JPH02246178A - Gas laser apparatus - Google Patents

Gas laser apparatus

Info

Publication number
JPH02246178A
JPH02246178A JP6587489A JP6587489A JPH02246178A JP H02246178 A JPH02246178 A JP H02246178A JP 6587489 A JP6587489 A JP 6587489A JP 6587489 A JP6587489 A JP 6587489A JP H02246178 A JPH02246178 A JP H02246178A
Authority
JP
Japan
Prior art keywords
microwave
waveguide
microwaves
laser
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6587489A
Other languages
Japanese (ja)
Other versions
JPH07105539B2 (en
Inventor
Kenji Yoshizawa
憲治 吉沢
Junichi Nishimae
順一 西前
Masakazu Taki
正和 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6587489A priority Critical patent/JPH07105539B2/en
Publication of JPH02246178A publication Critical patent/JPH02246178A/en
Publication of JPH07105539B2 publication Critical patent/JPH07105539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To uniformly stabilize, in a longitudinal direction, a microwave discharge plasma generated in a discharge space and to execute a high-efficiency and large-output laser operation by a method wherein a reflection member which reflects microwaves is arranged and installed in a microwave transmission path through which the microwaves are transmitted. CONSTITUTION:Three waveguide parts 31 which reflect microwaves are arranged and installed in a horn waveguide 3 as one microwave transmission path; accordingly, microwaves which have been oscillated from a magnetron 1 as a microwave oscillator are propagated through a waveguide 2 and the horn waveguide 3; when their impedance is matched through a microwave coupling window 4 and they are transmitted to a laser head part 6, one part of the microwaves is reflected by the waveguide parts 31 and a distribution of a microwave electromagnetic field in the born waveguide 3 is changed. During this process, an insertion rate of the three waveguide posts 31 is adjusted in such a way that a part whose electric field is weak at the laser head part 6 becomes strong and that a part whose electric field is strong becomes weak, thereby, a distribution of the electric field of the microwaves at the laser head part 6 becomes uniform.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はマイクロ波放電を利用してレーザ励起を行う
気体レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas laser device that performs laser excitation using microwave discharge.

〔従来の技術〕[Conventional technology]

第6図は従来の気体レーザ装置を示す斜視図、第7図は
気体レーザ装置の断面図、第8図は第6図の■−■線断
面図である。図において、(1)はマイクロ波発振器で
あるマグネトロン、(2)はマイクロ波伝送路である導
波管、(3)は導波管(2)の巾を広げるホーン導波管
、(4)はマイクロ波結合窓、・(5)はレーザ発振用
の部分反射ミラー(6)はマイクロ波回路であるレーザ
気体中)[、(7)はレーザ発振用の全反射ミラーであ
る。このレーザヘララド部(8)はマイクロ波回路の一
部であるリッジ導波管型のマイクロ波空胴の構造を持つ
。第2図において、(B1)はマイクロ波結合窓(4)
に続く空胴壁、(62)および(B3)はこの空胴体壁
の断面の中央部に形成されたりッジ、(84)はこの一
方のりッジ(62)に形成された溝であり、(65)は
マイクロ波回路の一部を構成する導電体壁であって、溝
(B4)の壁面が使用される。(6B)はこの導電体壁
(85)に対向して設けられた例えばアルミナなどの誘
電体であり、(67)はこの誘電体(8B)が上記溝(
64)を蓋うことにより上記導電体壁(B5)と誘電体
(6B)との間に形成される放電空間であって、この放
電空間(67)に例えばCO2レーザガスなどのレーザ
気体が封入される。また(B8)はりッジ(82)およ
び(B3)に形成された冷却水路である。
FIG. 6 is a perspective view showing a conventional gas laser device, FIG. 7 is a sectional view of the gas laser device, and FIG. 8 is a sectional view taken along the line ■--■ in FIG. 6. In the figure, (1) is a magnetron that is a microwave oscillator, (2) is a waveguide that is a microwave transmission line, (3) is a horn waveguide that widens the width of waveguide (2), and (4) is a microwave coupling window, (5) is a partial reflection mirror for laser oscillation (6) is a microwave circuit (in laser gas) [, and (7) is a total reflection mirror for laser oscillation. This laser helarad section (8) has a structure of a ridge waveguide type microwave cavity which is a part of a microwave circuit. In Figure 2, (B1) is the microwave coupling window (4)
(62) and (B3) are ridges formed in the center of the cross section of the cavity wall, (84) is a groove formed in one of the ridges (62), (65) is a conductive wall forming a part of the microwave circuit, and the wall surface of the groove (B4) is used. (6B) is a dielectric material such as alumina provided opposite to this conductor wall (85), and (67) is a dielectric material such as alumina provided opposite to this conductor wall (85), and (67) is a dielectric material such as alumina provided opposite to this conductor wall (85), and (67) is a dielectric material such as alumina that is provided opposite to this conductor wall (85).
A discharge space is formed between the conductor wall (B5) and the dielectric (6B) by covering the conductor wall (64), and this discharge space (67) is filled with laser gas such as CO2 laser gas. Ru. Also (B8) are cooling channels formed in the beams (82) and (B3).

