JPH0224579B2 - - Google Patents

Info

Publication number
JPH0224579B2
JPH0224579B2 JP57131514A JP13151482A JPH0224579B2 JP H0224579 B2 JPH0224579 B2 JP H0224579B2 JP 57131514 A JP57131514 A JP 57131514A JP 13151482 A JP13151482 A JP 13151482A JP H0224579 B2 JPH0224579 B2 JP H0224579B2
Authority
JP
Japan
Prior art keywords
metal oxide
oxide powder
ferrite
copolymer
maleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57131514A
Other languages
Japanese (ja)
Other versions
JPS5922639A (en
Inventor
Kenji Okabashi
Noboru Moryama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP57131514A priority Critical patent/JPS5922639A/en
Publication of JPS5922639A publication Critical patent/JPS5922639A/en
Publication of JPH0224579B2 publication Critical patent/JPH0224579B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Compounds Of Iron (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はソフトフエライト原料金属酸化物粉末
用分散剤に関する。ソフトフエライトは酸化鉄を
主成分とした金属酸化物より成り、特に磁気コイ
ルの磁心の材料として有用である。 ソフトフエライトは通常、次の工程により製造
される。 (1) 酸化鉄、酸化マンガン、酸化亜鉛、酸化ニツ
ケルなどの原料及び水を配合し、 (2) ボールミル、サンドミル、アトライターなど
の粉砕機で原料を0.5μ程度にまで粉砕し、 (3) これを噴霧乾燥し (4) 次いで、プレス成形して仮焼を行い、 (5) 更に水を加えてこれを粉砕機で2〜4μ程度
にまで粉砕してバインダーを加え、 (6) 噴霧乾燥して顆粒状とし、 (7) これをプレス成形し焼結する。 上記(2)及び(5)の粉砕工程においては、原料金属
酸化物粉末を約50重量%の水スラリー状にして粉
砕するのが一般的である。この水スラリー濃度を
高めること(これは、スラリー中の水の含有量を
減少させることを意味する)により、以下に示す
ような好ましい効果を実現させることができる。 (1) 粉砕工程において、粉砕効率が上昇して、目
的とする粒径にまで粉砕するのに要する時間が
短縮される。 (2) 噴霧乾燥に要する時間が短縮される。 (3) 噴霧乾燥された金属酸化物粉末の嵩密度が大
きくなり、プレス成形時のプレス圧力が減少せ
られる。 上記の効果はすべて、生産性の向上と、動力エ
ネルギーの大幅な節減に結びつくものである。し
かしながら、単に水を減少させることによりスラ
リー濃度を高めた場合は、スラリーの粘度上昇に
より粉砕時間が長くなり、又スラリー輸送が困難
となつて、生産性の向上及び動力エネルギーの節
減は達成されない。 炭酸カルシウム粉末や酸化チタン粉末の如き無
機粉末用分散剤として、ポリアクリル酸ソーダ、
リグニンスルホン酸ソーダ、ナフタレンスルホン
酸ホルマリン縮合物のソーダ塩などが市販されて
いるが、これらの分散剤をソフトフエライト原料
金属酸化物粉末の分散剤に転用した場合は、スラ
リー粘度の低下についてはある程度の目的は達成
されるが、最終製品であるフエライトの透磁率が
悪化するため、これらの分散剤は使用することが
できない。このため、当業界では、最終製品であ
るフエライトの磁気特性を悪化させずに高濃度ス
ラリー化を可能にする分散剤の出現が強く要望さ
れているところである。 本発明者らは、かかる現状に鑑み、鋭意研究の
結果、マレイン酸と、アクリル酸又は/及びメタ
クリル酸との共重合体のアンモニウム塩又はアル
カノールアミン塩の1種又は2種以上を含有する
分散剤が最終製品であるフエライトの磁気特性を
悪化させることなく、しかもソフトフエライト原
料金属酸化物粉末の高濃度スラリー化を可能にす
ることを見い出し本発明を完成させた。 本発明に係る共重合体塩は平均分子量が500〜
30000のものが好ましく、平均分子量が1000〜
15000のものがより好ましい。平均分子量が500よ
り小さい共重合体塩及び平均分子量が30000より
大きい共重合体塩は、スラリー粘度の低下能力が
不十分である。又、その製造法に関しては特に制
限がなく、どのような方法で合成しても特に性能
上、大きな差はみられない。合成法として例えば
次の様な方法がある。即ち、アクリル酸とマレイ
ン酸を水溶媒中、過硫酸塩触媒の存在下で共重合
せしめ、次いでアンモニア水或いはアルカノール
アミンで中和する合成法である。ここで用いられ
るアルカノールアミンとしては、モノエタノール
アミン、ジエタノールアミン、トリエタノールア
ミン等が挙げられる。アンモニア又はアルカノー
ルアミンは、マレイン酸とアクリル酸又は/及び
メタクリル酸とを完全に水和するに足りる量を加
えることが好ましいが、共重合体塩の性能を損わ
ない程度に一部未中和物を残す量であつてもよ
い。 本発明に係わる共重合体を構成するモノマーの
モル比率は、マレイン酸:アクリル酸又は/及び
メタクリル酸=3:100〜200:100の範囲が望ま
しい。マレイン酸の比率が3未満の場合は、アク
リル酸又はメタクリル酸単独の減粘効果と同等で
あり、マレイン酸添加による相乗効果は実現され
ず、マレイン酸の比率が200を越える場合は、か
えつて減粘効果が低下する。上記比率が3:100
〜200:100の範囲内においてのみ、ソフトフエラ
イト原料金属酸化物粉末の水分散液に対して優れ
た減粘効果が実現される。 ソフトフエライト用金属酸化物粉末の水分散液
は本発明の分散剤の存在下で該金属酸化物粉末と
