this time, since the elastic stopper 11 is made of an elastic member such as silicone rubber or high water content rubber that can be punctured repeatedly, after the glucose sensor 14 is pulled out, the blood 24 is tightly sealed and the blood 24 passes through the elastic stopper 11 into the guide tube 10. There will be no backflow. After use, if the sensor probe 18 is removed from the guide tube 10 and the communication hole 6 and the lid body 12 is screwed into the communication hole 6 of the guide main body 2, foreign substances can pass through the communication hole 6 and the guide tube 10. It can prevent it from entering the body.

また、上記血糖値計測で異常が認められた場合は、上記
センサプローブ18に代替して、図示しない薬液投与用
プローブを案内具本体2の連通孔6を通じて案内チュー
ブ10内に挿入し、上記同様、弾性栓11に穿針し、血
液24中にインシュリン等の薬液を投与することで、治
療を行なうことも可能である。
If an abnormality is found in the blood glucose level measurement, a drug solution administration probe (not shown) is inserted into the guide tube 10 through the communication hole 6 of the guide main body 2 instead of the sensor probe 18, and the same procedure as above is performed. It is also possible to perform treatment by puncturing the elastic plug 11 with a needle and administering a medicinal solution such as insulin into the blood 24.

このような構成の生体内案内具1によれば、連通孔6の
下部にセンサプローブ18や薬液投与用プローブを通す
案内チューブ10を設けるとともに、この案内チューブ
10の先端部に上記センサプローブ18のブドウ糖セン
サ14により繰返し穿針可能な弾性栓11を設けたので
、たとえば血糖値の計#1が必要なときのみセンサプロ
ーブ18を生体内案内具1を介して生体内に挿脱自在に
挿入できる。したがって、従来のようにセンサ等を生体
内案内具に固定し、これを生体内に長期にわたり留置し
ないで済み、センサプローブ18の生体内での劣化や、
案内具本体2の連通孔6との間の損傷を回避できる。ま
た、仮にセンサプローブ18に異常が発生した場合は、
これを生体内から抜去することで、外科的処置を行なう
ことなく、簡単に交換することができる。
According to the in-vivo guide device 1 having such a configuration, the guide tube 10 through which the sensor probe 18 and drug solution administration probe are passed is provided at the lower part of the communication hole 6, and the sensor probe 18 is provided at the distal end of the guide tube 10. Since the elastic stopper 11 that can be repeatedly punctured by the glucose sensor 14 is provided, the sensor probe 18 can be freely inserted and removed into the living body via the in-vivo guide 1 only when, for example, the blood glucose level meter #1 is required. . Therefore, there is no need to fix a sensor or the like to an in-vivo guide device and leave it in the living body for a long period of time as in the past, and this eliminates the need for deterioration of the sensor probe 18 in the living body.
Damage to the guide body 2 and the communication hole 6 can be avoided. In addition, if an abnormality occurs in the sensor probe 18,
By removing it from the living body, it can be easily replaced without performing any surgical procedure.

第5図および第6図は本発明の第2の実施例を示す。5 and 6 show a second embodiment of the invention.

この実施例の生体内案内具31は生体内に埋め込まれた
人工臓器32へのエネルギ供給用の電気的端子として使
用したものである。すなわち、案内チューブ10の先端
部には、上記第1の実施例で述べたシリコンゴムや高含
水ゴム等の弾性栓11に代替して、繰返し穿針可能で、
かつ導電性を有する導電性ゴムからなる導電部材33が
接着剤等により気密に接着固定されている。また、この
導電部材33の下部にはセラミックス等の穿針不可能な
絶縁部材34が、誤って生体内に電気を流す恐れのない
ように生体との電気的絶縁性を保って接着剤等により接
着固定されており、また上記導電部材33にはリード線
35が絶縁部材34を通じて電気的に接続されている。
The in-vivo guide device 31 of this embodiment is used as an electrical terminal for supplying energy to an artificial organ 32 implanted in the living body. That is, the distal end of the guide tube 10 can be replaced with an elastic stopper 11 made of silicone rubber, high water content rubber, etc., as described in the first embodiment, and can be repeatedly punctured with a needle.
A conductive member 33 made of conductive rubber is airtightly fixed with an adhesive or the like. In addition, an insulating member 34 made of ceramics or the like that cannot be pierced is attached to the lower part of the conductive member 33 to maintain electrical insulation from the living body and to prevent the possibility of accidentally flowing electricity into the living body. A lead wire 35 is electrically connected to the conductive member 33 through an insulating member 34.

なお、その他の基本構成は上記第1の実施例と同様であ
る。
Note that the other basic configurations are the same as those of the first embodiment.