上記のように構成された従来の気体レーザ装置において
、マグネトロン(1)で発生されたマイクロ波は導波管
(2)を通ってホーン導波管(3)で拡げられ、マイク
ロ波結合窓(4)でインビダンスマッチングをとること
により効率よくしレーザヘララド部(8)に結合される
。レーザヘララド部(6)は第2図に示されるようにリ
ッジ空胴状になっており、マイクロ波はりッジ(62)
 、 (63)の間に集中する。この集中したマイクロ
波の強い電磁界により放電空間(87)に封入されたレ
ーザ気体が放電破壊し、プラズマを発生し、レーザ媒質
が励起される。ここで、冷却水路(68)に冷却水を流
し、放電プラズマを冷却するとともに、レーザ気体の圧
力などの放電条件を適切に選ぶことによってレーザ発振
条件が得られ、部分反射ミラー(5)および全反射ミラ
ー(7)によりレーザ共振器を形成することでレーザ発
振光を得ることができる。この時、気体レーザ装置にお
いてはマイクロ波回路の一部を構成する導電体壁(85
)と、この導電体壁(65)に対向して設けられ、マイ
クロ波の入射窓となる誘電体(6B)との間に形成され
る放電空間(87)においてマイクロ波放電を行なわせ
るため、マイクロ波の入射はプラズマの一面からのみ行
なわれることになり、プラズマを内導体とする同軸モー
ドのマイクロ波モードが支配的となる現象は起こらず、
所期のマイクロ波モードによる放電を行なわせることが
できる。また第2図に示されるリッジ空胴のようにマイ
クロ波回路が上記誘電体(6B)とプラズマの境界に垂
直な電界成分を有するマイクロ波モードを形成する場合
、誘電体(6B)と導電体壁(65)は対向して設置さ
れているので導電体壁(B5)にも垂直電界成分を有す
ることになり、プラズマを貫く電界ができる。この時、
導電性を持つプラズマが発生してもマイクロ波入射窓で
ある誘電体(66)に対向してプラズマよりも数桁導電
性の高い導電体壁(65)があるために入射マイクロ波
の終端電流この導電体壁(65)を流れ、導電体壁(6
5)近傍の電界は強制的に導電体壁(65)の表面に垂
直にされ、上記のプラズマを貫く電界が維持される。こ
のため、マイクロ波がプラズマ中に浸透し、プラズマを
貫く電流が流れ、電流の連続性から空間的に−様な放電
プラズマが得られる。
In the conventional gas laser device configured as described above, microwaves generated by the magnetron (1) pass through the waveguide (2) and are expanded by the horn waveguide (3), and the microwave coupling window ( By performing immunity matching in step 4), the laser beam is efficiently coupled to the laser herrad section (8). The laser helarad part (6) has a ridge cavity shape as shown in Fig. 2, and the microwave ridge (62)
, (63). The laser gas sealed in the discharge space (87) is destroyed by discharge due to the strong electromagnetic field of the concentrated microwaves, generating plasma and exciting the laser medium. Here, the laser oscillation conditions are obtained by flowing cooling water into the cooling waterway (68) to cool the discharge plasma and appropriately selecting the discharge conditions such as the pressure of the laser gas. Laser oscillation light can be obtained by forming a laser resonator using the reflecting mirror (7). At this time, in the gas laser device, a conductive wall (85
) and a dielectric material (6B) that is provided opposite to this conductor wall (65) and serves as an incident window for microwaves. The microwave is incident only from one side of the plasma, so a phenomenon in which the coaxial microwave mode with the plasma as the inner conductor becomes dominant does not occur.
Discharge can be performed in the desired microwave mode. Furthermore, when the microwave circuit forms a microwave mode having an electric field component perpendicular to the boundary between the dielectric (6B) and the plasma as in the ridge cavity shown in FIG. Since the walls (65) are placed facing each other, the conductor wall (B5) also has a vertical electric field component, creating an electric field that penetrates the plasma. At this time,
Even if a conductive plasma is generated, there is a conductive wall (65) that is several orders of magnitude higher in conductivity than the plasma, which faces the dielectric (66) that is the microwave incidence window, so the terminal current of the incident microwave is low. The current flows through this conductor wall (65), and the conductor wall (6
5) The nearby electric field is forced perpendicular to the surface of the conductor wall (65) to maintain the electric field through the plasma. Therefore, the microwave penetrates into the plasma, a current flows through the plasma, and a spatially-like discharge plasma is obtained from the continuity of the current.

