JPH02246927A - Magnetic field generator for magnetic resonance imaging device - Google Patents
Magnetic field generator for magnetic resonance imaging deviceInfo
- Publication number
- JPH02246927A JPH02246927A JP1066345A JP6634589A JPH02246927A JP H02246927 A JPH02246927 A JP H02246927A JP 1066345 A JP1066345 A JP 1066345A JP 6634589 A JP6634589 A JP 6634589A JP H02246927 A JPH02246927 A JP H02246927A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- pole piece
- magnetic pole
- magnetic field
- generating device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002595 magnetic resonance imaging Methods 0.000 title claims description 15
- 239000000463 material Substances 0.000 claims abstract description 24
- 238000003825 pressing Methods 0.000 claims abstract description 8
- 238000000465 moulding Methods 0.000 claims abstract description 7
- 239000012777 electrically insulating material Substances 0.000 claims description 11
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 239000011810 insulating material Substances 0.000 abstract description 2
- 239000011800 void material Substances 0.000 abstract 5
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000013329 compounding Methods 0.000 abstract 1
- 239000002131 composite material Substances 0.000 description 13
- 238000005259 measurement Methods 0.000 description 12
- 230000035699 permeability Effects 0.000 description 9
- 230000003068 static effect Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 239000006247 magnetic powder Substances 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/383—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using permanent magnets
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、核磁気共鳴(NMR)現象を利用して被検体
の検査部位の断層像を得る磁気共鳴イメージング装置(
以下rMRI装置」という)に用いられる永久磁石を使
用した磁界発生装置に関し、特に傾斜磁場コイルの駆動
による磁極片への渦電流の発生を低減することができる
MHI装置の磁界発生装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic resonance imaging apparatus (1) for obtaining a tomographic image of an examination region of a subject by utilizing the nuclear magnetic resonance (NMR) phenomenon.
The present invention relates to a magnetic field generating device using a permanent magnet used in an rMRI device (hereinafter referred to as “rMRI device”), and particularly relates to a magnetic field generating device for an MHI device that can reduce the generation of eddy currents in magnetic pole pieces due to the drive of gradient magnetic field coils.
MRI装置は、NMR現象を利用して被検体中の所望の
検査部位における核スピンの密度分布、緩和時間分布等
を計測して、その計測信号を演算処理し、上記検査部位
の断層像として画像表示するものである。ここで、人体
などの空間的に広い範囲を計測対象とする場合には、直
径30〜501の球空間からなる計測空間内において0
.05〜2T(テスラ;1テスラは10,000ガウス
)程度の静磁場を数10ppm以下の均一度で発生させ
る磁界発生装置が必要である。この磁界発生装置として
は、従来から常電導磁石、超電導磁石、永久磁石の三方
式が用いられている。An MRI device uses NMR phenomena to measure nuclear spin density distribution, relaxation time distribution, etc. at a desired inspection site in a subject, processes the measurement signals, and creates an image as a tomographic image of the inspection site. It is to be displayed. Here, when measuring a spatially wide range such as the human body, 0
.. A magnetic field generating device is required that generates a static magnetic field of about 0.5 to 2 T (tesla; 1 tesla is 10,000 gauss) with a uniformity of several tens of ppm or less. Conventionally, three types of magnetic field generators have been used: normal conducting magnets, superconducting magnets, and permanent magnets.
そして、永久磁石を用いた従来のMHI装置の磁界発生
装置は、第15図及び第16図に示すように、被検体が
入り得る空隙Aを形成して対向配置された一対の永久磁
石1a、lbと、これらの永久磁石1a、lbを支持す
ると共に磁気的に結合する継鉄2a、2b、3と、上記
一対の永久磁石1a、lbの空隙A側の対向面にそれぞ
れ固着され円盤状磁性部材の周縁部に環状突起4が形成
された磁極片5a、5bとを有し、上記空隙A内に磁界
を発生させるようになっていた。As shown in FIGS. 15 and 16, the magnetic field generating device of the conventional MHI apparatus using permanent magnets includes a pair of permanent magnets 1a, which are arranged opposite to each other and form a gap A into which the subject can enter. lb, yokes 2a, 2b, and 3 that support and magnetically couple these permanent magnets 1a and lb, and disk-shaped magnetic yokes that are fixed to the opposing surfaces of the pair of permanent magnets 1a and lb on the air gap A side, respectively. The member has magnetic pole pieces 5a and 5b having an annular protrusion 4 formed on the periphery of the member, and is designed to generate a magnetic field within the gap A.
さらに、MRI装置は、上記永久磁石1a、1b及び磁
極片5a、5bによる静磁場発生手段の他に、空隙A内
に設定された計測空間B内の位置情報を得るために傾斜
磁場を発生するための傾斜磁場コイル群6a、6bを備
えている。これらは、各磁極片5a、5bの近傍に設置
されたX、Y。Furthermore, in addition to the static magnetic field generating means using the permanent magnets 1a and 1b and the magnetic pole pieces 5a and 5b, the MRI apparatus also generates a gradient magnetic field in order to obtain position information in the measurement space B set in the air gap A. It is equipped with gradient magnetic field coil groups 6a and 6b. These are X and Y installed near each magnetic pole piece 5a, 5b.
Zの三方向に対応する三組のコイル対から成っている。It consists of three coil pairs corresponding to the three Z directions.
なお、第15図及び第16図においては。In addition, in FIGS. 15 and 16.
図を見易くするために三組のコイル対を分けずに示しで
ある。そして、これらの傾斜磁場コイル群6a、6bに
図示外の傾斜磁場コイル駆動電源からパルス電流を流す
ことにより、計測空間B内に傾斜をもった磁場を短時間
に発生させるようになっていた。ここで、参考のため、
第17図(a)に傾斜磁場コイルの一例としてZ方向の
傾斜磁場コイルの概念図を示す、Z方向の傾斜磁場を得
るためには1図に示すように上下のコイル7a、7bに
逆方向の電流iユt x2を流す。こうすることで、第
17図(b)に示すようにコイル対7a。In order to make the figure easier to read, the three coil pairs are not shown separately. A magnetic field with a gradient is generated within the measurement space B in a short time by passing a pulse current through the gradient magnetic field coil groups 6a and 6b from a gradient magnetic field coil drive power source (not shown). Here, for reference,
FIG. 17(a) shows a conceptual diagram of a gradient magnetic field coil in the Z direction as an example of a gradient magnetic field coil. In order to obtain a gradient magnetic field in the Z direction, as shown in FIG. A current i x2 is applied. By doing this, the coil pair 7a is formed as shown in FIG. 17(b).
7bのIFf′ltIで強さがOで2方向のいずれかに
進むに従って逆極性で絶対値が大きくなる傾斜をもった
磁場が発生することとなる。At IFf'ltI in 7b, a magnetic field with a strength of O and a gradient whose absolute value becomes larger as it advances in either of the two directions is generated.