このような構成の生体内案内具31を用いて人工臓器3
2にエネルギを供給する場合は、第6図に示すように、
上記第1の実施例と同様にして案内具本体2を生体皮下
に一部埋入固定し、また導電部材33に接続したリード
線35をエネルギ供給を目的とするベースメーカや人工
心臓等の人工臓器32に導き、これに電気的に接続する
。そして、上記第1の実施例で述べたセンサブロー11
8に代替して、先端に導電性針36を備え、また生体外
には操作部15および上記導電性針36に電気的に接続
されたバッテリ37を備えたエネルギ供給用プローブ3
8を、上記第1の実施例と同様にして案内具本体2の連
通孔6を通じて案内チューブ10内に挿入し、さらにエ
ネルギ供給用プローブ38の操作部15を押込んでエネ
ルギ供給用プローブ38の先端から導電性針36を突出
させ、これを導電部材33に穿針する。これにより、バ
ッテリ37が導電性針36、導電部材33およびリード
線35を介して人工臓器32に電気的に接続され、その
バッテリ37の電気エネルギが人工臓器32に供給され
る。しかして、人工臓器32へのエネルギの供給を停止
する場合は、上記第1の実施例と同様にして操作部15
を引張ることで、導電性針36を導電部材33から引抜
いてエネルギ供給用プローブ38内に退避させ、導電性
針36が導電部材33とは接触しない状態にする。そし
て、使用後は上記第1の実施例と同様にしてエネルギ供
給用プローブ38を案内チューブ10および連通孔6よ
り抜去し、蓋体12を案内具本体2の連通孔6にねじ込
んでおけば、異物の生体内への侵入を防止できる。
Using the in-vivo guide device 31 configured as described above, the artificial organ 3 is
When supplying energy to 2, as shown in Figure 6,
In the same manner as in the first embodiment, the guide main body 2 is partially implanted and fixed under the skin of a living body, and the lead wire 35 connected to the conductive member 33 is used as a base maker for the purpose of energy supply or for an artificial body such as an artificial heart. It is guided to the organ 32 and electrically connected thereto. Then, the sensor blow 11 described in the first embodiment
8, an energy supply probe 3 equipped with a conductive needle 36 at its tip, and equipped with an operating section 15 and a battery 37 electrically connected to the conductive needle 36 outside the living body.
8 into the guide tube 10 through the communication hole 6 of the guide main body 2 in the same manner as in the first embodiment, and further push the operating portion 15 of the energy supply probe 38 to release the tip of the energy supply probe 38. A conductive needle 36 is protruded from the conductive member 33, and the conductive member 33 is punctured with the conductive needle 36. Thereby, the battery 37 is electrically connected to the artificial organ 32 via the conductive needle 36, the conductive member 33, and the lead wire 35, and the electrical energy of the battery 37 is supplied to the artificial organ 32. When the supply of energy to the artificial organ 32 is to be stopped, the operation unit 15
By pulling , the conductive needle 36 is pulled out from the conductive member 33 and retracted into the energy supply probe 38, so that the conductive needle 36 does not come into contact with the conductive member 33. After use, the energy supply probe 38 is removed from the guide tube 10 and the communication hole 6 in the same manner as in the first embodiment, and the lid 12 is screwed into the communication hole 6 of the guide body 2. It can prevent foreign substances from entering the living body.

このような構成の生体内案内具31によれば、連通孔6
の下部にエネルギ供給用プローブ38を通す案内チュー
ブ10を設けるとともに、この案内チューブ10の先端
部に上記エネルギ供給用プローブ38の導電性針36に
より繰返し穿針可能で、かつ導電性を有する導電部材3
3を設け、さらに穿針不可能で生体との電気的絶縁性を
保つ絶縁部材34および上記導電部材33と電気的に接
続したリード線35を設けたので、埋め込み型人工臓器
32へのエネルギ供給が必要なときのみエネルギ供給用
プローブ38を生体内案内具31を介して生体内に挿脱
自在に挿入でき、したがって上記第1の実施例と同様な
効果を奏するものである。
According to the in-vivo guide device 31 having such a configuration, the communication hole 6
A guide tube 10 through which the energy supply probe 38 passes is provided at the lower part of the guide tube 10, and a conductive member that can be repeatedly punctured by the conductive needle 36 of the energy supply probe 38 is provided at the tip of the guide tube 10. 3
In addition, an insulating member 34 that cannot be punctured and maintains electrical insulation from the living body, and a lead wire 35 that is electrically connected to the conductive member 33 are provided, so that energy can be supplied to the implantable artificial organ 32. The energy supply probe 38 can be inserted into and removed from the living body via the living body guide 31 only when necessary, and therefore the same effects as in the first embodiment are achieved.

