JPH02245621A - Correction of output voltage of infrared detector - Google Patents

Correction of output voltage of infrared detector

Info

Publication number
JPH02245621A
JPH02245621A JP6595489A JP6595489A JPH02245621A JP H02245621 A JPH02245621 A JP H02245621A JP 6595489 A JP6595489 A JP 6595489A JP 6595489 A JP6595489 A JP 6595489A JP H02245621 A JPH02245621 A JP H02245621A
Authority
JP
Japan
Prior art keywords
infrared
infrared detector
black body
lens
body plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6595489A
Other languages
Japanese (ja)
Inventor
Yukihiro Yoshida
幸弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6595489A priority Critical patent/JPH02245621A/en
Publication of JPH02245621A publication Critical patent/JPH02245621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Burglar Alarm Systems (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To obtain a better infrared image by correcting infrared rays from outside a lens varying with an environmental temperature for each of infrared detecting elements of a two-dimensional infrared detector. CONSTITUTION:A black body plate 36 is set in the perimeter of a lens 34. A cold shield 30 having an opening 30a made by a black body treatment of copal is provided on the top of an inner cylinder 16 of a cooling container. An angle of field of view of infrared rays from outside the lens 34 to be incident into infrared detecting elements is determined by a positional relationship of the lens 34, shield 30 and an infrared detecting element 24. Therefore, when the black body plate 36 is set in the perimeter of the lens 34, an angle of field of view of the black body plate 36 allowed for the elements 24 is also determined. As an environmental temperature varies, a quantity of infrared rays from the black body plate 36 changes. But, the quantity of the infrared rays from the black body plate 36 allowed for the elements 24 can be corrected by learning a quantity of infrared rays per unit angle of field of view allowed for a second infrared detector 38. This enables correction of variations in output of the detector 24 associated with a change in the environmental temperature thereby enabling the obtaining of a better infrared image.

Description

【発明の詳細な説明】 概要 赤外線検知器の出力電圧補正方法に関し、環境温度によ
り変化するレンズ外から入射する赤外線の影響を有効に
補正して、良好な赤外線映像を得ることを目的とし、 レンズ及び1/ンズ周辺からの赤外線ヲコールトシール
ドで制限して、複数の赤外線検知素子を2次元状に並べ
て構成される2次元赤外線検知器に入射させるようにし
た赤外線検知装置の出力電圧補正方法に右いて、レンズ
周辺に黒体板を設置し、前記2次元赤外線検知器を構成
する赤外線検知素子と同一特性の単一赤外線検知素子か
ら構成される第2の赤外線検知器を、前記2次元赤外線
検知器と同一平面で且つ前記コールドシールドの開口部
を通して見込む視野が全て黒体板となる位置に設置し、
前記2次元赤外線検知器を構成する各赤外線検知素子が
前記黒体板を見込む視野角を予め求め、前記2次元赤外
線検知器の各赤外線検知素子が黒体板を見込む視野角と
、前記第2の赤外線検知器が黒体板を見込む視野角との
比を第2の赤外線検知器の出力電圧に乗じ、その値を2
次元赤外線検知器を構成する各赤外線検知素子の出力電
圧から引くように構成する。
[Detailed Description of the Invention] Summary Regarding a method for correcting the output voltage of an infrared detector, the objective is to effectively correct the influence of infrared rays incident from outside the lens, which changes depending on the environmental temperature, and to obtain a good infrared image. and a method for correcting the output voltage of an infrared detection device, in which the infrared rays from the vicinity of 1/2 infrared rays are restricted by a cold shield, and the infrared rays are made incident on a two-dimensional infrared detector configured by arranging a plurality of infrared detection elements two-dimensionally. A second infrared detector consisting of a single infrared detecting element having the same characteristics as the infrared detecting element constituting the two-dimensional infrared detector is installed on the right side of the lens, and a black body plate is installed around the lens. installed in the same plane as the infrared detector and in a position where the entire field of view seen through the opening of the cold shield is a black body board,
The viewing angle at which each infrared sensing element constituting the two-dimensional infrared detector views the black body plate is determined in advance, and the viewing angle at which each infrared sensing element of the two-dimensional infrared detector views the black body plate, and the second The output voltage of the second infrared detector is multiplied by the ratio of the viewing angle at which the infrared detector looks into the black body, and the value is 2.
It is configured to be subtracted from the output voltage of each infrared sensing element constituting the dimensional infrared detector.