しかし、このようなMRI装置の磁界発生装置において
は、第16図に示す傾斜磁場コイル群6a、6bにパル
ス電流を流した際の立ち上がり、立ち下がり時に発生す
る磁界のために、磁極片5a、5bに渦電流が生じるも
のであった。そして、この渦電流は、計測空間B内に上
記傾斜磁場コイル群6a、6bによるものと反対方向の
磁界を形成することから、上記計測空間B内に発生する
傾斜磁場が所定の強度に達するのに多くの時間を要する
こととなるものであった。ここで、被検体の断層像の撮
影に要する時間を考えた場合、できるだけ短時間で所定
の傾斜磁場強度に達することが望ましい、この時間を短
縮するためには、パルス電流の立ち上がり、立ち下がり
部分に流す電流斌を増加させる手段もあるが、傾斜磁場
コイル駆動電源にかかる負担が大きくなり、コスト、装
置の設置面積等を考慮すると得策ではない、また、渦電
流は、磁界の時間的変化の割合に比例するから、傾斜磁
場の立ち上がり時間を早める程、渦電流が立ち上がりの
遅れに影響する割合は大きくなるものであった。そこで
、上記の傾斜磁場が所定の強度に達するまでの時間を短
縮するために、従来、特開昭63−25907号公報に
記載されているように、磁極片5a、5bを磁性粉と電
気絶縁性材料とを複合して成型した磁性複合部材で構成
することにより、該磁極片5a、5bに発生する渦電流
を低減するものが提案されている。However, in the magnetic field generator of such an MRI apparatus, the magnetic field generated at the rising and falling times when a pulse current is passed through the gradient magnetic field coil groups 6a and 6b shown in FIG. 5b caused an eddy current. Since this eddy current forms a magnetic field in the opposite direction to that produced by the gradient magnetic field coil groups 6a and 6b in the measurement space B, it is difficult for the gradient magnetic field generated in the measurement space B to reach a predetermined strength. This would require a lot of time. When considering the time required to take a tomographic image of a subject, it is desirable to reach a predetermined gradient magnetic field strength in the shortest possible time.In order to shorten this time, it is necessary to There is a way to increase the current flowing through the gradient magnetic field coil, but this increases the burden on the gradient magnetic field coil drive power supply and is not a good idea considering the cost and installation area of the device. Since it is proportional to the ratio, the earlier the rise time of the gradient magnetic field is, the greater the ratio of the influence of the eddy current on the rise delay. Therefore, in order to shorten the time it takes for the gradient magnetic field to reach a predetermined strength, as described in Japanese Patent Laid-Open No. 63-25907, the magnetic pole pieces 5a and 5b are electrically insulated from the magnetic powder. It has been proposed to reduce the eddy current generated in the magnetic pole pieces 5a and 5b by constructing a magnetic composite member formed by molding a magnetic material.
しかし、上記の公報記載の方策では、磁性粉を使用する
ことによる静磁界に与える影響及び実際の製造について
は考慮されていなかった。つまり、一つ一つの磁性粉に
ついて考えると、全体としてみた磁極と反対の磁極を持
つことになる。これを一般的に反磁界といっているが、
粉体にすると反磁界の影響が大きくなり、結果として透
磁率の減少等が起こり、前記磁極片5a、5bの厚さを
増さなければ磁場均一度が達成できない、そのことは、
一定の空隙の高さが必要であるので、永久磁石1a、l
b間の空隙を増やす必要が生じ、コストアップ、装置の
大型化、設置スペースの面から得策でない。また、上記
磁性複合部材だけで磁極片5a、5bを製造しようとす
ると、複合される磁性粉の占める割合を低くしないと強
度的に保てなくなり製造できない、これに関し、磁性粉
の占める割合を多くするために圧力を加える製造方法が
あるが、一体物で磁極片5a、5bを製造するためには
50000ton級のプレス機械が必要になる。However, the measures described in the above publication did not take into account the influence of the use of magnetic powder on the static magnetic field and the actual manufacturing. In other words, when considering each magnetic powder, it has a magnetic pole opposite to that of the whole. This is generally called a demagnetizing field, but
When powdered, the influence of the demagnetizing field increases, resulting in a decrease in magnetic permeability, etc., and magnetic field uniformity cannot be achieved unless the thickness of the magnetic pole pieces 5a, 5b is increased.
Since a certain height of the air gap is required, permanent magnets 1a, l
It becomes necessary to increase the gap between the spaces between b and b, which is not a good idea in terms of increased cost, increased size of the device, and installation space. Furthermore, if one attempts to manufacture the magnetic pole pieces 5a and 5b using only the magnetic composite material described above, the strength cannot be maintained unless the ratio of the magnetic powder in the composite is lowered, making it impossible to manufacture the pole pieces. There is a manufacturing method that applies pressure to achieve this, but a 50,000 ton class press machine is required to manufacture the magnetic pole pieces 5a, 5b as one piece.
しかし、このようなプレス機械は現在は存在せず、製造
不可能である。However, such a press machine does not currently exist and cannot be manufactured.
そこで1本発明は、このような問題点を解決し、傾斜磁
場コイルの駆動による磁極片への渦電流の発生を低減す
ることができるMRI装置の磁界発生装置を提供するこ
とを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic field generator for an MRI apparatus that can solve these problems and reduce the generation of eddy currents in magnetic pole pieces caused by driving gradient magnetic field coils.
上記目的を達成するために、本発明によるMR工装置の
磁界発生装置は、被検体が入り得る空隙を形成して対向
配置された一対の永久磁石と、これらの永久磁石を支持
すると共に磁気的に結合する継鉄と、上記一対の永久磁
石の空隙側の対向面にそれぞれ固着され円盤状磁性部材
から成る磁極片とを備え、上記空隙内に磁界を発生させ
る磁気共鳴イメージング装置の磁界発生装置において、
上記磁極片を、その厚み方向で複数層の積層構造とし、
永久磁石側に面する磁極片部材は一体物の厚板磁性円板
で構成し、空隙側に面する磁極片部材は磁性針状材料と
電気絶縁性材料とを複合し圧力を加えて成型した成型磁
性部材で構成し、これらを一体的に結合固着して形成し
たものである。In order to achieve the above object, a magnetic field generating device for an MR device according to the present invention includes a pair of permanent magnets facing each other forming a gap into which a subject can enter, a pair of permanent magnets that support these permanent magnets, and a magnetic field generator that supports these permanent magnets and A magnetic field generating device for a magnetic resonance imaging apparatus, comprising: a yoke coupled to a yoke; and magnetic pole pieces each made of a disc-shaped magnetic member fixed to opposing surfaces of the pair of permanent magnets on the gap side, and generating a magnetic field within the gap. In,
The magnetic pole piece has a laminated structure of multiple layers in its thickness direction,
The magnetic pole piece member facing the permanent magnet side is composed of a one-piece thick magnetic disc, and the magnetic pole piece member facing the air gap side is made of a composite of magnetic acicular material and electrically insulating material and molded by applying pressure. It is composed of molded magnetic members, which are integrally bonded and fixed.
なお、上記空隙側に面する磁極片部材は、その周縁部に
環状突起を有するものとしてもよい。Note that the magnetic pole piece member facing the air gap side may have an annular protrusion on its peripheral edge.
また、上記成型磁性部材は、成型するために加える圧力
方向と直角の方向を部材の板厚方向として形成すると効
果的である。Furthermore, it is effective to form the above-mentioned molded magnetic member so that the thickness direction of the member is perpendicular to the direction of pressure applied for molding.
さらに、上記成型磁性部材は1体積占有率で磁性針状材
料を少なくとも60%以上含み、その板厚と直角方向の
固有抵抗は0.01Ωcm以上とされている。Furthermore, the molded magnetic member contains at least 60% or more of the magnetic acicular material per volume, and has a specific resistance of 0.01 Ωcm or more in a direction perpendicular to the plate thickness.