水を混合することにより容易に製造される。製造
の手順については特に制限はなく、例えば、共重
合体塩の水溶液中に該金属酸化物粉末を加えて撹
拌する方法、あるいは該金属酸化物粉末に少量の
水を加えてケーキ状とし、これに共重合体塩の水
溶液を加えて撹拌する方法により製造することが
できる。本発明に係る共重合体塩の添加量は、金
属酸化物粉末の粒径にもよるが、金属酸化物粉末
に対して重量基準で0.05〜5%の範囲であり、好
ましくは0.2〜4%の範囲である。 本発明の分散剤により、固形分約75重量%の高
濃度低粘度スラリーを得ることができる。以下に
実施例を挙げて本発明を更に詳しく説明するが、
本発明はこれらの実施例に限定されるものではな
い。 実施例 1 マレイン酸/アクリル酸共重合体のアンモニウ
ム塩(モル比30/100、平均分子量5000)の40%
水溶液18.8gを、内容積2のステンレス製ビー
カーに入れ、水238.6gを加えて撹拌して系を均
一にする。 次いで、ソフトフエライト原料金属酸化物配合
粉末(これは、重量基準でFe2O3を70%、MnO
を23%、ZnOを7%含有する平均粒径が0.8μの粉
末である。)750gを加えてスパーテルで撹拌し更
にホモデイスパー(特殊機化工業(株)製のミキサ
ー)を用いて毎分3000回転の回転速度で3分間撹
拌して、金属酸化物粉末を75%含む水分散液を得
た。この水分散液の25℃における粘度をブルツク
フイールド型粘度計で測定した。その結果は表1
の通りであつた。 この水分散液にポリビニルアルコール(平均重
合度1000)を7.5g加えて、スパーテルでよく撹
拌後、小型のスプレードライヤーで噴霧乾燥し平
均粒径10μの顆粒を得た。 この顆粒を型枠(縦×横×深さ=10mm×40mm×
10mm)に入れ、1t/cm2の加圧下でプレス後、空気
中下1200℃で焼結し、8mm×30mm×5mmのソフト
フエライトを得た。このフエライトの25℃におけ
る透磁率を10KHzの周波数で測定した。その結果
は表1の通りであつた。 実施例 2 実施例1で用いたマレイン酸/アクリル酸共重
合体のアンモニウム塩の40%水溶液を10g、水を
344g、金属酸化物配合粉末を650g、ポリビニル
アルコールを6.5gとした以外は実施例1と同様
にして、金属酸化物粉末を65%含む水分散液、及
びフエライトを得た。この分散液の粘度、及びフ
エライトの透磁率を実施例1と同じ条件下で測定
した。結果は表1の通りであつた。 実施例 3 実施例1で用いたマレイン酸/アクリル酸共重
合体のアンモニウム塩の代わりに、マレイン酸/
メタクリル酸共重合体のトリエタノールアミン塩
(モル比10/100、平均分子量5500)の40%水溶液
を18.8g用い、それ以外は実施例1と同様にし
て、金属酸化物粉末を75%含む水分散液、及びフ
エライトを得た。この分散液の粘度、及びフエラ
イトの透磁率を実施例1と同じ条件下で測定し
た。結果は表1の通りであつた。 実施例 4 実施例1で用いたマレイン酸/アクリル酸共重
合体のアンモニウム塩の代わりに、マレイン酸/
メタクリル酸共重合体のアンモニウム塩(モル比
100/100、平均分子量5000)の25%水溶液を30
g、水を227.5gとした以外は実施例1と同様に
して、金属酸化物粉末を75%含む水分散液及びフ
エライトを得た。 この分散液の粘度及びフエライトの透磁率を実
施例1と同じ条件下で測定した。結果は表1の通
りであつた。 比較例 1 水500gに実施例1で用いた金属酸化物配合粉
末を500g加え、実施例1と同様の操作により金
属酸化物粉末を50%含む水分散液を得た。次いで
この水分散液に実施例1で用いたポリビニルアル
コール5gを加え、実施例1と同様の操作により
ソフトフエライトを得た。水分散液の粘度とフエ
ライトの透磁率を実施例1と同じ条件下で測定し
た。結果は表1の通りであつた。 比較例 2 実施例1で用いたマレイン酸/アクリル酸共重
合体のアンモニウム塩の代わりに、ポリアクリル
酸ソーダ塩(平均分子量4500)の40%水溶液を
18.8g用いた以外は実施例1と同様にして金属酸
化物粉末を75%含む水分散液及びフエライトを得
た。この水分散液の粘度及びフエライトの透磁率
を実施例1と同じ条件下で測定した。結果は表1
の通りであつた。 比較例 3 実施例1で用いたマレイン酸/アクリル酸共重
合体のアンモニウム塩の代わりに、リグニンスル
ホン酸ソーダ塩(商品名リグナコンク、十条製紙
(株)製)の50%水溶液を15g、水を242.5g用い、
それ以外は実施例1と同様にして、金属酸化物粉
末を75%含む水分散液及びフエライトを得た。こ
の水分散液の粘度及びフエライトの透磁率を実施
例1と同じ条件下で測定した。結果は表1の通り
であつた。 比較例 4 実施例1で用いたマレイン酸/アクリル酸共重
合体のアンモニウム塩の代わりにナフタレンスル
ホン酸ホルマリン縮合物ソーダ塩の粉末(42%水
溶液で20℃にて75センチポイズの粘度を有するも
の)を7.5g、水を250g用い、それ以外は実施例
1と同様にして、金属酸化物粉末を75%含む水分
散液及びフエライトを得た。この水分散液の粘度
及びフエライトの透磁率を実施例1と同じ条件下
で測定した。結果は表1の通りであつた。 比較例 5 実施例1で用いたマレイン酸/アクリル酸共重
合体のアンモニウム塩の代わりに、リグニンスル
ホン酸アンモニウム塩(商品名ボレスパース
NH、オランダのボレーガード社製)の40%水溶
液を18.8g用いた以外は実施例1と同様にして、
金属酸化物粉末を75%含む水分散液及びフエライ
トを得た。この水分散液の粘度及びフエライトの
透磁率を実施例1と同じ条件下で測定した。結果
は表1の通りであつた。 比較例 6 マレイン酸/メタクリル酸共重合体のアンモニ
ウム塩(モル比250/100、平均分子量3500)の40
%水溶液18.8gを内容積2のステンレス製ビー
カーに入れ、以下実施例1と同一の金属酸化物配
合粉末及びポリビニルアルコールを用い、実施例
1と同様の手順で、金属酸化物粉末を75%含む水
分散液及びフエライトを得た。この水分散液の粘
度及びフエライトの透磁率を実施例1と同じ条件
下で測定した。結果は表1の通りであつた。