産業上の利用分野 本発明は赤外線検知器(赤外線センサ)の出力電圧補正
方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for correcting the output voltage of an infrared detector (infrared sensor).

赤外線センサには、焦電素子、サーモパイル等を用いた
熱量センサと半導体を利用した光電効果型(量子型)セ
ンサがある。一般に熱量センサでは感度の波長依存性は
ないが、感度が低く応答速度も遅いのでリアルタイムの
赤外線センサとしては不向きである。一方、光電効果型
センサは感度が高く、応答速度も速いが、素子の液体窒
素温度での冷却が必要である。光電効果型赤外線センサ
は、光伝導型、光起電力型、MIS型に分類される。こ
のうち光伝導型センサは、光照射時の抵抗変化を利用す
るものでテルル化カドミウム水銀(HgCdTe)等が
挙げられる。
Infrared sensors include calorimetric sensors that use pyroelectric elements, thermopiles, etc., and photoelectric effect (quantum) sensors that use semiconductors. Calorie sensors generally have no wavelength dependence in sensitivity, but their low sensitivity and slow response speed make them unsuitable as real-time infrared sensors. On the other hand, photoelectric effect sensors have high sensitivity and fast response speed, but require cooling of the device to liquid nitrogen temperature. Photoelectric effect type infrared sensors are classified into photoconductive type, photovoltaic type, and MIS type. Among these, the photoconductive sensor utilizes a change in resistance upon irradiation with light, and includes cadmium mercury telluride (HgCdTe) and the like.

このような赤外線センサ(赤外線検知器)は人工衛星に
よる気象観測、防犯、防災、地質・資源調査、赤外線サ
ーモグラフィによる医療用等に用いられている。赤外線
検知素子(受光素子)を2次元状に並べて構成される2
次元赤外線検知器では、環境温度変化にともないレンズ
外視野からの背景輻射赤外線量が変化する。その結果、
赤外線検知器の出力電圧が変化し、画像の輝度が変動す
るという問題がある。そこで、画像の輝度の変動を低く
抑えた赤外線検知器が要望されている。
Such infrared sensors (infrared detectors) are used for weather observation using artificial satellites, crime prevention, disaster prevention, geological and resource surveys, and medical purposes using infrared thermography. Consisting of two-dimensional array of infrared sensing elements (light receiving elements) 2
In a dimensional infrared detector, the amount of background infrared radiation from outside the lens changes as the environmental temperature changes. the result,
There is a problem in that the output voltage of the infrared detector changes and the brightness of the image fluctuates. Therefore, there is a need for an infrared detector that suppresses fluctuations in image brightness.

従来の技術 第2図は代表的な赤外線検知装置の全体構成図である。Conventional technology FIG. 2 is an overall configuration diagram of a typical infrared detection device.

10は真空冷却容器であり、ヘリウム循環冷却機12上
に搭載されている。真空冷却容器10はコバールから形
成された外筒14と、コバールガラスから形成された内
筒16とを含み、外筒14、内筒16ともコバールから
形成された取付部材18上に取り付けられ、この取付部
材18がヘリウム循環冷却機12に取り付けられた支持
部材20上に固定されている。22はリード線を真空冷
却容器10から外部に取り出すための環状セラミック基
板であり、外筒14にサンドイッチ状に取り付けられて
いる。
10 is a vacuum cooling container, which is mounted on a helium circulation cooler 12. The vacuum cooling container 10 includes an outer tube 14 made of Kovar and an inner tube 16 made of Kovar glass. Both the outer tube 14 and the inner tube 16 are mounted on a mounting member 18 made of Kovar. A mounting member 18 is secured on a support member 20 attached to the helium circulating cooler 12. Reference numeral 22 denotes an annular ceramic substrate for taking out lead wires from the vacuum cooling container 10 to the outside, and is attached to the outer tube 14 in a sandwich manner.