第7図および第8図は本発明の第3の実施例を示す。7 and 8 show a third embodiment of the invention.

この実施例の生体内案内具41は経皮的に生体内を内視
m42により観察、処置するときの内視鏡42の神人口
として使用したものである。すなわち、案内チューブ1
0の先端部には、上記第1の実施例で述べたシリコンゴ
ムや高含水ゴム等の弾性栓11、第2の実施例で述べた
導電性ゴムからなる導電部材33に代替して、繰返し穿
針可能で、かつ透明な透明弾性部材43が接着剤等によ
り気密に接着固定されている。この透明弾性部材43の
材質としては、コラーゲン、ポリヒドロキシメチルメタ
クリレート(PHHMA)、高含水率のメチルメタクリ
レートとビニルピロリドン共重合体(MMA−VP)、
あルLX ハP V Aを水/有機溶媒(ジメチルスル
ホキシド等)の混合系溶媒に溶解し、低温結晶化したも
のが用いられる。
The in-vivo guide device 41 of this embodiment is used as a guide for an endoscope 42 when percutaneously observing and treating the inside of a living body using an endoscope m42. That is, guide tube 1
0, the elastic stopper 11 made of silicone rubber or high water content rubber described in the first embodiment, and the conductive member 33 made of conductive rubber described in the second embodiment are repeatedly inserted. A transparent elastic member 43 that can be punctured and is transparent is hermetically fixed with an adhesive or the like. The materials of the transparent elastic member 43 include collagen, polyhydroxymethyl methacrylate (PHHMA), high water content methyl methacrylate and vinyl pyrrolidone copolymer (MMA-VP),
A solution of A LX HPV A in a mixed solvent of water/organic solvent (dimethyl sulfoxide, etc.) and crystallized at a low temperature is used.

なお、その他の基本構成は上記第1の実施例と同様であ
る。
Note that the other basic configurations are the same as those of the first embodiment.

このような構成の生体内案内具41を用いてたとえば肝
臓44を観察、処置する場合は、第8図に示すように、
上記第1、第2の実施例と同様にして案内具本体2を生
体皮下に一部埋入固定し、また案内チューブ10を腹腔
内の肝臓44近傍に挿入する。そして、上記第1の実施
例で述べたセンサプローブ18、第2の実施例で述べた
エネルギ供給用プローブ38に代替して、内視鏡42を
上記第1、第2の実施例と同様にして案内具本体2の連
通孔6を通じて案内チューブ10内に挿入し、この内視
鏡42により透明弾性部材43を通じて腹腔内の肝臓4
4を観察する。このとき、案内チューブ10は可撓性を
存するため、内視鏡42の湾曲ノブ45を回動操作して
その挿入部46に湾曲をかけることで、これに追従して
案内チューブ10も湾曲し、腹腔内のありとあらゆる臓
器の観察が可能である。
When observing and treating, for example, the liver 44 using the in-vivo guide device 41 having such a configuration, as shown in FIG.
In the same manner as in the first and second embodiments, the guide main body 2 is partially implanted and fixed under the skin of the living body, and the guide tube 10 is inserted into the abdominal cavity near the liver 44. Then, the sensor probe 18 described in the first embodiment and the energy supply probe 38 described in the second embodiment are replaced with an endoscope 42 similar to those in the first and second embodiments. is inserted into the guide tube 10 through the communication hole 6 of the guide body 2, and the liver 4 in the abdominal cavity is inserted through the transparent elastic member 43 using the endoscope 42.
Observe 4. At this time, since the guide tube 10 is flexible, by rotating the bending knob 45 of the endoscope 42 to curve the insertion portion 46, the guide tube 10 will also curve accordingly. , it is possible to observe all kinds of organs within the abdominal cavity.

このように、肝臓44の色等を観察し、患者の疾患を診
断することができる。たとえば患者が脂肪肝のような疾
患にかかっている場合は、肝臓44の色は正常なときの
茶褐色から詣肪の色である黄色味を帯びた色となってい
るので、このような疾患をいち早く発見できる。
In this way, it is possible to diagnose a patient's disease by observing the color of the liver 44 and the like. For example, if a patient has a disease such as fatty liver, the color of the liver 44 will change from the normal brownish-brown color to a yellowish color, which is the color of fat. You can discover it quickly.