また、前記磁極片は、三つの部材から成る積層構造とし
、永久磁石側に面する磁極片部材は一体物の厚板磁性円
板から成り、空隙側に面する磁極片部材は成型磁性部材
から成り、周縁部の環状突起の部分はドーナツ状の厚板
磁性板から成り、これ°らを一体的に結合固着させて形
成してもよい。The magnetic pole piece has a laminated structure consisting of three members, the magnetic pole piece member facing the permanent magnet side is made of an integral thick magnetic disk, and the magnetic pole piece member facing the air gap side is made of a molded magnetic member. The annular protrusion portion on the peripheral edge is made of a donut-shaped thick magnetic plate, which may be integrally bonded and fixed.
そして、空隙側に面する成型磁性部材から成る磁極片部
材は、複数個のブロックに分割されたものであってもよ
い。The pole piece member made of the molded magnetic member facing the air gap side may be divided into a plurality of blocks.
このように構成されたMHI装置の磁界発生装置は、円
盤状磁性部材から成る磁極片を、その厚み方向で複数層
の積層構造とし、永久磁石側に面する磁極片部材は一体
物の厚板磁性円板で構成し、空隙側に面する磁極片部材
は磁性針状材料と電気絶縁性材料とを複合し圧力を加え
て成型した成型磁性部材で構成し、これらを一体的に結
合固着して形成したことにより、上記空隙側に面する磁
極片部材はその抵抗値が大きくなる。従って、空隙側に
面する磁極片部材には、傾斜磁場コイルと同一パターン
の渦電流は形成されず、上記磁極片に発生する渦電流を
低減することができる。このことから、立ち上がり及び
立ち下がり特性の良い傾斜磁場が得られる。The magnetic field generating device of the MHI device configured in this manner has a magnetic pole piece made of a disc-shaped magnetic member having a multi-layer laminated structure in the thickness direction, and the magnetic pole piece member facing the permanent magnet side is a one-piece thick plate. It is composed of a magnetic disc, and the magnetic pole piece member facing the air gap side is composed of a molded magnetic member made of a composite of magnetic needle-like material and electrically insulating material and molded by applying pressure, and these are integrally bonded and fixed. As a result, the resistance value of the magnetic pole piece member facing the air gap side is increased. Therefore, eddy currents having the same pattern as the gradient magnetic field coil are not formed in the magnetic pole piece member facing the air gap side, and the eddy current generated in the magnetic pole piece can be reduced. From this, a gradient magnetic field with good rise and fall characteristics can be obtained.
以下、本発明の実施例を添付図面に基づいて詳細に説明
する。Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
第1図は本発明によるMRI装置の磁界発生装置の特徴
部分である磁極片の実施例を示す平面図であり、第2図
はその中央横断面図である0本発明に係る磁界発生装置
の全体構成は、第15図及び第16図に示す従来例と同
様に構成されている。FIG. 1 is a plan view showing an embodiment of a magnetic pole piece, which is a characteristic part of the magnetic field generating device for an MRI apparatus according to the present invention, and FIG. 2 is a cross-sectional view at the center of the magnetic field generating device according to the present invention. The overall configuration is similar to the conventional example shown in FIGS. 15 and 16.
すなわち、第15図及び第16図において、対の永久磁
石1a、lbは、両者間に被検体が入り得る空隙Aを形
成して上下に対向配置されている。これらの永久磁石1
a、lbは、上記空隙A内に静磁場を発生するためのも
ので、例えば形状が円盤状に形成されており、それぞれ
上下の継鉄2a、2bによって支持されている。これら
の継鉄2a、2bは、上記永久磁石1a、lb及び後述
の磁極片5a、5bを所定の間隔をあけて対向配置する
と共に磁路を形成するもので、例えば横幅よりも奥行き
の方が短い長方形に形成されている。That is, in FIGS. 15 and 16, a pair of permanent magnets 1a and lb are arranged vertically to face each other, forming a gap A between them into which a subject can enter. These permanent magnets 1
a and lb are for generating a static magnetic field in the air gap A, and are formed into, for example, a disk shape, and are supported by upper and lower yokes 2a and 2b, respectively. These yokes 2a, 2b have the permanent magnets 1a, lb and magnetic pole pieces 5a, 5b (described later) facing each other at a predetermined interval and form a magnetic path.For example, the depth is larger than the width. It is formed into a short rectangle.
上記上下の継鉄2a、2bは、複数の縦の継鉄3.3.
・・・によって対向支持されている。これらの縦の継鉄
3,3.・・・は、上記上下の継鉄2a。The upper and lower yokes 2a, 2b are composed of a plurality of vertical yokes 3.3.
It is supported by... These vertical yokes 3,3. . . . are the upper and lower yoke 2a.
2bを所定の間隔をあけて対向配置すると共に上記永久
磁石1a、lbによる磁路を閉じさせるもので、内部に
磁束を通し易い部材で形成され、例えば上下の継鉄2a
、2.bの四隅に一本ずつ合計四本立設されており、上
記空隙A内に設定された計測空間Bを通る磁束の戻り回
路をそれぞれ形成している。なお、前記上下一対の永久
磁石1a。2b are arranged facing each other at a predetermined interval and close the magnetic path caused by the permanent magnets 1a and lb, and are made of a material that allows magnetic flux to easily pass through the inside, for example, the upper and lower yokes 2a
, 2. A total of four poles are installed, one at each of the four corners of the space B, and each of them forms a return circuit for the magnetic flux passing through the measurement space B set within the air gap A. Note that the pair of upper and lower permanent magnets 1a.
1bは、第16図に示す方向でN極及びS極にそれぞれ
着磁されているので、上記の計測空間Bを矢印のように
上から下へ磁束が通っている。1b is magnetized to N and S poles in the directions shown in FIG. 16, so that magnetic flux passes through the measurement space B from top to bottom as shown by the arrow.
上記一対の永久磁石1a、lbの空隙A側の対向面には
、それぞれ磁極片5a、5bが磁気的及び機械的に固着
されている。これらの磁極片5a。Magnetic pole pieces 5a and 5b are magnetically and mechanically fixed to opposing surfaces of the pair of permanent magnets 1a and lb on the air gap A side, respectively. These pole pieces 5a.
5bは、上記空隙A内の所定の領域に設定されると共に
例えば直径30〜50a*の球空間からなり被検体の検
査部位が入る計測空間Bにおける静磁場の均一性を高め
るためのものであり、例えば円盤状の磁性部材から成り
、その周縁部に環状突起4を設けて構成されている。さ
らに、上記各磁極片5a、5bの近傍には、傾斜磁場コ
イル群6a。5b is set in a predetermined region within the above-mentioned air gap A, and is intended to improve the uniformity of the static magnetic field in the measurement space B, which is a spherical space with a diameter of 30 to 50 a*, and in which the test part of the subject enters. , for example, is made of a disc-shaped magnetic member, and has an annular protrusion 4 provided on its peripheral edge. Further, a gradient magnetic field coil group 6a is provided near each of the magnetic pole pieces 5a, 5b.