The present invention relates to a dispersant for soft ferrite raw metal oxide powder. Soft ferrite is made of a metal oxide whose main component is iron oxide, and is particularly useful as a material for the magnetic core of a magnetic coil. Soft ferrite is usually manufactured by the following process. (1) Blend raw materials such as iron oxide, manganese oxide, zinc oxide, and nickel oxide with water, (2) Grind the raw materials to about 0.5μ using a grinder such as a ball mill, sand mill, or attritor, (3) This is spray-dried (4), then press-molded and calcined, (5) water is further added, the powder is ground to about 2-4μ in a grinder, a binder is added, and (6) spray-dried. (7) This is press-formed and sintered. In the grinding steps (2) and (5) above, the raw metal oxide powder is generally ground into a water slurry of about 50% by weight. By increasing this water slurry concentration (which means decreasing the water content in the slurry), the following favorable effects can be achieved. (1) In the pulverization process, the pulverization efficiency increases and the time required to pulverize particles to the desired particle size is shortened. (2) The time required for spray drying is reduced. (3) The bulk density of the spray-dried metal oxide powder is increased, and the press pressure during press molding is reduced. All of the above effects lead to improved productivity and significant savings in power energy. However, if the slurry concentration is increased simply by reducing the water content, the viscosity of the slurry increases, which increases the grinding time and makes it difficult to transport the slurry, making it impossible to improve productivity and save power energy. As a dispersant for inorganic powders such as calcium carbonate powder and titanium oxide powder, sodium polyacrylate,
Sodium lignin sulfonate, sodium salt of naphthalene sulfonate formalin condensate, etc. are commercially available, but when these dispersants are used as dispersants for metal oxide powder as a raw material for soft ferrite, the viscosity of the slurry decreases to a certain extent. However, these dispersants cannot be used because they deteriorate the magnetic permeability of the final ferrite product. For this reason, there is a strong demand in the industry for a dispersant that can form a highly concentrated slurry without degrading the magnetic properties of the final product, ferrite. In view of the current situation, the present inventors have conducted extensive research and found that a dispersion containing one or more ammonium salts or alkanolamine salts of a copolymer of maleic acid and acrylic acid or/and methacrylic acid. The inventors have completed the present invention by discovering that the agent does not deteriorate the magnetic properties of the final product, ferrite, and also makes it possible to form a highly concentrated slurry of metal oxide powder as a raw material for soft ferrite. The copolymer salt according to the present invention has an average molecular weight of 500 to