[発明が解決しようとする課題] 上記のような従来の気体レーザ装置では、マイクロ波回
路(B)の一部を構成する導電体壁(B5)と、この導
電体壁(65)に対向して設けられた誘電体(6B)と
の間に形成される放電空間(B7)にマイクロ波放電に
よるプラズマを発生するレーザ気体を封入すると共にマ
イクロ波回路(B)を誘電体(aS)とプラズマとの境
界に垂直な電界成分を有するマイクロ波モードを形成す
るようにして空間的に−様なマイクロ波放電プラズマを
発生させるようにしているが、マグネトロン(1)から
発振されたマイクロ波が導波管(3)によって伝送され
、マイクロ波結合窓(4)を介して誘電体(6B)に伝
送される場合の、レーザヘッド部(6)におけるマイク
ロ波の電磁界分布は、第8図に示すようにレーザヘララ
ド部(6)の設計上からどうしても電界強度の強いとこ
ろと弱いところが生ずるため、放電空間(B7)の長手
方向において強い放電部分と弱い放電部分が部分的に生
じ、長手方向の放電分布が不均一となって放電空間(B
7)においてプラズマが均一に発生しないおそれがある
という問題点があった。
[Problems to be Solved by the Invention] In the conventional gas laser device as described above, a conductive wall (B5) forming a part of the microwave circuit (B) and a conductive wall (65) facing the conductive wall (65) A laser gas that generates plasma by microwave discharge is sealed in the discharge space (B7) formed between the dielectric material (6B) and the dielectric material (6B) provided in the microwave circuit (B). A microwave mode having an electric field component perpendicular to the boundary between the The electromagnetic field distribution of microwaves in the laser head (6) when transmitted by the wave tube (3) and transmitted to the dielectric (6B) via the microwave coupling window (4) is shown in Figure 8. As shown in the figure, due to the design of the laser helarad part (6), there are areas where the electric field strength is strong and areas where the electric field is weak. The distribution becomes non-uniform and the discharge space (B
In 7), there is a problem that plasma may not be generated uniformly.