6bが設けられている。これらの傾斜磁場コイル群6a
、6bは、空隙A内に設定された計測空間B内の位置情
報を得るために傾斜磁場を発生するためのもので、°例
えばx、y、zの三方向に対応する三組のコイル対から
成り、特願昭62−221924号の明細書及び図面に
記載されたアンダーソンタイプまたはゴーレイタイプと
されている。6b is provided. These gradient magnetic field coil group 6a
, 6b are for generating gradient magnetic fields in order to obtain position information in the measurement space B set in the air gap A, and for example, three pairs of coils corresponding to the three directions x, y, and z are used. It is of the Anderson type or Golay type as described in the specification and drawings of Japanese Patent Application No. 62-221924.
そして、これらの傾斜磁場コイル群6a、6bに図示外
の傾斜磁場コイル駆動電源からパルス電流を流すことに
より、上記計測空間B内に傾斜をもった磁場を短時間に
発生させるようになっている。By passing a pulse current through these gradient magnetic field coil groups 6a and 6b from a gradient magnetic field coil drive power source (not shown), a magnetic field with a gradient is generated in the measurement space B in a short time. .
そして、上記傾斜磁場コイル群6a、6bにパルス電流
を流した際の立ち上がり、立ち下がり時に発生す6B界
のために、磁極片5a、5bには渦電流が生じるが、本
発明では下記に詳述するような磁極片構成を採用するの
で、この渦電流の発生を低減することができる。Eddy currents are generated in the magnetic pole pieces 5a and 5b due to the 6B field generated at the rising and falling times when a pulse current is passed through the gradient magnetic field coil groups 6a and 6b. Since the magnetic pole piece configuration as described above is adopted, the generation of this eddy current can be reduced.
すなわち1本発明においては、上記磁極片5a。That is, in one aspect of the present invention, the above-mentioned magnetic pole piece 5a.
5bは、第2図に示すように、その厚み方向で二層の積
層構造とされ、第16図に示す永久磁石1a、lb側に
面する第一の磁極片部材8と、同じく第16図に示す空
隙A側に面する第二の磁極片部材9とを一体的に結合固
着して形成さ九ている。5b has a two-layer laminated structure in its thickness direction, as shown in FIG. It is formed by integrally bonding and fixing a second pole piece member 9 facing the air gap A side shown in FIG.
上記第一の磁極片部材8は、その片面に後述のように複
数個に分割された第二の磁極片部材9を一体的に結合固
着して磁極片5aまたは5bを形成するときに、永久磁
石1aまたは1bから約1kg/dの吸引力が加わるた
め、この吸引力による変形を所望範囲内に抑えて上記磁
極片5a、5bを組立可能とすると共に、上記永久磁石
1a、lbによる静磁場の均一度を改善するもので、所
定直径の一体物の厚板磁性円板で構成され、その材質は
例えば高透磁率を有する電磁軟鉄とされている。The first magnetic pole piece member 8 is permanently attached to one side thereof when a plurality of divided second magnetic pole piece members 9 are integrally bonded and fixed to form the magnetic pole piece 5a or 5b. Since an attractive force of approximately 1 kg/d is applied from the magnet 1a or 1b, the deformation caused by this attractive force can be suppressed within a desired range to assemble the magnetic pole pieces 5a, 5b, and the static magnetic field caused by the permanent magnets 1a, 1b can be assembled. It is made of a one-piece thick magnetic disk with a predetermined diameter, and its material is, for example, electromagnetic soft iron with high magnetic permeability.
上記第二の磁極片部材9は、第16図に示す空隙A側に
面して傾斜磁場コイル群6a、6bに流れるパルス電流
による渦電流の発生を低減すると共に、上記第一の磁極
片部材8と相俟って計測空間Bにおける静磁場の均一性
を高めるもので、磁性針状材料と電気絶縁性材料とを複
合し圧力を加えて成型すると共にその周辺部に環状突起
4を有する成型磁性部材で構成されている。この成型磁
性部材は、第3図に示すように、純鉄製等の磁性針状材
料12,12.・・・を体積占有率で90%含み、エポ
キシ樹脂等の電気絶縁性材料13,13゜・・・を同じ
く10%含み、この複合物に圧力を加えて固めた磁性複
合部材から成る。この磁性複合部材を製造するには、例
えばホットプレス、プレス。The second magnetic pole piece member 9 faces the air gap A side shown in FIG. In combination with 8, this improves the uniformity of the static magnetic field in the measurement space B, and is made by molding a composite of magnetic needle-like material and electrically insulating material by applying pressure, and has annular protrusions 4 around the periphery. It is made of magnetic material. As shown in FIG. 3, this molded magnetic member is made of magnetic needle-like materials 12, 12. It is made of a magnetic composite member containing 90% by volume occupancy of ..., 10% of an electrically insulating material such as epoxy resin 13,13°, etc., and hardened by applying pressure to this composite. To manufacture this magnetic composite member, for example, hot press or press is used.
CI P (Cold l5ostatic Pres
sing)法で成型したり、或いはHI P (Hot
l5ostatic Press−ing)法で成型
すればよい、なお、HIP法においては、耐熱性の点で
電気絶縁性材料13としてエポキシ樹脂は用いることが
できないので、例えばシリコン粉等の無機材料を用いれ
ばよい、上記各方法とも複合材料を成型するには′圧力
をかけるが、その圧力は約5 ton / 01が必要
である。一般に、大形のプレス機械でも8000ton
ブレスであるので、製造できる大きさは、8000÷5
= 1600cdとなり、矩形状ブロックでは40C
1lX40alとなる。CI P (Cold l5ostatic Pres
molding using the HI P (Hot
However, in the HIP method, epoxy resin cannot be used as the electrically insulating material 13 due to its heat resistance, so an inorganic material such as silicon powder may be used. In each of the above methods, pressure is applied to mold the composite material, and the pressure needs to be about 5 tons/01. Generally, even large press machines have a capacity of 8000 tons.
Since it is a bracelet, the size that can be manufactured is 8000÷5
= 1600cd, 40C for a rectangular block
It becomes 1l×40al.
また、その厚さは30c11が限界である。ここで。Further, its thickness is limited to 30c11. here.
一般的な磁極片5a、5bの大きさは直径約10oO膿
であるので、第二の磁極片部材9としては適宜の大きさ
で複数個のブロックに分割して構成しなければならない
、第1図に示す実施例においては、例えば30 am
X 30 ex X 30 xのブロックを板厚方向と
直角方向にスライスし、30 tx X 303 X7
3を一つのブロック9′として、これらのブロック9’
、9’ ・・・を複数側波べて第二の磁極片部材9
が構成されている。Since the general size of the magnetic pole pieces 5a and 5b is approximately 10 mm in diameter, the second magnetic pole piece member 9 must be constructed by dividing into a plurality of blocks of appropriate size. In the embodiment shown in the figure, for example, 30 am
Slice a block of X 30 ex
3 as one block 9', these blocks 9'
, 9' . . . to form the second magnetic pole piece member 9.
is configured.
なお、上記第二の磁極片部材9の各ブロック9.9′
・・・の製造に当っては、第3図に示すように、各ブロ
ック9′を圧縮成型するために加える圧力P、Pの方向
と直角の方向を部材の板厚aの方向として製造されてい
る。このようにすると。In addition, each block 9.9' of the second magnetic pole piece member 9
. . . As shown in Fig. 3, the pressure P applied to compression mold each block 9' is manufactured with the direction perpendicular to the direction of P as the direction of the plate thickness a of the member. ing. If you do it like this.