30000 is preferable, and the average molecular weight is 1000~
15000 is more preferable. Copolymer salts with an average molecular weight of less than 500 and copolymer salts with an average molecular weight of more than 30,000 have insufficient ability to reduce slurry viscosity. Further, there are no particular restrictions on the manufacturing method, and there is no significant difference in performance no matter which method is used to synthesize it. Examples of synthesis methods include the following methods. That is, this is a synthesis method in which acrylic acid and maleic acid are copolymerized in an aqueous solvent in the presence of a persulfate catalyst, and then neutralized with aqueous ammonia or alkanolamine. Examples of the alkanolamine used here include monoethanolamine, diethanolamine, triethanolamine, and the like. It is preferable to add ammonia or alkanolamine in an amount sufficient to completely hydrate maleic acid and acrylic acid or/and methacrylic acid, but not neutralize it to the extent that it does not impair the performance of the copolymer salt. It may be the amount that leaves something behind. The molar ratio of the monomers constituting the copolymer according to the present invention is preferably in the range of maleic acid:acrylic acid or/and methacrylic acid=3:100 to 200:100. When the ratio of maleic acid is less than 3, the thinning effect is equivalent to that of acrylic acid or methacrylic acid alone, and the synergistic effect due to the addition of maleic acid is not achieved. Thinning effect decreases. The above ratio is 3:100
Only within the range of ~200:100, an excellent thinning effect is achieved for the aqueous dispersion of soft ferrite raw metal oxide powder. An aqueous dispersion of metal oxide powder for soft ferrite can be easily produced by mixing the metal oxide powder and water in the presence of the dispersant of the present invention. There are no particular restrictions on the manufacturing procedure; for example, the metal oxide powder is added to an aqueous solution of the copolymer salt and stirred, or a small amount of water is added to the metal oxide powder to form a cake. It can be produced by adding an aqueous solution of a copolymer salt to and stirring the mixture. The amount of the copolymer salt according to the present invention added depends on the particle size of the metal oxide powder, but is in the range of 0.05 to 5%, preferably 0.2 to 4%, based on the weight of the metal oxide powder. is within the range of The dispersant of the present invention makes it possible to obtain a highly concentrated, low viscosity slurry with a solids content of about 75% by weight. The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited to these examples. Example 1 40% of ammonium salt of maleic acid/acrylic acid copolymer (molar ratio 30/100, average molecular weight 5000)
