JPH02245455A - High bypass ratio turbofan engine - Google Patents

High bypass ratio turbofan engine

Info

Publication number
JPH02245455A
JPH02245455A JP1336777A JP33677789A JPH02245455A JP H02245455 A JPH02245455 A JP H02245455A JP 1336777 A JP1336777 A JP 1336777A JP 33677789 A JP33677789 A JP 33677789A JP H02245455 A JPH02245455 A JP H02245455A
Authority
JP
Japan
Prior art keywords
shaft
booster compressor
turbine
engine
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1336777A
Other languages
Japanese (ja)
Other versions
JPH0674771B2 (en
Inventor
Arthur P Adamson
アーサー・ポール・アダムソン
Robert A Wall
ロバート・アンソニー・ウォール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPH02245455A publication Critical patent/JPH02245455A/en
Publication of JPH0674771B2 publication Critical patent/JPH0674771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/06Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages
    • F02C3/067Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages having counter-rotating rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/107Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with two or more rotors connected by power transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE: To enhance the output power by coupling double reversion type turbine blades to a fan part and a booster compressor through an shaft device in a lower pressure turbine device, and by dividing the transmitted force to the fan part and the booster compressor by means of a reduction gear device. CONSTITUTION: A turbofan engine incorporates a fan part 12, a booster compressor 14, a core part 18 having a high pressure compressor and a low pressure double reversion type turbine device for driving the fan part 12 and the booster compressor 14, which are arranged successively in the mentioned order. The double inversion turbine includes a set of rotary turbine blades 22 extended from an inner drum 24, and a set of reversible rotary turbine blades 26 extending from an outer drum 28, and in this arrangement, an inner shaft 36 and an outer shaft 38 connect between the inner drum 24 and the fan part 12 and between the outer drum 28 and the booster compressor 14, respectively. Further, the engine incorporates a reduction gear device 34 for dividing the power which can be used for the turbine blades, into a power for the booster compressor 14 and a power for the fan part 12.

Description

【発明の詳細な説明】 発明の背景 [産業上の利用分野] 本発明はターボファンエンジン、とくにブースタ圧縮機
およびファン部分を駆動する低圧、部分的歯車付き二重
反転タービンを有する高バイパス比ターボファンエンジ
ンに関する。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to turbofan engines, particularly high bypass ratio turbofan engines having a low pressure, partially geared counter-rotating turbine driving a booster compressor and fan section. Regarding the fan engine.

[関連技術の説明] 高バイパス比ターボファンエンジン、すなわち約8:1
以上のバイパス比を有するターボファンエンジンは、重
くかつ高価なものとなり易い。その訳は、出力タービン
とも称せられる低速、低圧ファン駆動タービンおよび低
速ブースタ圧縮機の各々が熱力学的出力サイクルによっ
て示される必要な空気力学的仕事量を達成するため、そ
れぞれ、多くの段数を必要とするためである。また、低
速ブースタ圧縮機は回転速度が比較的低い場合、重大な
結氷の問題を生ずる。
[Description of related technology] High bypass ratio turbofan engine, approximately 8:1
Turbofan engines having bypass ratios above tend to be heavy and expensive. This is because low-speed, low-pressure fan-driven turbines, also referred to as power turbines, and low-speed booster compressors each require a large number of stages to achieve the required aerodynamic work indicated by the thermodynamic power cycle. This is for the purpose of Also, low speed booster compressors create significant icing problems at relatively low rotational speeds.

第1図において、従来技術の高バイパス比ターボファン
エンジン100は低圧または出力タービン102を有し
、タービン102はコア部分106の前方に設けられた
ブースタ圧縮機104、およびブースタ圧縮機104の
前方に設けられたファン部分108を、駆動軸110を
介して駆動する。通常、タービン部分102の出力ター
ビンの回転速度をファン部分108の所要回転速度まで
減速するため、減速歯車112がブースタ圧縮機104
とファン部分108との間において軸110に設けられ
ている。このようにして、ブースタ圧縮機104はター
ビン102と同じ高回転速度で回転され、ファン部分1
08は減速歯車112を介してファン効率を上げるに必
要な低い軸速度で回転される。
In FIG. 1, a prior art high bypass ratio turbofan engine 100 has a low pressure or power turbine 102 with a booster compressor 104 located forward of a core section 106 and a booster compressor 104 located forward of the booster compressor 104. The provided fan section 108 is driven via a drive shaft 110. Typically, a reduction gear 112 is connected to the booster compressor 104 to reduce the rotational speed of the output turbine of the turbine section 102 to the desired rotational speed of the fan section 108.
and fan portion 108 on shaft 110 . In this way, the booster compressor 104 is rotated at the same high rotational speed as the turbine 102 and the fan section 1
08 is rotated via reduction gear 112 at the low shaft speed necessary to increase fan efficiency.