磁性針状材料12.12.・・・の長手方向が圧力P。Magnetic acicular material 12.12. The pressure P is in the longitudinal direction.
Pの方向と直角の方向に並び、そのブロック9′の板厚
黛の方向と平行になる。このことがら、上記ブロック9
′の板厚Ωの方向が高透磁率となる。They are arranged in a direction perpendicular to the direction of P and parallel to the direction of the plate thickness of the block 9'. For this reason, the above block 9
The direction of the plate thickness Ω of ' has high magnetic permeability.
そして、上記のようにして製造された磁性複合部材(第
3図に示すブロック9′)の板厚と直角方向の固有抵抗
は、例えば0.05Ωlとなる。The specific resistance of the magnetic composite member (block 9' shown in FIG. 3) manufactured as described above in a direction perpendicular to the plate thickness is, for example, 0.05 Ωl.
また、上記磁性針状材料12としては、純鉄製のものに
限らず、高透磁率で飽和磁化が大きい材質であれば他の
針状材料であってもよい、さらに。Further, the magnetic acicular material 12 is not limited to one made of pure iron, and may be any other acicular material as long as it is made of a material with high magnetic permeability and large saturation magnetization.
磁性針状材料12と電気絶縁性材料13との体積占有率
は、上記の90%と10%に限らず、磁性針状材料12
を少なくとも60%以上含み、電気絶縁性材料13は多
くても40%以下の含有割合とし、この範囲内で適宜選
択してもよい。The volume occupancy of the magnetic acicular material 12 and the electrically insulating material 13 is not limited to the above-mentioned 90% and 10%.
The content of the electrically insulating material 13 is at most 40% or less, and may be selected as appropriate within this range.
さらに、上記磁性針状材料12は、第3図に示すように
円柱状に形成されたものに限らず、例えば第4図に示す
ように六角柱状またはその他の柱状に形成されたもので
あってもよい。Further, the magnetic acicular material 12 is not limited to a columnar shape as shown in FIG. 3, but may be formed, for example, in a hexagonal columnar shape or other columnar shape as shown in FIG. Good too.
そして、上記第一の磁極片部材8の片面に対して第二の
磁極片部材9が、第2図に示すように。A second magnetic pole piece member 9 is attached to one side of the first magnetic pole piece member 8, as shown in FIG.
止めネジ10,10.・・・及び接着剤で一体的に結合
固着されている。このとき、上記第一の磁極片部材8の
永久磁石1a、lb側に接する面には、上記止めネジ1
0の頭部が出っ張らないように凹部が穿設されている。Set screw 10, 10. ...and are integrally bonded and fixed with adhesive. At this time, the set screw 1 is attached to the surface of the first magnetic pole piece member 8 that is in contact with the permanent magnets 1a and lb.
A recess is provided to prevent the head of the 0 from protruding.
また、上記止めネジ1oの先端部は、第二の磁極片部材
9の表面から突出しないようにその長さが決定されてい
る。さらに。Further, the length of the tip of the set screw 1o is determined so that it does not protrude from the surface of the second magnetic pole piece member 9. moreover.
第1図に示す第二の磁極片部材9の各ブロック9.9′
・・・間のすき間dはできるだけ小さくされており1
例えば1−以下とされている。Each block 9.9' of the second pole piece member 9 shown in FIG.
...The gap d is made as small as possible and 1
For example, it is set to 1- or less.
このような状態で、磁極片5a、5bの全体的な寸法は
、第16図に示す被検体としての人体が入る計測空間B
の大きさで主に決定され、例えばり、41000m、D
、4900m5 D、弁750m、t480閤t tz
弁20■l t、句20■程度とされる。In this state, the overall dimensions of the magnetic pole pieces 5a and 5b are as shown in FIG.
For example, 41,000 m, D
, 4900m5 D, valve 750m, t480 t tz
It is said to be about 20 liters long and 20 liters long.
そして、磁極片5a、5bの中央部の板厚(第一の磁極
片部材8の厚さt、十第二の磁極片部材9の厚さtx)
は、静磁場の均一度を達成するため。Then, the thickness of the central part of the magnetic pole pieces 5a and 5b (thickness t of the first magnetic pole piece member 8, thickness tx of the tenth and second magnetic pole piece member 9)
To achieve uniformity of static magnetic field.
用いる永久磁石1a、lbの磁気特性のばらつきを吸収
し、且つ内部の磁束密度を飽和させないで用いるために
、約40■必要である。この実施例では、その約40閣
の厚さをt1″:2o■9 t1420■としtt:
tl=1 : 1としているが、その比率はこれに限定
されず、適宜選択してもよい。Approximately 40 mm is necessary to absorb variations in the magnetic properties of the permanent magnets 1a and 1b used and to use them without saturating the internal magnetic flux density. In this example, the thickness of about 40 layers is t1'':2o■9t1420■tt:
Although tl=1:1, the ratio is not limited to this and may be selected as appropriate.
ただし、第二の磁極片部材9の厚さt2は、その透磁率
と固有抵抗及び板厚の関係で決定するものであり、実用
的な透磁率と固有抵抗で考えると。However, the thickness t2 of the second magnetic pole piece member 9 is determined based on the relationship between its magnetic permeability, specific resistance, and plate thickness, and considering practical magnetic permeability and specific resistance.
5閣以上とする必要がある。また、実際の組み立てを考
えた場合、永久磁石1a、lbから受ける吸引力による
変形を所望範囲内に抑えるためには、tユ≧20mとす
る必要がある。It is necessary to have five or more cabinets. In addition, when considering actual assembly, in order to suppress deformation due to the attractive force received from the permanent magnets 1a and lb within a desired range, it is necessary that tU≧20 m.
このように構成された磁界発生装置は、磁極片5a、5
bがその厚み方向で二層の積層構造とされ、空隙A側に
面する第二の磁極片部材9が磁性針状材料12と電気絶
縁性材料13とを複合し圧力を加えて成型した成型磁性
部材で構成されているので、この第二の磁極片部材9の
抵抗値が大きくなり、傾斜磁場コイル群6a、6bと同
一パターンの渦電流は形成されず、上記磁極片5a、5
bに発生する渦電流は小さくなる。The magnetic field generating device configured in this way includes magnetic pole pieces 5a, 5
b has a two-layer laminated structure in the thickness direction, and the second pole piece member 9 facing the gap A side is formed by combining a magnetic needle-like material 12 and an electrically insulating material 13 and molding the composite by applying pressure. Since it is made of a magnetic member, the resistance value of this second pole piece member 9 is large, and eddy currents with the same pattern as those of the gradient magnetic field coil groups 6a, 6b are not formed, and the magnetic pole pieces 5a, 5 are
The eddy current generated at b becomes smaller.
なお、第1図及び第2図の実施例においては、空隙側に
面する第二の磁極片部材9の周縁部に環状突起4を形成
したものとして示したが1本発明においては上記環状突
起4は不可欠なものではなく、省略してもよい、しかし
、上記環状突起4は、空隙A間に形成される磁界の均一
度を向上させるために有効な手段であり、要求される磁
界の均−度及び磁気回路の大きさ等を考慮して、環状突
起4の形成の要否及び形状、寸法等を適宜選定すること
が望ましい。In the embodiments shown in FIGS. 1 and 2, the annular protrusion 4 is formed on the peripheral edge of the second pole piece member 9 facing the air gap, but in the present invention, the annular protrusion 4 is 4 is not essential and may be omitted. However, the annular protrusion 4 is an effective means for improving the uniformity of the magnetic field formed between the air gap A, and it can meet the required uniformity of the magnetic field. It is desirable to appropriately select whether or not the annular protrusion 4 is to be formed, its shape, dimensions, etc., taking into consideration the degree of power and the size of the magnetic circuit.