この発明は上記のような問題点を解消するためになされ
たもので、放電空間に発生するマイクロ波放電プラズマ
を長手方向において均一に安定したものとし、高効率、
大出力のレーザ動作を可能とする気体レーザ装置を得る
ことを目的とする。
This invention was made to solve the above-mentioned problems, and it makes the microwave discharge plasma generated in the discharge space uniform and stable in the longitudinal direction, and achieves high efficiency and
The purpose of this invention is to obtain a gas laser device that enables high-output laser operation.

゛[課題を解決するための手段] この発明に係る気体レーザ装置は、マイクロ波放電によ
りレーザ気体にプラズマを発生させてレーザ励起を行う
マイクロ波回路にマイクロ波を伝送するマイクロ波伝送
路中にマイクロ波を反射する反射部材を少なくとも一つ
配設するように構成したものである。
[Means for Solving the Problems] A gas laser device according to the present invention includes a microwave transmission line that transmits microwaves to a microwave circuit that generates plasma in a laser gas by microwave discharge and excites the laser. The device is configured to include at least one reflecting member that reflects microwaves.

[作 用] この発明における気体レーザ装置は、マイクロ波伝送路
中にマイクロ波を反射する反射部材を少なくとも一つ配
設しているから、マイクロ波発振器で発振されたマイク
ロ波がマイクロ波伝送路によって、マイクロ波回路に伝
送される途中でマイクロ波の一部が反射部材によって反
射され、マイクロ波回路中に電界が弱かった部分を強(
、強かった部分を弱くするようにマイクロ波伝送路中の
マイクロ波電磁界分布を変更する作用があり、マイクロ
波回路におけるマイクロ波の電界分布は均一化され、放
電空間の長手方向における強い放電部分と弱い放電部分
が生じることが少なくなって、放電空間において長手方
向にプラズマが均一に発生する。
[Function] Since the gas laser device of the present invention is provided with at least one reflecting member that reflects microwaves in the microwave transmission path, the microwaves oscillated by the microwave oscillator are reflected in the microwave transmission path. During transmission to the microwave circuit, part of the microwave is reflected by the reflective member, and the weak electric field in the microwave circuit is strengthened (
, it has the effect of changing the microwave electromagnetic field distribution in the microwave transmission line so as to weaken the strong parts, the microwave electric field distribution in the microwave circuit is made uniform, and the strong discharge parts in the longitudinal direction of the discharge space are This reduces the occurrence of weak discharge parts, and plasma is generated uniformly in the longitudinal direction in the discharge space.

[実施例] 第1図はこの発明の一実施例による気体レーザ装置を示
す斜視図、第2図は第1図の■−■線断面図、第3図は
第1図の■−■線断面図である。
[Example] Fig. 1 is a perspective view showing a gas laser device according to an embodiment of the present invention, Fig. 2 is a sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 is a cross-sectional view taken along the line ■-■ in Fig. 1. FIG.

図において、従来と同一の構成は従来例と同一符号を付
して重複した構成の説明を省略する。(30)はマイク
ロ波伝送路の一つであるホーン導波管(3)の上部壁の
レーザヘッド部(6)寄り位置に適宜間隔をもって形成
された三つのネジ穴、($1)は各ネジ穴(30)に進
退自在に螺合され、ホーン導波管(3)中に配設され−
たマイクロ波を反射する反射部材であるネジ状の導波管
ポストで、導体で形成されているが、誘電体であっても
よい。
In the figure, the same components as in the conventional example are given the same reference numerals as those in the conventional example, and the explanation of the redundant components will be omitted. (30) are three screw holes formed at appropriate intervals on the upper wall of the horn waveguide (3), which is one of the microwave transmission paths, near the laser head (6). It is screwed into the screw hole (30) so that it can move forward and backward, and is arranged in the horn waveguide (3).
It is a screw-shaped waveguide post that is a reflective member that reflects microwaves, and is made of a conductor, but it may also be made of a dielectric material.