内筒16の上端面(冷却面)にはHgCdTe等の複数
の赤外線検知素子から構成される2次元赤外線検知器2
4が接着されている。内筒16の上端面(冷却面)は熱
伝導性バネ28を介して循環冷却機120ロツド26上
に搭載されており、ヘリウムを断熱膨張させることによ
りSUSから形成されたロッド26の先端部が無負荷の
場合に約50に程度に冷却される。内筒16の外周面と
環状セラミック基板22の表面に金パターンが形成され
ており、赤外線検知器24のポンディングパッド部と内
筒16の金パターンとはボンディングワイヤ25でボン
ディング接続され、内筒16の金パターンと環状セラミ
ック基板の金パターンとはボンディングワイヤ27でボ
ンディング接続されている。
A two-dimensional infrared detector 2 composed of a plurality of infrared detection elements such as HgCdTe is mounted on the upper end surface (cooling surface) of the inner cylinder 16.
4 is glued. The upper end surface (cooling surface) of the inner cylinder 16 is mounted on the circulation cooler 120 rod 26 via a thermally conductive spring 28, and the tip of the rod 26 made of SUS is heated by adiabatically expanding helium. When unloaded, it is cooled to about 50°C. A gold pattern is formed on the outer circumferential surface of the inner cylinder 16 and the surface of the annular ceramic substrate 22, and the bonding pad portion of the infrared detector 24 and the gold pattern of the inner cylinder 16 are bonded and connected with a bonding wire 25. The gold pattern No. 16 and the gold pattern on the annular ceramic substrate are bonded and connected by a bonding wire 27.

30は開口部30aを有するコールドシールドであり、
コバールに魚体処理をして形成されている。また、外筒
14には赤外線を透過するゲルマニウム窓14aが設け
られている。34はゲルマニウムから形成されたレンズ
であり、赤外線検知装置の筺体32に取り付けられてい
る。
30 is a cold shield having an opening 30a;
It is formed by processing fish body on Kobar. Further, the outer cylinder 14 is provided with a germanium window 14a that transmits infrared rays. A lens 34 is made of germanium and is attached to the housing 32 of the infrared detection device.

然して、ヘリウム循環冷却機12を駆動することにより
、コバールガラスから形成された内筒16上に搭載され
た赤外線検知器24は約液体窒素温度に冷却され、レン
ズ34及びゲルマニウム窓14aを通して入射する赤外
線像を検知することができる。
By driving the helium circulating cooler 12, the infrared detector 24 mounted on the inner tube 16 made of Kovar glass is cooled to about the temperature of liquid nitrogen, and the infrared rays entering through the lens 34 and the germanium window 14a are cooled. Images can be detected.

赤外線検知824の極低温への冷却は、上述したヘリウ
ム循環冷却機の他に液体窒素により冷却する方法も一般
的に採用されている。
In order to cool the infrared detector 824 to an extremely low temperature, in addition to the above-mentioned helium circulation cooler, a method of cooling with liquid nitrogen is also generally employed.

発明が解決しようとする課題 上述したように、複数の赤外線検知素子を2次元状に並
べて構成される2次元赤外線検知器では、環境温度変化
にともないレンズ外視野からの背景輻射赤外線量が変化
する。その結果、赤外線検知器の出力電圧が変化し、赤
外線像の輝度が変動するという問題がある。これを第3
図を参照して説明する。第3図に示すように、2次元赤
外線検知器24の視野はコールドシールド30で制限さ
れている。これにより、レンズ34を通過しない赤外線
が2次元赤外線検知器24に入射しないようにしている
。しかし、赤外線検知器24の中心(A)と端部(B)
では、コールドシールド3゜で決められる視野が異なり
、端!B (B)ではレンズ外からの赤外線が入射する
。第3図のA点に位置する赤外線検知素子はレンズ軸上
に設けられているため、レンズ外からの赤外線は入射し
ない。
Problems to be Solved by the Invention As mentioned above, in a two-dimensional infrared detector constructed by arranging a plurality of infrared detecting elements in a two-dimensional manner, the amount of background infrared radiation from the field outside the lens changes as the environmental temperature changes. . As a result, there is a problem in that the output voltage of the infrared detector changes and the brightness of the infrared image fluctuates. This is the third
This will be explained with reference to the figures. As shown in FIG. 3, the field of view of the two-dimensional infrared detector 24 is limited by a cold shield 30. This prevents infrared rays that do not pass through the lens 34 from entering the two-dimensional infrared detector 24. However, the center (A) and end (B) of the infrared detector 24
Then, the field of view determined by cold shield 3° is different, and the edge! B (B) Infrared rays from outside the lens are incident. Since the infrared detecting element located at point A in FIG. 3 is provided on the lens axis, infrared rays from outside the lens do not enter.