また、このようにして疾患が認められた場合は、内視鏡
42のチャンネル47内に処置具等を挿入し、透明弾性
部材43を介して目的とする肝臓44に薬液注入といっ
た処置を施す。しかして、肝臓44の処置を終えたなら
ば、処置具を透明弾性部材43から引抜くことで、上記
第1、第2の実施例と同様、透明弾性部材43はち密に
密閉され、組織液等が透明弾性部材43を通じて案内チ
ューブ10内に逆流することはない。そして、使用後は
上記第1、第2の実施例と同様にして内視鏡42を案内
チューブ10および連通孔6より抜去し、蓋体12を案
内具本体2の連通孔6にねじ込んでおけば、異物の生体
内への侵入を防止できる。
If a disease is detected in this way, a treatment instrument or the like is inserted into the channel 47 of the endoscope 42, and a treatment such as injecting a drug solution into the target liver 44 via the transparent elastic member 43 is performed. When the treatment of the liver 44 is completed, the treatment instrument is pulled out from the transparent elastic member 43, and the transparent elastic member 43 is tightly sealed, and the interstitial fluid etc. will not flow back into the guide tube 10 through the transparent elastic member 43. After use, the endoscope 42 is removed from the guide tube 10 and the communication hole 6 in the same manner as in the first and second embodiments, and the lid body 12 is screwed into the communication hole 6 of the guide main body 2. For example, it is possible to prevent foreign substances from entering the living body.

このような構成の生体内案内具41によれば、連通孔6
の下部に内視m42を通す案内チューブ10を設けると
ともに、この案内チューブ10の先端部に上記内視鏡4
2の処置具等により繰返し穿針可能で、かつ透明な透明
弾性部材43を設けたので、生体内の観察、処置が必要
なときのみ内視鏡42を生体内案内具41を介して生体
内に挿脱自在に挿入でき、したがって上記第1、第2の
実施例と同様な効果を奏するものである。
According to the in-vivo guide device 41 having such a configuration, the communication hole 6
A guide tube 10 for passing the endoscope m42 is provided at the lower part of the guide tube 10, and the endoscope 4 is attached to the distal end of the guide tube 10.
Since the transparent elastic member 43 that can be repeatedly punctured with the treatment instrument 2 is provided, the endoscope 42 can be inserted into the living body through the in-vivo guide tool 41 only when observation or treatment inside the living body is necessary. It can be inserted and removed freely, and therefore the same effects as in the first and second embodiments can be achieved.

第9図ないし第11図は本発明の第4の実施例を示す。9 to 11 show a fourth embodiment of the present invention.

この実施例の生体内案内具51は経皮的に生体内へ各種
薬液等を注入するときの注入口として使用したものであ
る。すなわち、案内チューブ10の先端部には、上記第
1の実施例で述べた弾性栓11、第2の実施例で述べた
導電部材33、第3の実施例で述べた透明弾性部材43
に代替して、繰返し穿針可能で、かつ外部印加電圧によ
り収縮するメカノケミカル高分子IMII52が接着剤
等により気密に接着固定されている。このメカノケミカ
ル高分子膜52の材質としては、橋かけしたポリマアク
リルアミド−2−メチルプロパンスルホン酸(PAMP
S)を含浸重合させたポリビニルアルコール(PVA)
シート等が用いられる。また、このメカノケミカル高分
子膜52の下部にはセラミックス等の穿針不可能な絶縁
部材34が、誤って生体内に電気を流す恐れのないよう
に生体との電気的絶縁性を保って接着剤等により接着固
定されており、この絶縁部材34の中心部には薬液等を
通す開口53が形成されている。なお、その他の基本構
成は上記第1の実施例と同様である。
The in-vivo guide device 51 of this embodiment is used as an injection port for percutaneously injecting various medicinal solutions into the living body. That is, the tip of the guide tube 10 is provided with the elastic plug 11 described in the first embodiment, the conductive member 33 described in the second embodiment, and the transparent elastic member 43 described in the third embodiment.
Instead, a mechanochemical polymer IMII 52 that can be repeatedly punctured and contracts by externally applied voltage is airtightly fixed with an adhesive or the like. The mechanochemical polymer membrane 52 is made of cross-linked polymer acrylamide-2-methylpropanesulfonic acid (PAMP).
Polyvinyl alcohol (PVA) impregnated with S)
A sheet or the like is used. In addition, an insulating member 34 made of ceramic or the like that cannot be punctured is attached to the lower part of the mechanochemical polymer membrane 52 while maintaining electrical insulation with the living body to prevent the possibility of accidentally flowing electricity into the living body. The insulating member 34 is adhesively fixed with a chemical or the like, and an opening 53 through which a chemical solution or the like passes is formed in the center of the insulating member 34 . Note that the other basic configurations are the same as those of the first embodiment.