Put 18.8 g of the aqueous solution into a stainless steel beaker with an internal volume of 2, add 238.6 g of water, and stir to make the system uniform. Next, soft ferrite raw material metal oxide blended powder (this contains 70% Fe 2 O 3 on a weight basis, MnO
It is a powder with an average particle size of 0.8μ containing 23% ZnO and 7% ZnO. ) and stirred with a spatula, and further stirred for 3 minutes at a rotation speed of 3000 revolutions per minute using a homodisper (mixer manufactured by Tokushu Kika Kogyo Co., Ltd.) to obtain an aqueous dispersion containing 75% metal oxide powder. I got the liquid. The viscosity of this aqueous dispersion at 25°C was measured using a Bruckfield viscometer. The results are in Table 1
It was hot on the street. 7.5 g of polyvinyl alcohol (average degree of polymerization 1000) was added to this aqueous dispersion, stirred thoroughly with a spatula, and then spray-dried with a small spray dryer to obtain granules with an average particle size of 10 μm. These granules are placed in a form (length x width x depth = 10mm x 40mm x
After pressing under a pressure of 1 t/cm 2 and sintering in air at 1200°C, a soft ferrite measuring 8 mm x 30 mm x 5 mm was obtained. The magnetic permeability of this ferrite at 25°C was measured at a frequency of 10KHz. The results were as shown in Table 1. Example 2 10 g of a 40% aqueous solution of the ammonium salt of the maleic acid/acrylic acid copolymer used in Example 1 was added to water.
An aqueous dispersion containing 65% metal oxide powder and ferrite were obtained in the same manner as in Example 1, except that 344 g of metal oxide powder, 650 g of metal oxide blended powder, and 6.5 g of polyvinyl alcohol were used. The viscosity of this dispersion and the magnetic permeability of ferrite were measured under the same conditions as in Example 1. The results were as shown in Table 1. Example 3 Instead of the ammonium salt of the maleic acid/acrylic acid copolymer used in Example 1, maleic acid/acrylic acid copolymer was used.
Using 18.8 g of a 40% aqueous solution of triethanolamine salt of methacrylic acid copolymer (molar ratio 10/100, average molecular weight 5500), otherwise the same procedure as in Example 1 was used to prepare water containing 75% metal oxide powder. A dispersion liquid and ferrite were obtained. The viscosity of this dispersion and the magnetic permeability of ferrite were measured under the same conditions as in Example 1. The results were as shown in Table 1. Example 4 Instead of the ammonium salt of the maleic acid/acrylic acid copolymer used in Example 1, maleic acid/acrylic acid copolymer was used.
