JPH02245734A - Charge holding medium having electrooptical material layer - Google Patents

Charge holding medium having electrooptical material layer

Info

Publication number
JPH02245734A
JPH02245734A JP6679689A JP6679689A JPH02245734A JP H02245734 A JPH02245734 A JP H02245734A JP 6679689 A JP6679689 A JP 6679689A JP 6679689 A JP6679689 A JP 6679689A JP H02245734 A JPH02245734 A JP H02245734A
Authority
JP
Japan
Prior art keywords
conductive layer
layer
material layer
electro
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6679689A
Other languages
Japanese (ja)
Other versions
JP2597705B2 (en
Inventor
Hiroyuki Obata
小幡 博之
Masayuki Iijima
飯嶋 正行
Makoto Matsuo
誠 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1066796A priority Critical patent/JP2597705B2/en
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to DE69033448T priority patent/DE69033448T2/en
Priority to CA002028814A priority patent/CA2028814A1/en
Priority to PCT/JP1990/000341 priority patent/WO1990010892A1/en
Priority to ES90904692T priority patent/ES2144395T3/en
Priority to EP90904692A priority patent/EP0592662B1/en
Publication of JPH02245734A publication Critical patent/JPH02245734A/en
Priority to US08/462,563 priority patent/US5587264A/en
Priority to US08/703,653 priority patent/US5718996A/en
Application granted granted Critical
Publication of JP2597705B2 publication Critical patent/JP2597705B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Combination Of More Than One Step In Electrophotography (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain the charge holding medium which can read electrostatic patterns with the high accuracy of a molecular level by constituting the medium in such a manner that the medium is exposed while a voltage is held impressed between the conductive layer of a photosensitive body and the conductive layer formed on a 2nd transparent base. CONSTITUTION:This charge holding medium has the 1st transparent base 103b which is disposed to face the photosensitive body 101 formed with the conductive layer and photoconductive layer 101c on the transparent base 101a and is formed with an insulating layer 103a on the surface on the photosensitive body 101 side and the 2nd transparent base 103g which is disposed to face the 1st transparent base via an electrooptical material layer and is formed with the conductive layer on the surface on the electrooptical material layer side. The charge holding medium is so constituted that the medium is exposed while the voltage is held impressed between the conductive layer of the photosensitive body 101 and the conductive layer formed on the 2nd transparent base 103g. The optical properties of the electrooptical material layer are changed by the voltage impression and exposing opposite to the photosensitive body. The change in the optical properties is read by transmitted or reflected light. The charge holding medium which can make reading with the high accuracy of the molecular level is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶、電気光学結晶等の電気光学素子を電荷保
持媒体に組み込み、電気光学的に静電パターンを読み取
れるようにした電荷保持媒体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a charge-retaining medium in which an electro-optical element such as a liquid crystal or an electro-optic crystal is incorporated into the charge-retaining medium so that an electrostatic pattern can be read electro-optically. It is something.

〔従来の技術〕[Conventional technology]

従来、高解像度撮影技術として銀塩写真法、電子写真技
術、テレビ撮影技術、固体撮像素子(CCD等)を利用
した撮影技術等が使用されているが、これらのものは画
像記録が高品質、高解像であれば処理工程が複雑であり
、工程が簡便であれば記憶機能の欠如あるいは画質の基
本的劣化等があった。
Conventionally, silver halide photography, electrophotography, television photography, and photography using solid-state image sensors (CCD, etc.) have been used as high-resolution photography techniques, but these techniques have high quality image recording. If the resolution was high, the processing steps would be complicated, and if the steps were simple, there would be a lack of memory function or a basic deterioration of image quality.

出願人はこれらに対し、高品質、高解像であると共に処
理工程が簡便で、長時間の記憶が可能であり、記憶した
文字、線画、画像、コード(1゜0)情報を目的に応じ
た画質で任意に反復記録再生することができる電圧印加
露光による電荷保持媒体静電潜像形成方法を既に提案し
ている(特願昭63−121592号 )。
The applicant aims for these products to have high quality, high resolution, simple processing steps, long-term storage, and the ability to store stored characters, line drawings, images, and code (1°0) information according to the purpose. A method for forming an electrostatic latent image on a charge-retaining medium by applying voltage and exposure has already been proposed (Japanese Patent Application No. 121592/1982), which enables arbitrary and repeated recording and reproduction with high image quality.