このような構成の生体内案内具51を用いてたとえば血
管13内に薬液を注入する場合は、上記第1、第2、第
3の実施例と同様にして案内具本体2を生体皮下に一部
埋入固定し、また上記第1の実施例と同様にして案内チ
ューブ10の先端を血管13内に挿入留置しておく。そ
して、上記第1の実施例で述べたセンサプローブ18、
第2の実施例で述べたエネルギ供給用プローブ38、第
3の実施例で述べた内視鏡42に代替して、メカノケミ
カル高分子膜52に電圧を印加するための白金電極針5
4および図示しない薬液注入口を有する薬液注入用プロ
ーブ55を、上記第1、第2、第3の実施例と同様にし
て案内具本体2の連通孔6を通じて案内チューブ10内
に挿入し、さらに薬液注入用プローブ55の先端から白
金電極針54を突出させ、これをメカノケミカル高分子
膜52に穿針する。その後、白金電極針54を介してメ
カノケミカル高分子膜52に電圧を印加する。
When injecting a medicinal solution into the blood vessel 13 using the in-vivo guide device 51 having such a configuration, for example, the guide device main body 2 is placed under the skin of the living body in the same manner as in the first, second, and third embodiments. The distal end of the guide tube 10 is inserted and left in the blood vessel 13 in the same manner as in the first embodiment. The sensor probe 18 described in the first embodiment above,
A platinum electrode needle 5 for applying voltage to the mechanochemical polymer membrane 52 replaces the energy supply probe 38 described in the second embodiment and the endoscope 42 described in the third embodiment.
4 and a drug solution injection probe 55 having a drug solution inlet (not shown) are inserted into the guide tube 10 through the communication hole 6 of the guide main body 2 in the same manner as in the first, second, and third embodiments, and further A platinum electrode needle 54 is made to protrude from the tip of the chemical liquid injection probe 55 and punctured into the mechanochemical polymer membrane 52 . Thereafter, a voltage is applied to the mechanochemical polymer membrane 52 via the platinum electrode needle 54.

すると、メカノケミカル高分子膜52の外周は案内チュ
ーブ10の内周に接着固定されているため、その膜52
自身の大きさは固定されており、電圧印加前は第10図
に示すように、薬液が透過できない程小さな膜孔56径
であったものが、電圧印加後は第11図に示すように、
等尺性収縮を生じ、薬液が透過できる程度の大きな膜孔
56径に変化する。しかる後、薬液注入用プローブ55
の先端から薬液を放出すると、この薬液はメカノケミカ
ル高分子膜52の拡大した膜孔56および絶縁部材34
の開口53を通って血管13内に注入される。しかして
、血管13内への薬液の注入を停止する場合は、上記第
1、第2の実施例と同様にして白金電極針54をメカノ
ケミカル高分子膜52かう引抜<ことで、このメカノケ
ミカル高分子膜52には電圧が印加されなくなり、元の
薬液が透過できない程小さな膜孔56径に弾性復帰する
ことになる。そして、使用後は上記第1、第2、第3の
実施例と同様にして薬液注入用プローブ55を案内チュ
ーブ10および連通孔6より抜去し、蓋体12を案内具
本体2の連通孔6にねじ込んでおけば、異物の生体内へ
の侵入を防止できる。
Then, since the outer periphery of the mechanochemical polymer membrane 52 is adhesively fixed to the inner periphery of the guide tube 10, the membrane 52
Its own size is fixed, and before voltage application, as shown in FIG. 10, the diameter of the membrane pores 56 was so small that the chemical solution could not pass through, but after voltage application, as shown in FIG. 11,
Isometric contraction occurs, and the diameter of the membrane pores 56 changes to a size large enough to allow the drug solution to pass through. After that, the chemical liquid injection probe 55
When the chemical solution is released from the tip of the mechanochemical polymer membrane 52 and the insulating member 34
is injected into the blood vessel 13 through the opening 53 of the tube. When the injection of the medicinal solution into the blood vessel 13 is to be stopped, the mechanochemical No voltage is applied to the polymer membrane 52, and the membrane pores 56 elastically return to their original diameters so small that the chemical solution cannot pass therethrough. After use, the chemical liquid injection probe 55 is removed from the guide tube 10 and the communication hole 6 in the same manner as in the first, second, and third embodiments, and the lid body 12 is removed from the communication hole 6 of the guide body 2. By screwing it into the body, foreign substances can be prevented from entering the body.