しかし、2次元赤外線検知器24の端部を構成するB点
の赤外線検知素子では、第3図に斜線部で示すレンズ外
赤外線が入射する。すなわち、視野角α1のレンズ外赤
外線が入射することになる。
However, the infrared rays outside the lens shown by the hatched area in FIG. 3 are incident on the infrared sensing element at point B, which constitutes the end of the two-dimensional infrared detector 24. That is, infrared rays outside the lens with a viewing angle α1 are incident.

これにより、モニタ上に写し8される赤外線画像の端部
が中心部に比べて白っぽくなるとともに、白ぼさの程度
が環境温度により変化するという問題があった。
This poses a problem in that the edges of the infrared image displayed on the monitor appear whitish compared to the center, and the degree of whitishness changes depending on the environmental temperature.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、環境温度により変化するレンズ
外から入射する赤外線の影響を有効に補正して、良好な
赤外線画像を実現することのできる赤外線検知器の出力
電圧補正方法を提供することである。
The present invention has been made in view of these points, and its purpose is to effectively correct the influence of infrared rays incident from outside the lens, which changes depending on the environmental temperature, and to realize good infrared images. An object of the present invention is to provide a method for correcting the output voltage of an infrared detector.

課題を解決するための手段 レンズ及びレンズ周辺からの赤外線をコールドシールド
で制限して、複数の赤外線検知素子を2次元状に並べて
構成される2次元赤外線検知器に入射させるようにした
赤外線検知装置において、レンズ周辺に黒体板を設置し
、2次元赤外線検知器を構成する赤外線検知素子と同一
特性の単一赤外線検知素子から構成される第2の赤外線
検知器を、前記2次元赤外線検知器と同一平面で且つ前
記コールドシールドの開口部を通して見込む視野が全て
黒体板となる位置に設置する。
Means for Solving the Problems An infrared detection device in which infrared rays from the lens and the periphery of the lens are restricted by a cold shield, and the infrared rays are made to enter a two-dimensional infrared detector configured by arranging a plurality of infrared detection elements two-dimensionally. A black body plate is installed around the lens, and a second infrared detector consisting of a single infrared detecting element having the same characteristics as the infrared detecting element constituting the two-dimensional infrared detector is connected to the two-dimensional infrared detector. and at a position where the field of view seen through the opening of the cold shield is entirely the black body plate.

そして、2次元赤外線検知器を構成する各赤外線検知素
子が前記黒体板を見込む視野角を予め求め、次いで、2
次元赤外線検知器の各赤外線検知素子が黒体板を見込む
視野角と、第2の赤外線検知器が黒体板を見込む視野角
どの比を第2の赤外線検知器の出力電圧に乗じる。最後
に、この出力電圧の値を2次元赤外線検知器を構成する
各赤外線検知素子の出力電圧から引くことにより、2次
元赤外線検知器の出力電圧を補正する。
Then, the viewing angle at which each infrared detecting element constituting the two-dimensional infrared detector looks into the black body plate is determined in advance, and then
The output voltage of the second infrared detector is multiplied by the ratio of the viewing angle at which each infrared sensing element of the dimensional infrared detector views the black body plate and the viewing angle at which the second infrared detector views the black body plate. Finally, the output voltage of the two-dimensional infrared detector is corrected by subtracting the value of this output voltage from the output voltage of each infrared sensing element constituting the two-dimensional infrared detector.