〔発明が解決しようとする課頚〕[The problem that the invention aims to solve]

上記出願に係る電荷保持媒体の静電パターンは極めて高
解像度を有することが特徴であるが、これを精度良く読
み取るのは極めて困難であり、例えば、電位読みとりの
方法では、読み取りヘッドのスキャン密度に依存してし
まい、高解像な読み取りを行うことはできない。
The electrostatic pattern of the charge retention medium related to the above application is characterized by extremely high resolution, but it is extremely difficult to read it with high precision.For example, in the potential reading method, the scanning density of the reading head This makes it impossible to perform high-resolution reading.

本発明は上記問題点を解決するためのもので、電気光学
的に静電パターンを読み取り、分子レベルの高精度で静
電パターンを読み取ることができる電荷保持媒体を提供
することを目的とする。
The present invention is intended to solve the above-mentioned problems, and an object of the present invention is to provide a charge retention medium that can electro-optically read an electrostatic pattern and read the electrostatic pattern with high precision at the molecular level.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明の電荷保持媒体は、透明支持体上に導
電層及び光導電層が形成された感光体と対向配置され、
感光体側の面に絶縁層が形成された第1の透明支持体と
、第1の透明支持体と電気光学材料層を挟んで対向配置
され、電気光学材料層側の面に導電層が形成された第2
の透明支持体とを有し、感光体の導電層と第2の透明支
持体に形成された導電層との間に電圧を印加した状態で
露光するようにしたことを特徴とする。
For this purpose, the charge retention medium of the present invention is placed facing a photoreceptor having a conductive layer and a photoconductive layer formed on a transparent support,
A first transparent support having an insulating layer formed on the surface facing the photoreceptor, and a first transparent support disposed opposite to the first transparent support with an electro-optic material layer interposed therebetween, and a conductive layer formed on the surface facing the electro-optic material layer. second
The second transparent support is characterized in that exposure is performed while a voltage is applied between the conductive layer of the photoreceptor and the conductive layer formed on the second transparent support.

〔作用〕[Effect]

本発明の電荷保持媒体は、電荷保持媒体内に液晶、電気
光学結晶等の電気光学材料層を組み込み、感光体と対向
して電圧印加露光することにより電気光学材料層の光学
的性質を変化させ、この光学的性質の変化を透過光、ま
たは反射光で読み取ることにより静電パターンを分子レ
ベルの精度で読み取ることが可能となる。
The charge retention medium of the present invention incorporates an electro-optic material layer such as a liquid crystal or an electro-optic crystal in the charge retention medium, and changes the optical properties of the electro-optic material layer by applying a voltage and exposing it facing a photoreceptor. By reading this change in optical properties using transmitted light or reflected light, it becomes possible to read the electrostatic pattern with precision at the molecular level.

〔実施例〕〔Example〕

以下、実施例を図面に基づき説明する。 Examples will be described below based on the drawings.

第1図、第2図は本発明の電荷保持媒体を説明するため
の図である。図中、101は感光体、101aはガラス
、101bは透明電極、101cは光導電層、103は
電荷保持媒体、103aは絶縁層、103bはガラス、
103cは配向層、103dは液晶、103eは配向層
、103fは電極、103gはガラス、105.107
は偏光板である。
FIG. 1 and FIG. 2 are diagrams for explaining the charge retention medium of the present invention. In the figure, 101 is a photoreceptor, 101a is glass, 101b is a transparent electrode, 101c is a photoconductive layer, 103 is a charge retention medium, 103a is an insulating layer, 103b is glass,
103c is an alignment layer, 103d is a liquid crystal, 103e is an alignment layer, 103f is an electrode, 103g is glass, 105.107
is a polarizing plate.