上記のように構成された気体レーザ装置においては、マ
イクロ波伝送路の一つであるホーン導波管(3)中にマ
イクロ波を反射する三つの導波管ポスト(31)が配設
されているから、マイクロ波発振器であるマグネトロン
(1)から発振されたマイクロ波が導波管(2)及びホ
ーン導波管(3)を伝搬してマイクロ波結合窓(4)で
インピーダンスを整合させてレーザヘッド部(6)に伝
送されるとき、マイクロ波がホーン導波管(3)内を伝
播してレーザヘッド部(8)に伝送される途中でマイク
ロ波の一部が導波管ポスト(31)によって反射され、
ホーン導波管(3)中のマイクロ波電磁界分布が変更さ
れる。この時、レーザヘッド部(8)の電界の弱い部分
が強く、強い部分が弱くなるよう三つの導波管ポスト(
31)の挿入度合いを調整することにより、レーザヘッ
ド部(6)におけるマイクロ波の電界分布は均一化され
る。従って、放電空間(87)の長手方向における放電
部分の強いところと弱いところが少なくなって放電分布
が均一となり、第3図に示すように放電空間(B7)に
おいて安定且つ均一なプラズマが発生してレーザ出力を
高効率、大出力にて得ることができる。
In the gas laser device configured as described above, three waveguide posts (31) that reflect microwaves are arranged in the horn waveguide (3), which is one of the microwave transmission paths. Therefore, the microwave oscillated by the magnetron (1), which is a microwave oscillator, propagates through the waveguide (2) and the horn waveguide (3) and matches the impedance at the microwave coupling window (4). When the microwave is transmitted to the laser head section (6), part of the microwave propagates inside the horn waveguide (3) and is transmitted to the laser head section (8). 31) reflected by
The microwave electromagnetic field distribution in the horn waveguide (3) is changed. At this time, the three waveguide posts (
By adjusting the degree of insertion of the laser head 31), the electric field distribution of the microwave in the laser head section (6) can be made uniform. Therefore, the number of strong and weak discharge parts in the longitudinal direction of the discharge space (87) is reduced, and the discharge distribution becomes uniform, and stable and uniform plasma is generated in the discharge space (B7) as shown in FIG. Laser output can be obtained with high efficiency and large output.

また、この実施例では、マイクロ波の反射部材として導
波管ポスト(31)を三つ使用しているが、これに限る
ものではなく、導波管ポスト(31)の数を適宜に増減
させてマイクロ波の電磁界分布を調整することも可能で
ある。
Further, in this embodiment, three waveguide posts (31) are used as microwave reflecting members, but the number is not limited to this, and the number of waveguide posts (31) can be increased or decreased as appropriate. It is also possible to adjust the microwave electromagnetic field distribution.

第4図はこの発明の他の実施例を示す斜視図である、図
において、(1)はマイクロ波発振器であるマグネトロ
ン、(2)はマイクロ波伝送路である導波管、(41)
はマイクロ波結合窓、(5)はレーザ発振用のミラー 
(6)はマイクロ波回路であるレーザヘッド部である。
FIG. 4 is a perspective view showing another embodiment of the present invention. In the figure, (1) is a magnetron which is a microwave oscillator, (2) is a waveguide which is a microwave transmission line, and (41) is a magnetron which is a microwave oscillator.
is a microwave coupling window, and (5) is a mirror for laser oscillation.
(6) is a laser head section which is a microwave circuit.

この実施例では導波管(2)とレーザヘッド部(6)と
はレーザ光軸に沿う方向に並列配置されている。(31
1)は導波管(2)中に進退自在に配設されたマイクロ
波を反射する反射部材であるネジ状の四つの導波管ポス
トである。
In this embodiment, the waveguide (2) and the laser head section (6) are arranged in parallel in the direction along the laser optical axis. (31
1) are four screw-shaped waveguide posts which are reflective members that reflect microwaves and are movably arranged in the waveguide (2).