このような構成の生体内案内具1によれば、連通孔6の
下部に薬液注入用プローブ55を通す案内チューブ10
を設けるとともに、この案内チューブ10の先端部に上
2薬液注入用プローブ55の白金電極針54により繰返
し穿針可能で、かつ外部電圧の印加により膜孔56径が
変化して注入薬液の透過$1 IIが可能なメカノケミ
カル高分子膜52を設け、さらに穿針不可能で生体との
電気的絶縁性を保つ絶縁部材34を設けたので、血管1
3内への薬液注入が必要なときのみ薬液注入用プローブ
55を生体内案内具51を介して生体内に挿脱自在に挿
入でき、したがって上記第1の実施例と同様な効果を奏
する他、血管13内への薬液注入制御が容易に行なえる
ものである。
According to the in-vivo guide device 1 having such a configuration, the guide tube 10 allows the drug solution injection probe 55 to pass through the lower part of the communication hole 6.
At the same time, the distal end of the guide tube 10 can be repeatedly punctured by the platinum electrode needle 54 of the upper two drug solution injection probes 55, and the diameter of the membrane hole 56 changes by application of an external voltage, thereby increasing the permeation of the injected drug solution. 1 II is provided, and an insulating member 34 that cannot be punctured and maintains electrical insulation from the living body is provided, so that the blood vessel 1
The drug solution injection probe 55 can be inserted into and removed from the living body via the in-vivo guide device 51 only when it is necessary to inject a drug solution into the body. The injection of drug into the blood vessel 13 can be easily controlled.

なお、本発明は上記第1ないし第4の実施例に限定され
るものではない。たとえば第2の実施例においては、生
体内に埋め込まれた人工1器に電気エネルギを供給する
場合を示したが、これに限らず、脳卒中、脳性まひ、神
経障害等で運動機能がまひした患者への神経腺(筋)T
4気刺激に用いてもよい。また、第3の実施例において
は、透明弾性栓42を案内チューブ1oの先端に設けて
いるが、側視鏡を用いる場合等、必要ならば案内チュー
ブ10の側部に設けてもよい。さらに、第4の実施例に
おいて、メカノケミカル高分子1i51に代替して、内
部に薬液を含浸し、外部電圧印加により収縮して内部の
薬液を放出するメカノケミカルゲルを用いてもよい。加
えて、第1ないし第4の実施例では案内具本体2に1つ
の連通孔6およびこの連通孔6の下部に1つの案内チュ
ーブ10を設けたが、これに限らず、・必要ならば複数
個設けてもよい。
Note that the present invention is not limited to the first to fourth embodiments described above. For example, in the second embodiment, a case where electrical energy is supplied to an artificial device implanted in a living body is shown, but this is not limited to this, but it is applicable to patients whose motor functions are paralyzed due to stroke, cerebral palsy, neurological disorder, etc. nerve gland (muscle) T to
It may also be used for 4 Qi stimulation. Further, in the third embodiment, the transparent elastic stopper 42 is provided at the tip of the guide tube 1o, but it may be provided at the side of the guide tube 10 if necessary, such as when using a side scope. Furthermore, in the fourth embodiment, a mechanochemical gel may be used instead of the mechanochemical polymer 1i51, which is impregnated with a chemical solution and contracts when an external voltage is applied to release the internal drug solution. In addition, in the first to fourth embodiments, one communication hole 6 and one guide tube 10 were provided in the guide main body 2, but the guide tube 10 is not limited to this, and if necessary, a plurality of guide tubes 10 are provided. You may also provide one.