第1図において、l mm厚のガラス101a上に10
00人厚のIrOからなる透明電極101bを形成し、
この上に10μm程度の光導電層101cを形成して感
光体101を構成する。この感光体101に対して、1
0μm程度の空隙を介して電荷保持媒体103を配置す
る。電荷保持媒体103は1止厚のガラス103b上に
10μm厚の絶縁層103aを形成する。ガラス103
bは、1000人厚のIrO電極103fを蒸着により
形成したガラス103gとで液晶103dをサンドイッ
チし、ガラス103b、電極103fの内面には配向層
103c、103eを形成する。そして、電源Eにより
電極101b、103f間に電圧を印加する。暗所であ
れば光導電層101cは高抵抗体であるため、電極間に
は何の変化も生じない。感光体101側より光を入射す
ると、光が入射した部分の光導電層101Cは導電性を
示し、絶縁層103aとの間に放電が生じて絶縁層上に
画像状に電荷が蓄積される。
In FIG. 1, 10
A transparent electrode 101b made of IrO with a thickness of 0.00 mm is formed,
A photoconductive layer 101c having a thickness of about 10 μm is formed thereon to constitute the photoreceptor 101. For this photoreceptor 101, 1
The charge retention medium 103 is placed with a gap of about 0 μm in between. The charge holding medium 103 is formed by forming an insulating layer 103a with a thickness of 10 μm on a glass 103b with a thickness of 1 μm. glass 103
In b, a liquid crystal 103d is sandwiched between a glass 103g formed by depositing an IrO electrode 103f with a thickness of 1000, and alignment layers 103c and 103e are formed on the inner surfaces of the glass 103b and the electrode 103f. Then, a voltage is applied between the electrodes 101b and 103f by the power source E. In a dark place, since the photoconductive layer 101c is a high-resistance material, no change occurs between the electrodes. When light is incident from the photoreceptor 101 side, the photoconductive layer 101C exhibits conductivity in the portion where the light is incident, and discharge occurs between the photoconductive layer 101C and the insulating layer 103a, and charges are accumulated on the insulating layer in the form of an image.

なお、配向層103c、103eは配向の方向が90°
直交するように配置されており、そのため液晶の分子は
配向層103c、103e間で90°ねじれており、そ
のため例えば紙面に垂直方向に偏光した光がガラス10
3g側から入射すると、液晶中で90°旋回が生じて絶
縁層103aからは紙面に平行方向に偏光した光として
出射することになる。
Note that the orientation layers 103c and 103e have an orientation direction of 90°.
Therefore, the molecules of the liquid crystal are twisted by 90 degrees between the alignment layers 103c and 103e, so that, for example, light polarized perpendicular to the plane of the paper is transmitted to the glass 10.
When the light enters from the 3g side, a 90° rotation occurs in the liquid crystal, and the light is emitted from the insulating layer 103a as light polarized in a direction parallel to the plane of the paper.

こうして絶縁層103a上に蓄積された電荷によって電
極103eには逆極性の電荷が誘起され、その結果、蓄
積電荷から電極103eに対して図に示すように電気力
線が延び、この電界によって電荷が蓄積された位置に対
向した部分の液晶は分子配列が変化し、ガラス103g
側から入射した光は、90°の旋回を受けない。
Charges of opposite polarity are induced in the electrode 103e by the charges accumulated on the insulating layer 103a, and as a result, lines of electric force extend from the accumulated charges toward the electrode 103e as shown in the figure, and this electric field causes the charges to be The molecular arrangement of the liquid crystal in the part facing the accumulated position changes, and the glass 103g
Light incident from the side does not undergo a 90° rotation.