この実施例では、レーザヘッド部(6)と並列配置の導
波管(2)中に四つの導波管ポスト(Ill)が配設さ
れているから、マイクロ波結合窓(4)は導波管(2)
軸に平行となっており、導波管(2)におけるマグネト
ロン(1)からのマイクロ波エネルギーはマグネトロン
(1)より遠ざかる位置にいくに従い次第に小さくなり
、レーザヘッド部(8)に結合されるマイクロ波のエネ
ルギーもマグネトロン(1)より遠い位置では少なくな
って、放電空間(87)の長手方向にわたって放電が不
均一になるのを、マイクロ波が導波管(2)内を伝播し
てレーザヘッド部(6)に伝送される途中でマイクロ波
の一部が導波管ポスト(all)によって反射され、マ
イクロ波伝送路中のマイクロ波電磁界分布が変更される
。この時、四つの導波管ポスト(311)の挿入度合い
を調整してマイクロ波伝送路中のマイクロ波電磁界分布
をレーザヘッド部(8)における電界分布が均一になる
ようにする。従って、放電空間(67)の長手方向にお
いて放電部分の強いところと弱いところが少なくなって
放電分布が均一になる。
In this embodiment, since four waveguide posts (Ill) are arranged in the waveguide (2) arranged in parallel with the laser head part (6), the microwave coupling window (4) pipe (2)
The microwave energy from the magnetron (1) in the waveguide (2) gradually decreases as it moves away from the magnetron (1), and the microwave energy coupled to the laser head (8) becomes parallel to the axis. The energy of the wave also decreases at a position farther from the magnetron (1), and the discharge becomes non-uniform along the length of the discharge space (87). A part of the microwave is reflected by the waveguide post (all) on the way to the part (6), and the microwave electromagnetic field distribution in the microwave transmission path is changed. At this time, the degree of insertion of the four waveguide posts (311) is adjusted so that the microwave electromagnetic field distribution in the microwave transmission line and the electric field distribution in the laser head section (8) are made uniform. Therefore, in the longitudinal direction of the discharge space (67), there are fewer strong and weak discharge parts, and the discharge distribution becomes uniform.

第5図は、この発明のさらに他の実施例を示す斜視図で
ある。この実施例の気体レーザ装置は第4図に示す実施
例と同様に導波管(2)とレーザ部(6)とがレーザ光
軸に沿う方向に並列配置されているもので、マイクロ波
を反射する反射部材の構成が第4図に示す実施例と異な
るものである。
FIG. 5 is a perspective view showing still another embodiment of the invention. The gas laser device of this embodiment has a waveguide (2) and a laser section (6) arranged in parallel in the direction along the laser optical axis, similar to the embodiment shown in FIG. The configuration of the reflecting member is different from the embodiment shown in FIG. 4.

この実施例では、反射部材としていわゆる導波管の窓、
すなわち容量性窓(812)や誘導性窓((13)が設
けられている。この場合も、窓(312)や(313)
は第4図の導波管ポスト(311)と同様の働きをする
。すなわち挿入する窓の種類と位置や大きさを適宜選ぶ
ことで、マイクロ波伝送路である導波管(2)中の電磁
界分布を変更させ、レーザヘッド部(B)における電磁
界分布を均一にすることができ、放電分布を均一にでき
る。
In this embodiment, a so-called waveguide window is used as a reflective member.
That is, a capacitive window (812) and an inductive window ((13) are provided. In this case, the windows (312) and (313) are also provided.
has the same function as the waveguide post (311) in FIG. In other words, by appropriately selecting the type, position, and size of the inserted window, the electromagnetic field distribution in the waveguide (2), which is the microwave transmission path, can be changed, and the electromagnetic field distribution in the laser head (B) can be made uniform. It is possible to make the discharge distribution uniform.