第5図及び第6図は、本発明に係る磁極片5a。5 and 6 show a magnetic pole piece 5a according to the present invention.
5bの第二の実施例を示す平面図及びその中央横断面図
である。この実施例は、磁極片5a、5bを三つの部材
から成る積層構造とし、第16図に示す永久磁石1a、
lb側に面する第一の磁極片部材8は一体物の厚板磁性
円板から成り、同じく第16図に示す空隙A側に面する
第二の磁極片部材9は前述の磁性針状材料12と電気絶
縁性材料13とを複合して成型した成型磁性部材から成
り、さらに周縁部の環状突起4の部分をなす第三の磁極
片部材11は上記第一の磁極片部材8と同じ材質のドー
ナツ状の厚板磁性板から成り、これら三つの部材8,9
.11を止めネジ10.10’及び接着剤で一体的に結
合固着したものである。この場合は、高価な成型磁性部
材から成る第二の磁極片部材9を、第2図の例に比して
環状突起4の部分だけ薄く製造することができ、安価と
することができる。FIG. 5b is a plan view and a central cross-sectional view showing a second embodiment of 5b. In this embodiment, the magnetic pole pieces 5a and 5b have a laminated structure consisting of three members, and the permanent magnets 1a and 1a shown in FIG.
The first pole piece member 8 facing the lb side is made of a one-piece thick magnetic disc, and the second pole piece member 9 facing the air gap A side shown in FIG. 16 is made of the aforementioned magnetic needle material. 12 and an electrically insulating material 13, and the third magnetic pole piece member 11 forming the annular protrusion 4 on the peripheral edge is made of the same material as the first magnetic pole piece member 8. These three members 8, 9 are made of donut-shaped thick magnetic plates.
.. 11 are integrally connected and fixed with setscrews 10 and 10' and adhesive. In this case, the second pole piece member 9 made of an expensive molded magnetic member can be manufactured to be thinner at the annular protrusion 4 than in the example shown in FIG. 2, and thus can be manufactured at a lower cost.
第7図及び第8図は1本発明に係る磁極片5a。7 and 8 show a magnetic pole piece 5a according to the present invention.
5bの第三の実施例を示す平面図及びその中央横断面図
である。この実施例は、上記第二の実施例と同様に、磁
極片5a、5bを三つの部材から成る積層構造とし、環
状突起4の大半をドーナツ状の厚板磁性板から成る第三
の磁極片部材11′から構成するが、その厚さをやや厚
手としてその底面が第一の磁極片部材8に直接接触する
と共に、その内周の内側に第二の磁極片部材9を嵌合し
た状態に形成したものである。この場合は、高価な成型
磁性部材から成る第二の磁極片部材9を、第2図の例に
比して外径を小さく製造することができ、さらに安価と
することができる。5b is a plan view and a central cross-sectional view showing a third embodiment of the present invention. In this embodiment, like the second embodiment, the magnetic pole pieces 5a and 5b have a laminated structure consisting of three members, and most of the annular protrusion 4 is a third magnetic pole piece made of a doughnut-shaped thick magnetic plate. It consists of a member 11', which is made slightly thick so that its bottom surface directly contacts the first magnetic pole piece member 8, and the second magnetic pole piece member 9 is fitted inside the inner circumference thereof. It was formed. In this case, the second pole piece member 9 made of an expensive molded magnetic member can be manufactured with a smaller outer diameter than the example shown in FIG. 2, and can be manufactured at a lower cost.
第9図及び第10図は、本発明に係る磁極片5a、5b
の第四の実施例を示す平面、図及びその中央横断面図で
ある。この実施例は、上記第二の実施例と同様に、磁極
片5a、5bを三つの部材から成る積層構造とし、第三
の磁極片部材11′はドーナツ状の厚板磁性板から成り
、その厚さをやや厚手としてその底面が第一の磁極片部
材8に直接接触すると共に、その内周のテーパ一部の内
側に第二の磁極片部材9を嵌合した状態に形成したもの
である。この場合は、高価な成型磁性部材から成る第二
の磁極片部材9を、第6図の例に比して外径を小さく製
造することができ、上記いずれの例よりも安価とするこ
とができる。FIG. 9 and FIG. 10 show magnetic pole pieces 5a, 5b according to the present invention.
FIG. 7 is a plan view, a diagram, and a central cross-sectional view showing a fourth embodiment of the present invention. In this embodiment, like the second embodiment, the magnetic pole pieces 5a and 5b have a laminated structure consisting of three members, and the third magnetic pole piece member 11' is made of a donut-shaped thick magnetic plate. It is made slightly thicker so that its bottom surface directly contacts the first magnetic pole piece member 8, and the second magnetic pole piece member 9 is fitted inside a part of the tapered inner circumference thereof. . In this case, the second pole piece member 9 made of an expensive molded magnetic member can be manufactured with a smaller outer diameter than the example shown in FIG. 6, and can be manufactured at a lower cost than any of the above examples. can.
第11図〜第14図は、第二の磁極片部材9の変形例を
示す説明図である。第1図〜第8図においては、第二の
磁極片部材9は、一つのブロック9′を例えば30 a
a X 30 am X 30 csのブロックに成型
し板厚と直角方向にスライスして、30aIIX 30
> X 7 cmの大きさの正方形にし、これらのブ
ロック9’ 、9’ ・・・を複数個波べて結合固着
したものとしたが、図示のように一つのブロック9′を
適宜の大きさの四分の一円形に成型し、これらのブロッ
ク9’ 、9’ ・・・を円形に四個並入で結合固着
してもよい、第11図及び第12図は第1図及び第2図
の例に対応する変形例を示し、第13図及び第14図は
第9図及び第10図の例に対応する変形例を示している
。なお、上記−つのブロック9′の形状は、四分の一円
形に限らず、五分の一円形または天分の一円形あるいは
大分の一円形等としてもよい。FIGS. 11 to 14 are explanatory diagrams showing modified examples of the second pole piece member 9. FIG. 1 to 8, the second pole piece member 9 has one block 9', for example 30 a
Formed into a block of a x 30 am x 30 cs and sliced in the direction perpendicular to the plate thickness, 30a IIX 30
A square with a size of These blocks 9', 9', etc. may be formed into a quarter circular shape, and four of these blocks 9', 9', etc. may be connected and fixed in parallel in a circular shape. A modification corresponding to the example shown in the figure is shown, and FIGS. 13 and 14 show modifications corresponding to the example shown in FIGS. 9 and 10. The shape of the two blocks 9' is not limited to a quarter circle, but may be a fifth circle, a tenth circle, a large circle, or the like.