第2図に示すように、電荷保持媒体101の両側に偏光
板105.107をその偏光方向が直交するように配置
する。この状態では電荷の影響により分子の配列が乱さ
れた部分では偏光方向が90°の旋回を受けないため、
偏光板107を通過した偏光は偏光板105を通ること
ができず、方、電荷パターンが形成されず分子配列が乱
されていない部分では、90°の旋回が生ずるため偏光
板105を通過する。したがって、偏光板105側から
みると、電荷が形成された部分は暗く見え、光が通過す
る部分は明るく見えることになり、結局静電パターンを
観察することができる。なお、上記説明では絶縁層上に
電荷が蓄積しているとしているが、液晶が強誘電性液晶
の場合には高速応答性とメモリ性を有し、必ずしも長期
に渡る電荷の存在は必要がない。但し、電荷が存在しな
い場合には分子配列の乱れは連続的でなくなり、あるレ
ベルより大きい電界強度の所では乱れがほぼそのまま残
り、あるレベルより以下の電界強度の所では乱れが殆ど
残らず、そのため観察される像は2値画像となる。した
がって、写真調の画像として読み取るためには、電荷が
絶縁層上に残るようにしておく必要がある。なお、第2
図のように光を入射させて光学的に読み取る場合には、
反射防止層を設けることが望ましい。また、電極103
fにパターンを設けておくことにより、電極パターンと
露光パターンとのAND演算を行わせることができ、具
体的には電極パターンと露光パターンの重なり具合を目
視することにより、例えばピントズレ等の検出に利用す
ることが可能である。
As shown in FIG. 2, polarizing plates 105 and 107 are arranged on both sides of the charge holding medium 101 so that their polarization directions are perpendicular to each other. In this state, the polarization direction is not rotated by 90° in the part where the arrangement of molecules is disturbed due to the influence of charge, so
The polarized light that has passed through the polarizing plate 107 cannot pass through the polarizing plate 105. On the other hand, in areas where no charge pattern is formed and the molecular alignment is not disturbed, the polarized light passes through the polarizing plate 105 because of a 90° rotation. Therefore, when viewed from the polarizing plate 105 side, the portions where charges are formed appear dark, and the portions through which light passes appear bright, so that the electrostatic pattern can be observed. Note that the above explanation assumes that charges are accumulated on the insulating layer, but if the liquid crystal is a ferroelectric liquid crystal, it has high-speed response and memory properties, and the presence of charges for a long period of time is not necessarily required. . However, when there is no charge, the disorder in the molecular arrangement is no longer continuous, and at electric field strengths greater than a certain level, the disorder remains almost unchanged, and at electric field strengths below a certain level, almost no disorder remains. Therefore, the observed image becomes a binary image. Therefore, in order to read the image as a photographic image, it is necessary that the charges remain on the insulating layer. In addition, the second
When reading optically by inputting light as shown in the figure,
It is desirable to provide an antireflection layer. In addition, the electrode 103
By providing a pattern in f, it is possible to perform an AND operation between the electrode pattern and the exposure pattern. Specifically, by visually observing the degree of overlap between the electrode pattern and the exposure pattern, it is possible to detect, for example, out-of-focus. It is possible to use it.

なお、上記実施例では電気光学材料層を透過する光につ
いて主として述べてきたが、反射光を利用するようにし
てもよく、その場合には電極103fは透明である必要
はなく、へ1電極でもよい。
Note that although the above embodiments have mainly described the light that passes through the electro-optic material layer, reflected light may also be used, and in that case, the electrode 103f does not need to be transparent, and even one electrode may be used. good.

また、液晶に代えて電界により屈折率が変化する電気光
学結晶を用いてもよ(、この屈折率の変化にともなう光
の位相差を、例えば入射光を基準信号として比較するこ
とにより求め、静電パターンを容易に求めることができ
る。
In addition, an electro-optic crystal whose refractive index changes depending on an electric field may be used instead of a liquid crystal. The electric pattern can be easily obtained.

電気光学効果には電界に比例して屈折率が変化するポッ
ケルス効果と、電界の2乗に比例して屈折率が変化する
ケル効果かり、本発明に使用できる材料はケル係数の大
きなKTiO−、BaTiO3、LiNbO3の単結晶
やニトロベンゼン等の液体および、ポッケルス係数の大
きなKDP。
The electro-optic effect includes the Pockels effect, in which the refractive index changes in proportion to the electric field, and the Kell effect, in which the refractive index changes in proportion to the square of the electric field. Materials that can be used in the present invention include KTiO-, which has a large Kel coefficient, Single crystals of BaTiO3 and LiNbO3, liquids such as nitrobenzene, and KDP with a large Pockels coefficient.