しかしながら、第1図に示すエンジン装置は2つの重大
な欠点を有する。第1に減速歯車112は全ファン駆動
動力を軸110からファン部分108に伝達しなけらば
ならない。したがって、減速歯車112は必然的にきわ
めて重くなり、また減速歯車に固有の低効率および熱的
損失のため、大型でかつ効率の悪い潤滑油冷却器を必要
とする。
However, the engine arrangement shown in FIG. 1 has two significant drawbacks. First, reduction gear 112 must transfer all fan drive power from shaft 110 to fan section 108 . Therefore, reduction gear 112 is necessarily very heavy and requires a large and inefficient lubricating oil cooler due to the inherent low efficiency and thermal losses of reduction gears.

第2に、利用可能な最大回転速度がタービンブレードの
応力限界により制限されるため、LPツタ−ンの段数は
効率的な段負荷を維持するため比較的多くしなければな
らない。多数のLPタービン段数は重量およびロータの
動的な設計問題を増加する。
Second, because the maximum available rotational speed is limited by the stress limits of the turbine blades, the number of stages in the LP tube must be relatively large to maintain efficient stage loading. A large number of LP turbine stages increases weight and rotor dynamic design issues.

発明の要約 したがって、本発明の目的は、(a)応力によるタービ
ン速度限界をこえることなく、また(b)出力タービン
の動力のすべてを変速機箱を通して伝達することなしに
、ファン、ブースタおよび出力タービンの回転速度を一
致させかつ最適化するために歯車を利用した、高バイパ
ス比ターボファンエンジンを提供することである。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to operate the fan, booster, and power turbine without (a) exceeding stress-induced turbine speed limits and (b) transmitting all of the power turbine power through the transmission box. To provide a high bypass ratio turbofan engine that utilizes gears to match and optimize the rotational speed of the engine.

本発明のさらに別の目的は、ファン、ブースタおよび二
重反転出力タービンの回転速度を一致させかつ最適化し
、二重反転する出力タービンブレードおよび関連ドラム
が異なった回転速度(RPM)ならびに方向で作動する
高バイパス比ターボファンエンジンを提供することであ
る。
Yet another object of the present invention is to match and optimize the rotational speeds of fans, boosters, and counter-rotating power turbines so that counter-rotating power turbine blades and associated drums operate at different rotational speeds (RPMs) and directions. The purpose of the present invention is to provide a high bypass ratio turbofan engine.

本発明のさらに別の目的は、−層小型で、軽量、かつ−
鳴動率的な減速歯車が、ファンおよびブースタ圧縮機と
の間でシャフトで利用される高バイパス比ターボファン
エンジンを提供することである。
Yet another object of the invention is to - compact, lightweight and -
To provide a high bypass ratio turbofan engine, a rumble reduction gear is utilized on the shaft between the fan and the booster compressor.

本発明のさらに別の目的は、ブースタ圧縮機およびファ
ン部分の駆動タービンが少ないタービン段数を持ち一層
小型かつ軽量に作られているが、ブースタ圧縮機および
ファン部分を最適性能レベルで作動するため動力要求に
適合している高バイパス比ターボファンエンジンを提供
することである。
Still another object of the present invention is that the drive turbine for the booster compressor and fan section is made smaller and lighter with fewer turbine stages, but still powered to operate the booster compressor and fan section at optimum performance levels. An object of the present invention is to provide a high bypass ratio turbofan engine that meets the requirements.

本発明のこれ以外の目的および利点は、下記に記載され
、一部はその記載から明らかとなるかまたは本発明を実
施することによって修得されるであろう。本発明の目的
および利点は、特許請求の範囲で特定した手段および組
合せによって実現かつ達成することができる。
Other objects and advantages of the invention are set forth below, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instruments and combinations specified in the claims.

上記目的を達成するため、本明細書で具体化されかつ概
略記載される本発明の目的に沿う高バイパス比ターボフ
ァンエンジンは、ファン部分、およびエンジンを通る燃
焼ガス流に関してファン部分の下流に設けられたブース
タ圧縮機を宵する。
To achieve the above objects, a high bypass ratio turbofan engine in accordance with the objects of the invention embodied and generally described herein is provided with a fan section and downstream of the fan section with respect to combustion gas flow through the engine. The booster compressor that has been removed will be used overnight.