本発明は以上のように構成されたので、円盤状磁性部材
から成る磁極片5a、5bを、その厚み方向で複数層の
積層構造とし、永久磁石1a、la側に面する第一の磁
極片部材8は一体物の厚板磁性円板で構成し、空隙A側
に面する第二の磁極片部材9は磁性針状材料12と電気
絶縁性材料13とを複合し圧力を加えて成型した成型磁
性部材で構成し、これらを一体内に結合固着して形成し
たことにより、上記空隙A側に面する第二の磁極片部材
9はその抵抗値が大きくなる。従って、空隙A側に面す
る第二の磁極片部材9には、傾斜磁場コイルと同一パタ
ーンの渦電流は形成されず、上記磁極片5a、5bに発
生する渦電流を低減することができる。このことから、
立ち上がり及び立ち下がり特性の良い傾斜磁場が得られ
、MR両画像鮮明にすることができる。また、傾斜磁場
コイル駆動電源の負荷を低減することができる。さらに
、複数層の積層構造において、空隙A側の第二の磁極片
部材9は若干透磁率が低くなるが、その第二の磁極片部
材9を成す成型磁性部材を、成型時に加える圧力方向と
直角の方向を部材の板厚方向として形成することにより
、磁性針状材料12の長平方向をその板厚方向と平行に
並べてその板厚方向を高透磁率とすることができる。そ
して、永久磁石1a、la側の第一の磁極片部材8は高
透磁率部材である厚板磁性円板で構成したことにより、
全体として静磁場の均一度を劣化させず、所要の精度を
達成することができる。なお、第二の磁極片部材9を複
数個のブロックに分割したものにおいては、磁極片5a
、5bの製造を容易とすることができる。Since the present invention is constructed as described above, the magnetic pole pieces 5a and 5b made of disc-shaped magnetic members have a multi-layer laminated structure in the thickness direction, and the first magnetic pole piece faces the permanent magnets 1a and la side. The member 8 is composed of a one-piece thick magnetic disc, and the second magnetic pole piece member 9 facing the air gap A side is made of a composite of a magnetic acicular material 12 and an electrically insulating material 13 and is molded by applying pressure. Since the second magnetic pole piece member 9 facing the air gap A side is made of molded magnetic members and is formed by bonding and fixing them into one body, the resistance value of the second pole piece member 9 facing the above-mentioned air gap A side is increased. Therefore, eddy currents having the same pattern as those of the gradient magnetic field coils are not formed in the second pole piece member 9 facing the air gap A side, and the eddy currents generated in the pole pieces 5a and 5b can be reduced. From this,
A gradient magnetic field with good rise and fall characteristics can be obtained, and both MR images can be made clear. Furthermore, the load on the gradient magnetic field coil drive power source can be reduced. Furthermore, in the laminated structure of multiple layers, although the magnetic permeability of the second pole piece member 9 on the air gap A side is slightly lower, the molded magnetic member forming the second pole piece member 9 is By forming the perpendicular direction as the thickness direction of the member, the longitudinal direction of the magnetic needle-like material 12 can be arranged parallel to the thickness direction of the magnetic needle-like material 12, and high magnetic permeability can be achieved in the thickness direction. The first magnetic pole piece member 8 on the side of the permanent magnets 1a and 1a is made of a thick magnetic disk, which is a high permeability member.
As a whole, the required accuracy can be achieved without deteriorating the uniformity of the static magnetic field. In addition, in the case where the second magnetic pole piece member 9 is divided into a plurality of blocks, the magnetic pole piece 5a
, 5b can be easily manufactured.
第1図は本発明によるMHI装置の磁界発生装置の特徴
部分である磁極片の実施例を示す平面図。
第2図はその中央横断面図、第3図及び第4図は第二の
磁性片部材を成す成型磁性部材の材質構造を示す説明図
、第5図及び第6図は本発明に係る磁極片の第二の実施
例を示す平面図及びその中央横断面図、第7図及び第8
図は本発明に係る磁極片の第三の実施例を示す平面図及
びその中央横断面図、第9図及び第10図は本発明に係
る磁極片の第四の実施例を示す平面図及びその中央横断
面図、第11図及び第12図は第二の磁極片部材の変形
例を示す平面図及びその中央横断面図、第13図及び第
14図は第二の磁極片部材の他の変形例を示す平面図及
びその中央横断面図、第15図は本発明及び従来例によ
る磁界発生装置の全体構成を示す斜視図、第16図は同
じく磁界発生装置の全体構成を示す一部断面正面図、第
17図はZ方向の傾斜磁場コイルの概念を示す説明図で
ある。
la、lb−永久磁石、 2a、2b、3−・−継鉄、
4・・・環状突起、 5a、5b・・・磁極片、6a
、6b・・・傾斜磁場コイル群、 8・・・第一の磁極
片部材、 9・・・第二の磁極片部材、 9′・・・第
二の磁極片部材のブロック、 10.10’・・・止
めネジ、 11.11’ 11’・・・第三の磁極
片部材、 12・・・磁性針状材料、 13・・・電気
絶縁性材料、 A・・・空隙、 B・・・計測空間。FIG. 1 is a plan view showing an embodiment of a magnetic pole piece which is a characteristic part of a magnetic field generating device for an MHI device according to the present invention. FIG. 2 is a central cross-sectional view thereof, FIGS. 3 and 4 are explanatory diagrams showing the material structure of the molded magnetic member constituting the second magnetic piece member, and FIGS. 5 and 6 are magnetic poles according to the present invention. A plan view showing the second embodiment of the piece and its central cross-sectional view, FIGS. 7 and 8
9 and 10 are plan views and central cross-sectional views showing a third embodiment of the magnetic pole piece according to the present invention, and FIGS. FIGS. 11 and 12 are plan views showing modified examples of the second pole piece member, and FIGS. 13 and 14 are plan views showing modified examples of the second pole piece member. FIG. 15 is a perspective view showing the overall structure of the magnetic field generating device according to the present invention and the conventional example, and FIG. 16 is a partial view showing the overall structure of the magnetic field generating device. The cross-sectional front view, FIG. 17, is an explanatory diagram showing the concept of a gradient magnetic field coil in the Z direction. la, lb-permanent magnet, 2a, 2b, 3--yoke,
4... Annular projection, 5a, 5b... Magnetic pole piece, 6a
, 6b... Gradient magnetic field coil group, 8... First magnetic pole piece member, 9... Second magnetic pole piece member, 9'... Block of second magnetic pole piece member, 10.10' ...Set screw, 11.11'11'...Third magnetic pole piece member, 12...Magnetic acicular material, 13...Electrical insulating material, A...Gap, B... measurement space.
Claims (6)
た一対の永久磁石と、これらの永久磁石を支持すると共
に磁気的に結合する継鉄と、上記一対の永久磁石の空隙
側の対向面にそれぞれ固着され円盤状磁性部材から成る
磁極片とを備え、上記空隙内に磁界を発生させる磁気共
鳴イメージング装置の磁界発生装置において、上記磁極
片を、その厚み方向で複数層の積層構造とし、永久磁石
側に面する磁極片部材は一体物の厚板磁性円板で構成し
、空隙側に面する磁極片部材は磁性針状材料と電気絶縁
性材料とを複合し圧力を加えて成型した成型磁性部材で
構成し、これらを一体的に結合固着して形成したことを
特徴とする磁気共鳴イメージング装置の磁界発生装置。(1) A pair of permanent magnets facing each other forming a gap into which the subject can enter, a yoke that supports and magnetically couples these permanent magnets, and a yoke that faces the pair of permanent magnets on the gap side. In a magnetic field generating device for a magnetic resonance imaging apparatus, the magnetic field generating device includes magnetic pole pieces each made of a disc-shaped magnetic member fixed to each surface and generates a magnetic field in the air gap, wherein the magnetic pole piece has a laminated structure of multiple layers in the thickness direction. The magnetic pole piece member facing the permanent magnet side is composed of a one-piece thick magnetic disc, and the magnetic pole piece member facing the air gap side is formed by combining a magnetic needle-like material and an electrically insulating material and applying pressure. 1. A magnetic field generating device for a magnetic resonance imaging apparatus, characterized in that the magnetic field generating device is composed of molded magnetic members, and is formed by integrally bonding and fixing these members.