作   用 各赤外線検知素子に入射するレンズ外赤外線の視野角は
、レンズ、コールドシールド、赤外線検知素子の位置関
係で決まる。従って、上述したようにレンズ周辺に黒体
板を設置すると、各赤外線検知素子が見込む黒体板の視
野角も決定する。環境温度が変化すると黒体板からの赤
外線光量が変化するが、第2の赤外線検知器が見込む単
位視野角光たりの赤外線光量を知ることにより、各赤外
線検知素子が見込む黒体板からの赤外線光量を補正する
ことができる。これにより、環境温度変化にともなう2
次元赤外線検知器の出力変動を補正することができ、良
好な赤外線画像を得ることができる。
Function The viewing angle of the infrared light outside the lens that enters each infrared sensing element is determined by the positional relationship of the lens, cold shield, and infrared sensing element. Therefore, when a black body plate is installed around the lens as described above, the viewing angle of the black body plate seen by each infrared detection element is also determined. When the environmental temperature changes, the amount of infrared light from the black body plate changes, but by knowing the amount of infrared light per unit viewing angle that the second infrared detector sees, it is possible to adjust the amount of infrared light from the black body board that each infrared sensing element sees. The amount of light can be corrected. As a result, 2
It is possible to correct output fluctuations of the dimensional infrared detector and obtain good infrared images.

実施例 以下本発明を図面に示す実施例に基づいて詳細に説明す
る。本実施例の説明において、第2図及び第3図に示し
た従来技術と実質的に同一構成部分については同一符号
を付して説明する。
EXAMPLES The present invention will be explained in detail below based on examples shown in the drawings. In the description of this embodiment, components that are substantially the same as those of the prior art shown in FIGS. 2 and 3 will be described with the same reference numerals.

第1図は本発明の実施例概略構成図を示している。本実
施例では、説明の便宜上第2図に示した外筒、循環冷却
機、赤外線検知装置の筐体等は省略しである。レンズ3
40周辺には黒体板3,6が設置されている。この黒体
板の設置は、実際には第21!Iに示した筐体を黒体処
理することにより達成される。コバールガラスから形成
された冷却容器の内筒16の上部には、コバールを黒体
処理した開口部30aを有するコールドシールド30が
設けられている。内筒16の冷却面16aの概略中心部
には複数の赤外線検知素子を2次元状に並べて構成され
る2次元赤外線検知器24が設けられている。さらに、
この冷却面16a上には、2次元赤外線検知器24を構
成する赤外線検知素子と同一特性の単一赤外線検知素子
から構成される第2の赤外線検知器38が、コールドシ
ールド30の開口部30aを通して見込む視野が全て黒
体板36となる位置に設置されている。本発明は、この
第2の赤外線検知器38の出力電圧を基準として、2次
元赤外線検知器24を構成する各赤外線検知素子の出力
電圧を補正するものである。
FIG. 1 shows a schematic configuration diagram of an embodiment of the present invention. In this embodiment, for convenience of explanation, the outer cylinder, circulation cooler, casing of the infrared detection device, etc. shown in FIG. 2 are omitted. lens 3
Black body boards 3 and 6 are installed around 40. The installation of this black body board is actually the 21st! This is achieved by blackbody processing the casing shown in I. A cold shield 30 having an opening 30a obtained by blackbody-treated Kovar is provided at the upper part of the inner cylinder 16 of the cooling container made of Kovar glass. A two-dimensional infrared detector 24 is provided approximately in the center of the cooling surface 16a of the inner cylinder 16, and is configured by arranging a plurality of infrared detecting elements two-dimensionally. moreover,
On this cooling surface 16a, a second infrared detector 38 consisting of a single infrared detecting element having the same characteristics as the infrared detecting element constituting the two-dimensional infrared detector 24 is inserted through the opening 30a of the cold shield 30. It is installed at a position where the entire visible field of view is the black body plate 36. The present invention corrects the output voltage of each infrared detection element constituting the two-dimensional infrared detector 24 based on the output voltage of the second infrared detector 38.

すなわち、本発明では各赤外線検知素子の出力電圧に対
して以下の式に示すような補正を加えるものである。
That is, in the present invention, the output voltage of each infrared sensing element is corrected as shown in the following equation.

α2 ここで、 vl :2次元赤外線検知器の各赤外線検知素子の出力
電圧、 ■2=第2の赤外線検知器の出力電圧、α1 :2次元
赤外線検知器を構成する各赤外線検知素子のレンズ外視
野角、 α2 :第2の赤外線検知器の視野角、である。
α2 Here, vl: Output voltage of each infrared sensing element of the two-dimensional infrared detector, ■2=Output voltage of the second infrared detector, α1: Outside the lens of each infrared sensing element constituting the two-dimensional infrared detector Viewing angle, α2: Viewing angle of the second infrared detector.