なお゛、上記実施例ではマ”イクロ波伝送路中の反射部
材として導波管ポストや窓を用いたものについて説明し
たが、反射部材として例えば伝送路中に誘電体板を置い
てもよく、伝送中に伝送路のインピーダンスを変化させ
る部材を設ければ上記実施例と同様の効果がある。
Note that in the above embodiment, a waveguide post or a window was used as a reflective member in a microwave transmission line, but a dielectric plate may be placed in the transmission line as a reflective member, for example. If a member that changes the impedance of the transmission line during transmission is provided, the same effect as in the above embodiment can be obtained.

また、反射部材は第1図や第4図の実施例のように可動
にして調整できるようにしてもよいが、放電空間の長手
方向の放電の分布が均一になる条件をみいだせば、この
条件で固定して用い得る。
Furthermore, the reflecting member may be made movable and adjustable as in the embodiments shown in Figs. It can be used under fixed conditions.

したがって、例えば量産装置のようにすべて同一条件で
用いるものにあっては、反射部材は必ずしも可動である
必要はなく、固定したものであってもよい。
Therefore, for example, in a mass-produced device that is used under the same conditions, the reflecting member does not necessarily need to be movable and may be fixed.

[発明の効果] この発明は以上説明したとおり、マイクロ波伝送中にマ
イクロ波を反射する反射部材を少なくとも一つ配設し、
マイクロ波発振器で発振されたマイクロ波がマイクロ波
伝送路によって伝送される途中でマイクロ波の一部を反
射部材によって反射させ、マイクロ波回路中の電磁界分
布を変更させてマイクロ波回路に結合されるようにした
ので、マイクロ波回路におけるマイクロ波の電界分布は
均一化され、放電空間の長手方向における放電部分も強
弱が少なくなって、放電空間において長手方向にプラズ
マが均一に発生してレーザ出力を高効率、大出力にて得
ることができるという効果を有する。
[Effects of the Invention] As explained above, the present invention includes at least one reflecting member that reflects microwaves during microwave transmission,
While the microwave oscillated by the microwave oscillator is being transmitted through the microwave transmission line, a part of the microwave is reflected by a reflecting member, changing the electromagnetic field distribution in the microwave circuit and being coupled to the microwave circuit. As a result, the microwave electric field distribution in the microwave circuit is made uniform, and the discharge portion in the longitudinal direction of the discharge space has less strength and weakness, and plasma is generated uniformly in the longitudinal direction in the discharge space, increasing the laser output. It has the effect of being able to obtain with high efficiency and large output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による気体レーザ装置を示
す斜視図、第2図は第1図の■−■線断面図、第3図は
第1図の■−■線断面図、第4図はこの発明の他の実施
例を示す斜視図、第5図はこの発明のさらに他の実施例
を示す斜視図、第6図は従来の気体レーザ装置を示す斜
視図、第7図は気体レーザ装置の断面図、第8図は第6
図の■−■線断面図である。 3・・・ホーン導波管(マイクロ波伝送路) 、all
・・・導波管ポスト(反射部材)。 なお、図中同一符号は同一、又は相当部分を示す。
1 is a perspective view showing a gas laser device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line ■-■ in FIG. 4 is a perspective view showing another embodiment of the present invention, FIG. 5 is a perspective view showing still another embodiment of the invention, FIG. 6 is a perspective view showing a conventional gas laser device, and FIG. 7 is a perspective view showing a conventional gas laser device. A cross-sectional view of the gas laser device, FIG.
It is a sectional view taken along the line ■-■ in the figure. 3... Horn waveguide (microwave transmission line), all
...Waveguide post (reflection member). Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  マイクロ波を発振するマイクロ波発振器と、マイクロ
波を伝送するマイクロ波伝送路と、マイクロ波伝送路に
より伝送されたマイクロ波の放電により、レーザ気体に
プラズマを発生させて、レーザ励起を行うマイクロ波回
路とを備え、前記マイクロ波回路中に設けられ、マイク
ロ波の入射窓となる誘電体を一面とする放電空間に前記
レーザ気体を封入し、前記マイクロ波回路によって前記
誘電体とレーザ気体中に発生したプラズマとの境界に垂
直な電界成分を有するマイクロ波モードを形成するよう
にしたマイクロ波励起方式の気体レーザ装置において、
前記マイクロ波伝送路中にマイクロ波を反射する反射部
材を少なくとも一つ配設したことを特徴とする気体レー
ザ装置。
A microwave oscillator that oscillates microwaves, a microwave transmission line that transmits the microwaves, and a microwave that excites the laser by generating plasma in the laser gas by discharging the microwaves transmitted by the microwave transmission line. a circuit, the laser gas is enclosed in a discharge space provided in the microwave circuit and has a dielectric as one surface that serves as a microwave incidence window, and the laser gas is enclosed in the dielectric and the laser gas by the microwave circuit. In a microwave excitation type gas laser device that forms a microwave mode having an electric field component perpendicular to the boundary with the generated plasma,
A gas laser device characterized in that at least one reflecting member for reflecting microwaves is disposed in the microwave transmission path.
JP6587489A 1989-03-20 1989-03-20 Gas laser device Expired - Lifetime JPH07105539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6587489A JPH07105539B2 (en) 1989-03-20 1989-03-20 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6587489A JPH07105539B2 (en) 1989-03-20 1989-03-20 Gas laser device