L i T a O3結晶群などがある。There are L i   a O3 crystal groups, etc.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、電荷保持媒体上に形成さ
れた高解像度の静電パターンを、電気光学素子の光学的
性質の変化に変換し、この光学的性質の変化を光学的に
読みとることにより分子レベルの高精度で読み取ること
が可能となる。
As described above, according to the present invention, a high-resolution electrostatic pattern formed on a charge retention medium is converted into a change in the optical properties of an electro-optical element, and this change in optical properties is optically read. This makes it possible to read with high precision at the molecular level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の電荷保持媒体を説明するため
の図である。 101−・・感光体、101 a ・・・ガラス、10
1b・・・透明電極、101c・・・光導電層、103
・・・電荷保持媒体、103a・・・絶縁層、103b
・・・ガラス、103c・・・配向層、103d・・・
液晶、103e・・・配向層、103f・・・電極、1
03g・・・ガラス、105.107・・・偏光板。 ◎◎ ◎ ◎θ
FIG. 1 and FIG. 2 are diagrams for explaining the charge retention medium of the present invention. 101-...Photoreceptor, 101a...Glass, 10
1b...Transparent electrode, 101c...Photoconductive layer, 103
...Charge retention medium, 103a...Insulating layer, 103b
...Glass, 103c...Orientation layer, 103d...
Liquid crystal, 103e... Alignment layer, 103f... Electrode, 1
03g...Glass, 105.107...Polarizing plate. ◎◎ ◎ ◎θ

Claims (4)

【特許請求の範囲】[Claims] (1)透明支持体上に導電層及び光導電層が形成された
感光体と対向配置され、感光体側の面に絶縁層が形成さ
れた第1の透明支持体と、第1の透明支持体と電気光学
材料層を挟んで対向配置され、電気光学材料層側の面に
導電層が形成された第2の透明支持体とを有し、感光体
の導電層と第2の透明支持体に形成された導電層との間
に電圧を印加した状態で露光するようにした電気光学材
料層を有する電荷保持媒体。
(1) A first transparent support, which is disposed opposite to a photoreceptor having a conductive layer and a photoconductive layer formed thereon, and has an insulating layer formed on the surface facing the photoreceptor, and a first transparent support. and a second transparent support which is arranged facing each other with an electro-optic material layer in between and has a conductive layer formed on the surface facing the electro-optic material layer, and the conductive layer of the photoreceptor and the second transparent support have a conductive layer formed on the surface facing the electro-optic material layer. A charge retention medium having an electro-optic material layer that is exposed to light while a voltage is applied between the formed conductive layer.
(2)電気光学材料層が液晶からなり、第1の透明支持
体、及び導電層面に配向層が設けられている請求項1記
載の電荷保持媒体。
(2) The charge retention medium according to claim 1, wherein the electro-optic material layer is made of liquid crystal, and an alignment layer is provided on the first transparent support and the conductive layer surface.
(3)電気光学材料層が電気光学結晶からなる請求項1
記載の電荷保持媒体。
(3) Claim 1 in which the electro-optic material layer is made of electro-optic crystal.
Charge retention medium as described.
(4)導電層に所定のパターンを形成した請求項1記載
の電気光学材料層を有する電荷保持媒体。
(4) A charge retention medium having an electro-optic material layer according to claim 1, wherein a predetermined pattern is formed on the conductive layer.
JP1066796A 1989-03-16 1989-03-18 Charge holding medium having electro-optic material layer Expired - Lifetime JP2597705B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1066796A JP2597705B2 (en) 1989-03-18 1989-03-18 Charge holding medium having electro-optic material layer
CA002028814A CA2028814A1 (en) 1989-03-16 1990-03-15 Electrostatic information recording medium and electrostatic information recording and reproducing method
PCT/JP1990/000341 WO1990010892A1 (en) 1989-03-16 1990-03-15 Electrostatic data recording medium and electrostatic data recording/reproducing method
ES90904692T ES2144395T3 (en) 1989-03-16 1990-03-15 RECORDING AND REPRODUCTION PROCEDURE OF ELECTROSTATIC INFORMATION.
DE69033448T DE69033448T2 (en) 1989-03-16 1990-03-15 Process for the electrostatic recording and reproduction of information
EP90904692A EP0592662B1 (en) 1989-03-16 1990-03-15 Electrostatic information recording and reproducing method
US08/462,563 US5587264A (en) 1989-03-16 1995-06-05 Electrostatic information recording medium and electrostatic information recording and reproducing method
US08/703,653 US5718996A (en) 1989-03-16 1996-08-27 Electrostatic information recording medium and electrostatic information recording and reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1066796A JP2597705B2 (en) 1989-03-18 1989-03-18 Charge holding medium having electro-optic material layer