このように、2次元赤外線検知器を構成する赤外線検知
素子の出力電圧を、第2の赤外線検知器の出力電圧に基
づいて補正することにより、レンズ外赤外先の影響を抑
制することができ、良好な赤外線画像を得ることができ
る。
In this way, by correcting the output voltage of the infrared sensing element constituting the two-dimensional infrared detector based on the output voltage of the second infrared detector, it is possible to suppress the influence of the infrared region beyond the lens. , good infrared images can be obtained.

発明の効果 本発明は以上詳述したように構成したので、環境温度に
より変化するレンズ外からの赤外線を、2次元赤外線検
知器の各赤外線検知素子毎に補正することができるため
、良好な赤外線画像を実現できるという効果を奏する。
Effects of the Invention Since the present invention is configured as detailed above, it is possible to correct infrared rays from outside the lens, which vary depending on the environmental temperature, for each infrared sensing element of a two-dimensional infrared detector. This has the effect of realizing images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の概略構成図、 第2図は代表的な赤外線検知装置全体構成図、第3図は
従来装置の問題点説明図である。 0・・・真空冷却容器、 2・・・ヘリウム循環冷却機、 4a・・・ゲルマニウム窓、 6・・・内筒、 4・・・2次元赤外線検知器、 0・・・コールドシールド、 4・・・レンズ、 6・・・黒体板、 8・・・第2の赤外線検知器。 16q: 24 : 30 : 34 : 埼ズP趙 2ン)ぐう〒−Aト外*N検うヒロ嬰6;フールドシー
ルド レンス 莢うkち例 才【七 味ネ掌ぶ攻g 第1図 +o  : 82 >/jttP!1412:偉環遡I
ll酪 14  、  タト膚り 28:整侯尋柱r1゛キ 父 フー!レドシールド 34、レシス゛ 1ミクト孝ネ;宇タミヌで勇廻1【タセイ本搏オ(i第
2図 24:2ンクく1 ヤηミ外轢1刊−7h賂30: コ
ールドシー7レド 34: レンス゛ 閲に側杖?光明図 第3図
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, FIG. 2 is an overall configuration diagram of a typical infrared detection device, and FIG. 3 is a diagram illustrating problems with the conventional device. 0... Vacuum cooling container, 2... Helium circulation cooler, 4a... Germanium window, 6... Inner cylinder, 4... Two-dimensional infrared detector, 0... Cold shield, 4. ...Lens, 6...Black body plate, 8...Second infrared detector. 16q: 24: 30: 34: Saizu P Zhao 2) gu〒-Ato outside *N test Hiro 6; : 82 >/jttP! 1412: Weihuan Retrospective I
ll dairy 14, Tato deriri 28: Sei Houjin pillar r1゛ki father Fu! Red Shield 34, Resis 1 Mikuto Takane; Utaminu de Yumai 1 Is it a side cane? Figure 3 of the light map

Claims (1)