Publications (2)

Publication Number Publication Date
JPH02246178A true JPH02246178A (en) 1990-10-01
JPH07105539B2 JPH07105539B2 (en) 1995-11-13

Family

ID=13299562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6587489A Expired - Lifetime JPH07105539B2 (en) 1989-03-20 1989-03-20 Gas laser device

Country Status (1)

Country Link
JP (1) JPH07105539B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264868A (en) * 1995-03-20 1996-10-11 Matsushita Electric Ind Co Ltd Microwave stimulated gas laser
US11195699B2 (en) 2015-10-29 2021-12-07 Applied Materials, Inc. Generalized cylindrical cavity system for microwave rotation and impedance shifting by irises in a power-supplying waveguide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264868A (en) * 1995-03-20 1996-10-11 Matsushita Electric Ind Co Ltd Microwave stimulated gas laser
US11195699B2 (en) 2015-10-29 2021-12-07 Applied Materials, Inc. Generalized cylindrical cavity system for microwave rotation and impedance shifting by irises in a power-supplying waveguide
US11972930B2 (en) 2015-10-29 2024-04-30 Applied Materials, Inc. Cylindrical cavity with impedance shifting by irises in a power-supplying waveguide

Also Published As

Publication number Publication date
JPH07105539B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
EP0412555B1 (en) Gas laser device
CA1150812A (en) Method of producing a discharge in a supersonic gas flow
US5123028A (en) RF Excited CO2 slab waveguide laser
US5140606A (en) RF excited CO2 slab waveguide laser
US5224117A (en) Gas lasers, in particular co2 lasers
US6064154A (en) Magnetron tuning using plasmas
US5131003A (en) RF excited CO2 slab waveguide laser
US5255282A (en) Open waveguide excimer laser
US4807234A (en) Phase locked alternating dielectric ridge gas laser
US3904983A (en) Parasitic mode suppressor for high power lasers
JP2006525756A (en) Waveguide laser
US5283797A (en) RF excited CO2 slab waveguide laser
US5379317A (en) Microwave-excited slab waveguide laser with all metal sealed cavity
JPH02246178A (en) Gas laser apparatus
US4807233A (en) Phase locked cusp-shaped dielectric ridge gas laser
US5155739A (en) RF excited CO2 slab waveguide laser
JPH033380A (en) Gas laser device
US5131004A (en) RF excited CO2 slab waveguide laser
US6134256A (en) Slice laser
JPH07105536B2 (en) Gas laser device
JPH033382A (en) Gas laser device
JPH03208384A (en) Gas laser
JP2566585B2 (en) Optical waveguide type gas laser device
US5400357A (en) Gas laser in particular CO2 laser
JPH0483385A (en) Gas laser apparatus