Ammonium salt of methacrylic acid copolymer (molar ratio
100/100, average molecular weight 5000) 25% aqueous solution at 30%
An aqueous dispersion containing 75% metal oxide powder and ferrite were obtained in the same manner as in Example 1 except that the amount of water was 227.5 g. The viscosity of this dispersion and the magnetic permeability of ferrite were measured under the same conditions as in Example 1. The results were as shown in Table 1. Comparative Example 1 500 g of the metal oxide blended powder used in Example 1 was added to 500 g of water, and the same procedure as in Example 1 was performed to obtain an aqueous dispersion containing 50% of the metal oxide powder. Next, 5 g of the polyvinyl alcohol used in Example 1 was added to this aqueous dispersion, and a soft ferrite was obtained in the same manner as in Example 1. The viscosity of the aqueous dispersion and the magnetic permeability of the ferrite were measured under the same conditions as in Example 1. The results were as shown in Table 1. Comparative Example 2 Instead of the ammonium salt of maleic acid/acrylic acid copolymer used in Example 1, a 40% aqueous solution of polyacrylic acid sodium salt (average molecular weight 4500) was used.
An aqueous dispersion containing 75% metal oxide powder and ferrite were obtained in the same manner as in Example 1, except that 18.8 g was used. The viscosity of this aqueous dispersion and the magnetic permeability of ferrite were measured under the same conditions as in Example 1. The results are in Table 1
It was hot on the street. Comparative Example 3 Instead of the ammonium salt of the maleic acid/acrylic acid copolymer used in Example 1, lignin sulfonic acid sodium salt (trade name Lignaconc, manufactured by Jujo Paper Co., Ltd.) was used.
Co., Ltd.) using 15g of 50% aqueous solution and 242.5g of water.
Other than that, an aqueous dispersion containing 75% metal oxide powder and ferrite were obtained in the same manner as in Example 1. The viscosity of this aqueous dispersion and the magnetic permeability of ferrite were measured under the same conditions as in Example 1. The results were as shown in Table 1. Comparative Example 4 In place of the ammonium salt of the maleic acid/acrylic acid copolymer used in Example 1, powder of naphthalene sulfonic acid formalin condensate sodium salt (42% aqueous solution having a viscosity of 75 centipoise at 20°C) was used. An aqueous dispersion containing 75% metal oxide powder and ferrite were obtained in the same manner as in Example 1, except that 7.5 g of the powder and 250 g of water were used. The viscosity of this aqueous dispersion and the magnetic permeability of ferrite were measured under the same conditions as in Example 1. The results were as shown in Table 1. Comparative Example 5 Instead of the ammonium salt of the maleic acid/acrylic acid copolymer used in Example 1, ligninsulfonic acid ammonium salt (trade name Bolesperse) was used.
The same procedure as in Example 1 was carried out, except that 18.8 g of a 40% aqueous solution of NH (manufactured by Bollegaard in the Netherlands) was used.
An aqueous dispersion containing 75% metal oxide powder and ferrite were obtained. The viscosity of this aqueous dispersion and the magnetic permeability of ferrite were measured under the same conditions as in Example 1. The results were as shown in Table 1. Comparative Example 6 Ammonium salt of maleic acid/methacrylic acid copolymer (molar ratio 250/100, average molecular weight 3500)
% aqueous solution in a stainless steel beaker with an internal volume of 2, and then follow the same procedure as in Example 1 using the same metal oxide blend powder and polyvinyl alcohol as in Example 1, containing 75% metal oxide powder. An aqueous dispersion and ferrite were obtained. The viscosity of this aqueous dispersion and the magnetic permeability of ferrite were measured under the same conditions as in Example 1. The results were as shown in Table 1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 マレイン酸と、アクリル酸又は/およびメタ
クリル酸との共重合体のアンモニウム塩又はアル
カノールアミン塩の1種又は2種以上を含有する
ソフトフエライト原料金属酸化物粉末用分散剤。 2 共重合体を構成するモノマーのモル比率が、
マレイン酸:アクリル酸又は/およびメタクリル
酸=3:100〜200:100である特許請求の範囲第
1項記載のソフトフエライト原料金属酸化物粉末
用分散剤。 3 共重合体塩の平均分子量が500〜30000である
特許請求の範囲第1項又は第2項記載のソフトフ
エライト原料金属酸化物粉末用分散剤。
[Claims] 1. A dispersant for soft ferrite raw metal oxide powder containing one or more ammonium salts or alkanolamine salts of a copolymer of maleic acid and acrylic acid or/and methacrylic acid. . 2 The molar ratio of monomers constituting the copolymer is
The dispersant for soft ferrite raw metal oxide powder according to claim 1, wherein maleic acid: acrylic acid or/and methacrylic acid = 3:100 to 200:100. 3. The dispersant for soft ferrite raw metal oxide powder according to claim 1 or 2, wherein the copolymer salt has an average molecular weight of 500 to 30,000.