Publications (2)

Publication Number Publication Date
JPH02245734A true JPH02245734A (en) 1990-10-01
JP2597705B2 JP2597705B2 (en) 1997-04-09

Family

ID=13326190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1066796A Expired - Lifetime JP2597705B2 (en) 1989-03-16 1989-03-18 Charge holding medium having electro-optic material layer

Country Status (1)

Country Link
JP (1) JP2597705B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514504A (en) * 1991-01-31 1996-05-07 Dai Nippon Printing Co., Ltd. Information recording medium, and information recording a reproducing method
US5903296A (en) * 1993-04-26 1999-05-11 Dai Nippon Printing Co., Ltd. Photoelectric sensor, information recording system and information recording and reproducing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193121A (en) * 1985-02-21 1986-08-27 Olympus Optical Co Ltd Memory type optical light valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193121A (en) * 1985-02-21 1986-08-27 Olympus Optical Co Ltd Memory type optical light valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514504A (en) * 1991-01-31 1996-05-07 Dai Nippon Printing Co., Ltd. Information recording medium, and information recording a reproducing method
US5660958A (en) * 1991-01-31 1997-08-26 Dai Nippon Printing Co., Ltd. Information recording medium, and information recording and reproducing method
US5683838A (en) * 1991-01-31 1997-11-04 Dai Nippon Printing Co., Ltd. Method of producing information recording medium
US5903296A (en) * 1993-04-26 1999-05-11 Dai Nippon Printing Co., Ltd. Photoelectric sensor, information recording system and information recording and reproducing method

Also Published As

Publication number Publication date
JP2597705B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
US5093874A (en) Integrated electro-optical scanner with photoconductive substrate
US4367925A (en) Integrated electronics for proximity coupled electro-optic devices
CA1171508A (en) Proximity coupled electro-optic devices
US4480899A (en) Two dimensional electro-optic modulator and applications therefor
US4538883A (en) Conformable electrodes for proximity coupled electro-optic devices
Land et al. Reflective‐mode ferroelectric‐photoconductor image storage and display devices
US4560994A (en) Two dimensional electro-optic modulator for printing
US5052771A (en) Integrated electro-optical scanner
Land Optical information storage and spatial light modulation in PLZT ceramics
US4370029A (en) Dielectric interface for proximity coupled electro-optic devices
US3832033A (en) Regular ferroelectrics-liquid crystal composite optical element
US4369457A (en) Reverse polarity differential encoding for fringe field responsive electro-optic line printers
US4376568A (en) Thick film line modulator
US4643533A (en) Differentiating spatial light modulator
US5157528A (en) Devices and process for producing microfilm and microfiche records
JPH02245734A (en) Charge holding medium having electrooptical material layer
JP2681384B2 (en) Electro-optical reading method and apparatus for electrostatic pattern information
US4380373A (en) Conformable proximity coupled electro-optic devices
CA2006800C (en) Photo-modulation method and system for reproducing charge latent image
US3997243A (en) Color image reproduction system
JP2811468B2 (en) Optical writing type liquid crystal light valve and liquid crystal ride valve device
KR930007180B1 (en) Playbacking device
JPH0525091B2 (en)
JPH0463320A (en) Photo-photo conversion element
JPS5917528A (en) Optical controller