【特許請求の範囲】 レンズ(34)及びレンズ周辺からの赤外線をコールド
シールド(30)で制限して、複数の赤外線検知素子を
2次元状に並べて構成される2次元赤外線検知器(24
)に入射させるようにした赤外線検知装置の出力電圧補
正方法において、 レンズ周辺に黒体板(36)を設置し、 前記2次元赤外線検知器(24)を構成する赤外線検知
素子と同一特性の単一赤外線検知素子から構成される第
2の赤外線検知器(38)を、前記2次元赤外線検知器
(24)と同一平面で且つ前記コールドシールド(30
)の開口部(30a)を通して見込む視野が全て黒体板
(36)となる位置に設置し、前記2次元赤外線検知器
(24)を構成する各赤外線検知素子が前記黒体板(3
6)を見込む視野角を予め求め、 前記2次元赤外線検知器(24)の各赤外線検知素子が
黒体板(36)を見込む視野角と、前記第2の赤外線検
知器(38)が黒体板(36)を見込む視野角との比を
第2の赤外線検知器(38)の出力電圧に乗じ、その値
を2次元赤外線検知器(24)を構成する各赤外線検知
素子の出力電圧から引くことを特徴とする赤外線検知器
の出力電圧補正方法。
[Claims] A two-dimensional infrared detector (24) configured by arranging a plurality of infrared detecting elements two-dimensionally, limiting infrared rays from the lens (34) and the periphery of the lens with a cold shield (30).
), in which a black body plate (36) is installed around the lens, and an infrared detecting element having the same characteristics as the infrared detecting element constituting the two-dimensional infrared detector (24) is installed. A second infrared detector (38) composed of one infrared detection element is installed on the same plane as the two-dimensional infrared detector (24) and on the same plane as the cold shield (30).
) is installed at a position where the entire field of view seen through the opening (30a) is the black body plate (36), and each infrared detecting element constituting the two-dimensional infrared detector (24) is placed in the black body plate (36).
6) is determined in advance, and the viewing angle at which each infrared sensing element of the two-dimensional infrared detector (24) looks at the black body plate (36), and the viewing angle at which the second infrared detector (38) looks at the black body plate are determined in advance. Multiply the output voltage of the second infrared detector (38) by the ratio of the viewing angle looking into the plate (36), and subtract that value from the output voltage of each infrared detection element that makes up the two-dimensional infrared detector (24). A method for correcting the output voltage of an infrared detector, characterized in that:
JP6595489A 1989-03-20 1989-03-20 Correction of output voltage of infrared detector Pending JPH02245621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6595489A JPH02245621A (en) 1989-03-20 1989-03-20 Correction of output voltage of infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6595489A JPH02245621A (en) 1989-03-20 1989-03-20 Correction of output voltage of infrared detector

Publications (1)

Publication Number Publication Date
JPH02245621A true JPH02245621A (en) 1990-10-01

Family

ID=13301887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6595489A Pending JPH02245621A (en) 1989-03-20 1989-03-20 Correction of output voltage of infrared detector

Country Status (1)

Country Link
JP (1) JPH02245621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816650B2 (en) * 2003-05-28 2010-10-19 Opto-Knowledge Systems, Inc. External variable aperture and relay for infra-red cameras
US8836793B1 (en) 2010-08-13 2014-09-16 Opto-Knowledge Systems, Inc. True color night vision (TCNV) fusion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816650B2 (en) * 2003-05-28 2010-10-19 Opto-Knowledge Systems, Inc. External variable aperture and relay for infra-red cameras
US8836793B1 (en) 2010-08-13 2014-09-16 Opto-Knowledge Systems, Inc. True color night vision (TCNV) fusion

Similar Documents

Publication Publication Date Title
Wood Uncooled thermal imaging with monolithic silicon focal planes
US9989405B2 (en) Infrared sensing devices and methods
JP4677044B2 (en) Dual band imaging device having a visible or SWIR detector combined with an uncooled LWIR detector
US7786440B2 (en) Nanowire multispectral imaging array
US6515285B1 (en) Method and apparatus for compensating a radiation sensor for ambient temperature variations
US10706514B2 (en) Systems and methods for enhanced dynamic range infrared imaging
US20100038542A1 (en) Wideband Semiconducting Light Detector
US10345154B2 (en) Infrared sensing devices and methods
US6489615B2 (en) Ultra sensitive silicon sensor
US6410916B1 (en) Room temperature IR camera
US20100084556A1 (en) Optical-infrared composite sensor and method of fabricating the same
US8373561B2 (en) Infrared detector
Murphy et al. High-sensitivity 25-micron microbolometer FPAs
Murphy et al. High-sensitivity (25-um pitch) microbolometer FPAs and application development
JPH0356831A (en) Cooling type infrared detection device
US20230324229A1 (en) Thermographic sensor with thermo-couples on a suspended grid and processing circuits in frames thereof
JP7250115B2 (en) dark reference bolometer per pixel
JPH02245621A (en) Correction of output voltage of infrared detector
WO2006038213A2 (en) Millimeter wave pixel and focal plane array imaging sensors thereof
Tanaka et al. Performance of 320x240 uncooled bolometer-type infrared focal plane arrays
GB2478708A (en) Measuring the temperature of an object with an image sensor
Fowler et al. Status of the NOAO evaluation of the Hughes 20x64 Si: As impurity band conduction array
Hay et al. Uncooled focal plane array detector development at InfraredVision Technology Corp.
WO2011121706A1 (en) Infrared ray imaging element and infrared ray imaging device
Vavilov et al. Infrared Systems