[発明の効果] 以上説明したように、本発明の生体内案内具によれば、
その連通孔の下部に生体内目的部位らしくはその近傍に
導びかれ内部に生体内への挿入物を通す可撓性を有する
管状体を設けるとともに、この管状体の先端部に上記挿
入物により繰返し穿針可能な弾性栓を設けたから、上記
挿入物を必要に応じて生体内に挿脱自在に挿入でき、し
たがってこの挿入物を生体内案内具に固定して長期にわ
たり生体内に留置しないで済み、挿入物の生体内での劣
化や、生体内案内具の連通孔との間の損傷を回避できる
。また、仮に挿入物に異常が発生した場合は、これを生
体内から抜去することができ、また必要に応じて複数の
挿入物を使用できるから、外科的処置を行なうことなく
、簡単に交換または使用することができるものである。
[Effects of the Invention] As explained above, according to the in-vivo guide device of the present invention,
A flexible tubular body is provided at the bottom of the communication hole, which is guided to the vicinity of the target site in the living body, and has a flexible tubular body through which the insert into the living body is passed. Since an elastic stopper that can be repeatedly punctured is provided, the insert can be inserted and removed into the living body as needed, and therefore the insert does not need to be fixed to an in-vivo guide and left in the living body for a long period of time. Therefore, it is possible to avoid deterioration of the insert in the living body and damage between the insert and the communication hole of the in-vivo guide device. Additionally, if an abnormality occurs with the insert, it can be removed from the body, and multiple inserts can be used as needed, making it easy to replace or replace the insert without surgical intervention. It is something that can be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の第1の実施例を示し、第
1図は生体内案内具の側断面図、第2図はその使用状態
を示す図、第3図は案内チューブの先端部分を示す図、
第4図は微小針型ブドウ糖センサの側断面図、第5図お
よび第6図は本発明の第、2の実施例を示し、第5図は
生体内案内具の側断面図、第6図はその使用状態を示す
図、第7図および第8図は本発明の第3の実施例を示し
、第7図は生体内案内具の側断面図、第8図はその使用
状態を示す図、第9図ないし第11図は本発明の第4の
実施例を示し、第9図は案内チューブの先端部分を示す
図、第10図は電圧印加前のメカノケミカル高分子膜の
側断面図、第11図は電圧印加後のメカノケミカル高分
子膜の側断面図である。 6・・・連通孔、7・・・生体皮膚組織、1o・・・案
内チューブ、11・・・弾性栓、18・・・センサプロ
ーブ、33・・・導電部材、38・・・エネルギ供給用
プローブ、42・・・内視鏡、43・・・透明弾性部材
、52・・・メカノケミカル高分子膜、55・・・薬液
注入用プローブ。
1 to 4 show a first embodiment of the present invention, in which FIG. 1 is a side sectional view of the in-vivo guide device, FIG. 2 is a view showing its usage state, and FIG. 3 is a view of the guide tube. Diagram showing the tip part,
FIG. 4 is a side sectional view of a microneedle type glucose sensor, FIGS. 5 and 6 show the second and second embodiments of the present invention, FIG. 5 is a side sectional view of an in-vivo guide device, and FIG. 7 and 8 show a third embodiment of the present invention, FIG. 7 is a side sectional view of the in-vivo guide device, and FIG. 8 is a diagram showing its use state. , FIGS. 9 to 11 show a fourth embodiment of the present invention, FIG. 9 is a view showing the tip of the guide tube, and FIG. 10 is a side sectional view of the mechanochemical polymer membrane before voltage application. , FIG. 11 is a side sectional view of the mechanochemical polymer membrane after voltage application. 6... Communication hole, 7... Biological skin tissue, 1o... Guide tube, 11... Elastic stopper, 18... Sensor probe, 33... Conductive member, 38... For energy supply Probe, 42... Endoscope, 43... Transparent elastic member, 52... Mechanochemical polymer membrane, 55... Probe for drug injection.

Claims (1)

【特許請求の範囲】[Claims] 生体皮膚組織を介して固定され生体内外を連通し生体内
への挿入物を通す連通孔を備えた生体内案内具において
、上記連通孔の下部に生体内目的部位もしくはその近傍
に導びかれ内部に上記挿入物を通す可撓性を有する管状
体を設けるとともに、この管状体の先端部に上記挿入物
により繰返し穿針可能な弾性栓を設けたことを特徴とす
る生体内案内具。
In an in-vivo guide device that is fixed via the skin tissue of the living body and has a communication hole through which an insert is inserted into the living body and communicates between the inside and outside of the living body, there is a hole in the lower part of the communication hole that is guided to the target site in the living body or its vicinity. An in-vivo guide device characterized in that a flexible tubular body through which the insert passes through is provided, and an elastic stopper that can be repeatedly punctured by the insert is provided at the distal end of the tubular body.
JP1068556A 1989-03-20 1989-03-20 In-vivo guiding tool Pending JPH02246986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1068556A JPH02246986A (en) 1989-03-20 1989-03-20 In-vivo guiding tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1068556A JPH02246986A (en) 1989-03-20 1989-03-20 In-vivo guiding tool

Publications (1)

Publication Number Publication Date
JPH02246986A true JPH02246986A (en) 1990-10-02

Family

ID=13377154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1068556A Pending JPH02246986A (en) 1989-03-20 1989-03-20 In-vivo guiding tool

Country Status (1)

Country Link
JP (1) JPH02246986A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358247A (en) * 2003-05-30 2004-12-24 Codman & Shurtleff Inc Percutaneous access instrument and catheter kit
JP2007068921A (en) * 2005-09-09 2007-03-22 National Cardiovascular Center Stoma
JP2012504993A (en) * 2008-10-08 2012-03-01 アクロシュターク コーポレイション Medical tube assembly for easy tube fixation
US8834354B2 (en) 2000-04-03 2014-09-16 Intuitive Surgical Operations, Inc. Steerable endoscope and improved method of insertion
US8845524B2 (en) 2000-04-03 2014-09-30 Intuitive Surgical Operations, Inc. Steerable segmented endoscope and method of insertion
US9980778B2 (en) 2003-03-07 2018-05-29 Intuitive Surgical Operations, Inc. Instrument having radio frequency identification systems and methods for use
US10105036B2 (en) 2000-04-03 2018-10-23 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US10327625B2 (en) 2000-04-03 2019-06-25 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US10349816B2 (en) 2002-01-09 2019-07-16 Intuitive Surgical Operations, Inc. Apparatus and method for endoscopic colectomy
US10426412B2 (en) 2006-05-19 2019-10-01 Intuitive Surgical Operations, Inc. Methods and apparatus for displaying three-dimensional orientation of a steerable distal tip of an endoscope
US11096563B2 (en) 2005-11-22 2021-08-24 Intuitive Surgical Operations, Inc. Method of determining the shape of a bendable instrument