JP57131514A 1982-07-28 1982-07-28 Dispersing agent for metallic oxide powder of soft ferrite material Granted JPS5922639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57131514A JPS5922639A (en) 1982-07-28 1982-07-28 Dispersing agent for metallic oxide powder of soft ferrite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57131514A JPS5922639A (en) 1982-07-28 1982-07-28 Dispersing agent for metallic oxide powder of soft ferrite material

Publications (2)

Publication Number Publication Date
JPS5922639A JPS5922639A (en) 1984-02-04
JPH0224579B2 true JPH0224579B2 (en) 1990-05-30

Family

ID=15059815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57131514A Granted JPS5922639A (en) 1982-07-28 1982-07-28 Dispersing agent for metallic oxide powder of soft ferrite material

Country Status (1)

Country Link
JP (1) JPS5922639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI725089B (en) * 2015-12-17 2021-04-21 日商花王股份有限公司 Dispersant composition for powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288294A (en) * 2004-03-31 2005-10-20 Kao Corp Dispersant for electronic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI725089B (en) * 2015-12-17 2021-04-21 日商花王股份有限公司 Dispersant composition for powder

Also Published As

Publication number Publication date
JPS5922639A (en) 1984-02-04

Similar Documents

Publication Publication Date Title
CN102050619B (en) Method for preparing permanent magnet oxysome material
JP2922864B2 (en) Ferrite magnet and manufacturing method thereof
EP2598443B1 (en) Process for obtaining functionalized nanoparticulate magnetic ferrites for easy dispersion
CN103058641A (en) Method for preparing non-rare-earth high-magnetism permanent magnetic ferrite material
JP5161813B2 (en) Mixed ferrite powder, method for producing the same, and radio wave absorber
CN104003707B (en) Preparing method of barium permanent-magnetic ferrite materials
US5538657A (en) Method of producing ferrite magnet
CN104003701B (en) A kind of not containing the preparation method of rare earth permanent ferrite material
JPH0224579B2 (en)
JP2003521431A (en) Manufacturing method of ferrite magnet
CN113135596A (en) Method for preparing soft magnetic ferrite precursor by coprecipitation method
CN104003703B (en) A kind of preparation method of high-performance permanent magnetic ferrite material
CN1783362A (en) Method for preparing manganese-zinc-ferrite powder with superhigh magnetic conductivity
CN112679205B (en) Z-type ferrite and preparation method thereof
CN104003704B (en) A kind of preparation method without lanthanum cobalt permanent-magnet ferrite
JPS58214330A (en) Dispersant for metallic oxide powder useful for raw material of soft ferrite
CN109467957B (en) Powder grinding aid, preparation method and application thereof
CN103426581A (en) Manganese and zinc soft magnetic ferrite KP6B and method for manufacturing same
JPS5922638A (en) Dispersing agent for metallic oxide powder of soft ferrite material
JP3144088B2 (en) Manufacturing method of ferrite magnet
JPH08224457A (en) Dispersing agent for metal oxide powder of soft ferrite raw material
JPH09266110A (en) Dispersant for hard ferrite material powdered metal oxide
JPH0529606B2 (en)
JPS59193126A (en) Dispersing agent for calcium carbonate
JP2779935B2 (en) Magnetoplumbite-type ferrite particle powder for magnetic card and method for producing the same