状突起を有するものである請求項1記載の磁気共鳴イメ
ージング装置の磁界発生装置。(2) The magnetic field generating device for a magnetic resonance imaging apparatus according to claim 1, wherein the magnetic pole piece member facing the air gap side has an annular projection on its peripheral edge.
向と直角の方向を部材の板厚方向として形成したもので
ある請求項1または2記載の磁気共鳴イメージング装置
の磁界発生装置。(3) The magnetic field generating device for a magnetic resonance imaging apparatus according to claim 1 or 2, wherein the molded magnetic member is formed so that the thickness direction of the member is perpendicular to the direction of pressure applied for molding.
少なくとも60%以上含み、その板厚と直角方向の固有
抵抗は0.01Ωcm以上としたものである請求項1,
2または3記載の磁気共鳴イメージング装置の磁界発生
装置。(4) The molded magnetic member contains at least 60% or more of the magnetic acicular material in terms of volume occupancy, and has a specific resistance of 0.01 Ωcm or more in a direction perpendicular to the plate thickness.
4. A magnetic field generating device for a magnetic resonance imaging apparatus according to 2 or 3.
永久磁石側に面する磁極片部材は一体物の厚板磁性円板
から成り、空隙側に面する磁極片部材は成型磁性部材か
ら成り、周縁部の環状突起の部分はドーナツ状の厚板磁
性板から成り、これらを一体的に結合固着したものであ
る請求項2,3または4記載の磁気共鳴イメージング装
置の磁界発生装置。(5) The magnetic pole piece has a laminated structure consisting of three members,
The magnetic pole piece member facing the permanent magnet side is made of a one-piece thick plate magnetic disc, the magnetic pole piece member facing the air gap side is made of a molded magnetic member, and the annular protrusion portion on the periphery is made of a donut-shaped thick plate magnetic disc. 5. A magnetic field generating device for a magnetic resonance imaging apparatus according to claim 2, wherein the magnetic field generating device is made of plates, which are integrally bonded and fixed.
材は、複数個のブロックに分割されたものである請求項
1,2または5記載の磁気共鳴イメージング装置の磁界
発生装置。(6) The magnetic field generating device for a magnetic resonance imaging apparatus according to claim 1, 2 or 5, wherein the magnetic pole piece member made of a molded magnetic member facing the air gap side is divided into a plurality of blocks.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1066345A JPH02246927A (en) | 1989-03-20 | 1989-03-20 | Magnetic field generator for magnetic resonance imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1066345A JPH02246927A (en) | 1989-03-20 | 1989-03-20 | Magnetic field generator for magnetic resonance imaging device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02246927A true JPH02246927A (en) | 1990-10-02 |
Family
ID=13313175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1066345A Pending JPH02246927A (en) | 1989-03-20 | 1989-03-20 | Magnetic field generator for magnetic resonance imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02246927A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0645641A1 (en) * | 1993-09-29 | 1995-03-29 | Oxford Magnet Technology Limited | Improvements in or relating to MRI magnets |
US5706575A (en) * | 1994-09-22 | 1998-01-13 | The Regents Of The University Of California | Method of making eddy current-less pole tips for MRI magnets |
US6429761B2 (en) * | 1998-11-24 | 2002-08-06 | General Electric Company | Mold for bonding MRI pole piece tiles and method of making the mold |
US8108987B2 (en) * | 2002-12-23 | 2012-02-07 | General Electric Company | Method of manufacturing a pole face for a permanent magnet MRI system with laminated structure |
CN104407314A (en) * | 2014-11-26 | 2015-03-11 | 江苏美时医疗技术有限公司 | Permanent magnet anti-eddy unit |
-
1989
- 1989-03-20 JP JP1066345A patent/JPH02246927A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0645641A1 (en) * | 1993-09-29 | 1995-03-29 | Oxford Magnet Technology Limited | Improvements in or relating to MRI magnets |
US5680086A (en) * | 1993-09-29 | 1997-10-21 | Oxford Magnet Technology Limited | MRI magnets |
US5706575A (en) * | 1994-09-22 | 1998-01-13 | The Regents Of The University Of California | Method of making eddy current-less pole tips for MRI magnets |
US6429761B2 (en) * | 1998-11-24 | 2002-08-06 | General Electric Company | Mold for bonding MRI pole piece tiles and method of making the mold |
US6694602B2 (en) | 1998-11-24 | 2004-02-24 | General Electric Company | Method of making a pole piece for an MRI |
US8108987B2 (en) * | 2002-12-23 | 2012-02-07 | General Electric Company | Method of manufacturing a pole face for a permanent magnet MRI system with laminated structure |
CN104407314A (en) * | 2014-11-26 | 2015-03-11 | 江苏美时医疗技术有限公司 | Permanent magnet anti-eddy unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5124651A (en) | Nuclear magnetic resonance scanners with composite pole facings | |
US5229723A (en) | Magnetic field generating device for mri | |
EP0760484B1 (en) | Opposed magnet-type magnetic circuit assembly with permanent magnets | |
JP4039495B2 (en) | Magnetic field generator for MRI | |
US5252924A (en) | Magnetic field generating apparatus for MRI | |
US4728895A (en) | System of coils for producing additional fields for obtaining polarization fields with constant gradients in a magnet having polarization pole pieces for image production by nuclear magnetic resonance | |
US5825187A (en) | Magnetic circuit system with opposite permanent magnets | |
JPH02246927A (en) | Magnetic field generator for magnetic resonance imaging device | |
US7034536B2 (en) | Inclined magnetic field generation coil and magnetic field generator for MRI | |
JP2764458B2 (en) | Magnetic field generator for MRI | |
JP3535107B2 (en) | Magnetic pole and magnet device using the same | |
JPH02218343A (en) | Magnetic field generating device for magnetic resonance imaging device | |
JP2649437B2 (en) | Magnetic field generator for MRI | |
JPH0541530Y2 (en) | ||
JP2003153879A (en) | Gradient magnetic field generating coil and magnetic field generating device for mri | |
JP3377822B2 (en) | Magnetic resonance imaging equipment | |
JPH02119844A (en) | Magnetic field generating device for nuclear magnetic resonance tomograph | |
JP2000157511A (en) | Device for forming magnetic field in gap | |
JP2002102205A (en) | Magnetic resonace imaging apparatus | |
JPH0563085B2 (en) | ||
JP3445303B2 (en) | Magnetic field generator for MRI | |
JPH09117431A (en) | Device for generating magnetic field for mri | |
JPH04324912A (en) | Magnetic field generating device | |
JPH0666185B2 (en) | Magnetic field generator for magnetic resonance imaging apparatus | |
JPH04307708A (en) | Magnetic-field generation device |