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10105036B2 (en) 2000-04-03 2018-10-23 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US8834354B2 (en) 2000-04-03 2014-09-16 Intuitive Surgical Operations, Inc. Steerable endoscope and improved method of insertion
US11026564B2 (en) 2000-04-03 2021-06-08 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US10893794B2 (en) 2000-04-03 2021-01-19 Intuitive Surgical Operations, Inc. Steerable endoscope and improved method of insertion
US10327625B2 (en) 2000-04-03 2019-06-25 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US8845524B2 (en) 2000-04-03 2014-09-30 Intuitive Surgical Operations, Inc. Steerable segmented endoscope and method of insertion
US9808140B2 (en) 2000-04-03 2017-11-07 Intuitive Surgical Operations, Inc. Steerable segmented endoscope and method of insertion
US10736490B2 (en) 2000-04-03 2020-08-11 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US10349816B2 (en) 2002-01-09 2019-07-16 Intuitive Surgical Operations, Inc. Apparatus and method for endoscopic colectomy
US9980778B2 (en) 2003-03-07 2018-05-29 Intuitive Surgical Operations, Inc. Instrument having radio frequency identification systems and methods for use
US10959807B2 (en) 2003-03-07 2021-03-30 Intuitive Surgical Operations, Inc. Systems and methods for determining the state of motion of an instrument
JP2004358247A (en) * 2003-05-30 2004-12-24 Codman & Shurtleff Inc Percutaneous access instrument and catheter kit
JP4743501B2 (en) * 2005-09-09 2011-08-10 独立行政法人国立循環器病研究センター Stoma
JP2007068921A (en) * 2005-09-09 2007-03-22 National Cardiovascular Center Stoma
US11096563B2 (en) 2005-11-22 2021-08-24 Intuitive Surgical Operations, Inc. Method of determining the shape of a bendable instrument
US10426412B2 (en) 2006-05-19 2019-10-01 Intuitive Surgical Operations, Inc. Methods and apparatus for displaying three-dimensional orientation of a steerable distal tip of an endoscope
JP2012504993A (en) * 2008-10-08 2012-03-01 アクロシュターク コーポレイション Medical tube assembly for easy tube fixation

Similar Documents

Publication Publication Date Title
US7247138B2 (en) Reusable analyte sensor site and method of using the same
US3640269A (en) Fluid-conducting instrument insertable in living organisms
US3757771A (en) Sterile inserter apparatus
US4694832A (en) Dialysis probe
US6254586B1 (en) Method and kit for supplying a fluid to a subcutaneous placement site
US7736309B2 (en) Implantable sensor method and system
US6368274B1 (en) Reusable analyte sensor site and method of using the same
US6459917B1 (en) Apparatus for access to interstitial fluid, blood, or blood plasma components
US7018336B2 (en) Implantable sensor flush sleeve
EP0134758A2 (en) Device for the controlled insulin or glucose infusion in diabetic subjects
US20090312622A1 (en) Device And Method For Determining A Value Of A Physiological Parameter Of A Body Fluid
US8267949B2 (en) Flexible device for introducing a medical apparatus into a body
JPH03505516A (en) Methods, devices and measuring cell assemblies for glucose concentration determination
WO1994013203A1 (en) Method and apparatus for in vivo determination of the concentration in a body fluid of metabolically significant substances
WO2017134211A1 (en) Medical device for detecting at least one analyte in a body fluid
KR102031669B1 (en) Biosensor capable of measuring biological signals and delivering drugs simultaneously and manufacturing method
JPH02246986A (en) In-vivo guiding tool
KR20120055874A (en) Injector for Endoscopic treatment
US20080234563A1 (en) Device for and Method of Delivery and Removal of Substances in and From a Tissue or Vessel
US6945955B1 (en) Sensor system including a port body
US6986755B2 (en) Sensor system including port body
RU2317000C1 (en) Device for testing electric activity of alimentary canal during chronic experiment on rats
JPH07265317A (en) Dialytic probe
JPH03131276A (en) Skin terminal device
JPH01242071A (en) Internal-external opening member for living body