コア部分はブースタ圧縮機後方に設けられ、ファン部分
およびブースタ圧縮機を駆動する低圧タービン装置はコ
アの後方に設けられている。低圧タービン装置は少なく
とも1組の軸方向に離れた回転ブレード列および1組の
軸方向に離れた反対回転すなわち二重反転するタービン
ブレードを有し、前記ブレードは異なる速度および異な
る方向に回転する。外側および内側軸装置が、タービン
ブレードをブースタ圧縮機に結合するため、また二重反
転タービンブレードをファン部分に結合するため、夫々
設けられている。減速歯車装置は高速タービンブレード
をファン部分に結合するためかつ外側軸の回転速度を減
速するため設けられ、外側軸は低圧タービンの出力をフ
ァン部分の速度および方向を一致させそれによりタービ
ンブレードの使用可能な出力をファン部分とブースタ圧
縮機の間で分割するように伝達する。
The core portion is provided behind the booster compressor, and the fan portion and the low pressure turbine device that drives the booster compressor are provided behind the core. The low pressure turbine arrangement has at least one axially spaced row of rotating blades and a set of axially spaced counter-rotating or counter-rotating turbine blades, the blades rotating at different speeds and in different directions. Outer and inner shaft devices are provided for coupling the turbine blades to the booster compressor and the counter-rotating turbine blades to the fan section, respectively. Reduction gearing is provided to couple the high speed turbine blades to the fan section and to reduce the rotational speed of the outer shaft, which matches the output of the low pressure turbine to the speed and direction of the fan section, thereby improving the use of the turbine blades. The possible power is transmitted in a split manner between the fan section and the booster compressor.

第1組のタービンブレードは内側ドラムに取付けられて
半径方向外方に延び、反対回転タービンブレードは外側
ドラムに取付けられて半径方向内方に延び、回転ブレー
ドの列は反対回転タービンブレードの列と交錯するのが
好ましい。内側ドラムは外側軸装置に連結され、外側ド
ラムは、取付けは反対になるが、内側軸装置に連結され
るのが好ましい。
A first set of turbine blades is mounted on the inner drum and extends radially outwardly, a counter-rotating turbine blade is mounted on the outer drum and extends radially inwardly, and the row of rotating blades is connected to the row of counter-rotating turbine blades. Preferably, they intersect. Preferably, the inner drum is connected to an outer shaft arrangement, and the outer drum is connected to an inner shaft arrangement, although the mounting is reversed.

第1組のブレードは、交錯する反対回転タービンブレー
ドより高い回転速度すなわち大きい回転数で回転するの
が好ましい。このことはエンジン性能を最適化し歯車箱
のサイズと重量およびエンジンの複雑さを最小にするの
に役立つ。
Preferably, the first set of blades rotates at a higher rotational speed or number of revolutions than the intersecting counter-rotating turbine blades. This helps optimize engine performance and minimize gearbox size and weight and engine complexity.

外側および内側軸装置は、二重スプールとして設けられ
た反対方向に回転する外側および内側の同心軸を有し、
内側軸は反対回転タービンブレードを有する外側ドラム
とファン部分との間に延びてファン部分を直接駆動する
のが好ましい。
The outer and inner shaft devices have oppositely rotating outer and inner concentric shafts provided as dual spools;
Preferably, the inner shaft extends between the outer drum having counter-rotating turbine blades and the fan section to directly drive the fan section.

減速歯車装置が軸装置の外側軸に連結された入力軸、お
よびファン部分に連結された出力軸を備えた減速歯車を
有することはさらに好ましい。減速歯車はまた、軸装置
における外側軸の回転方向を逆転する装置を有し、減速
歯車の外側軸の回転方向および速度を、内側軸の回転方
向および速度と一致させそれによりファン部分を回転す
るのに必要な入力を補完するのが好ましい。
It is further preferred that the reduction gearing has a reduction gear with an input shaft connected to the outer shaft of the shaft arrangement and an output shaft connected to the fan section. The reduction gear also has a device for reversing the direction of rotation of the outer shaft in the shaft arrangement to match the rotation direction and speed of the outer shaft of the reduction gear with the rotation direction and speed of the inner shaft, thereby rotating the fan section. It is preferable to supplement the input required for

本明細書に添付の図面は、本発明の好ましい実施例を示
し、上記の一般的説明および下記の好ましい実施例の説
明とともに本発明の詳細な説明するのに役立つであろう
The drawings attached hereto illustrate preferred embodiments of the invention and, together with the general description above and the description of the preferred embodiments below, will serve to explain the invention in detail.

C実施例] 好ましい実施例の説明 以下、図面に基づいて本発明の好ましい実施例を説明す
る。
C Embodiment] Description of Preferred Embodiments Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第2図に示す本発明の高バイパス比ターボファンエンジ
ン10は、エンジンに回転可能に取付けられたファン部
分12、および矢印16で示すエンジンを通る燃焼ガス
流に関してファン部分12の後方に設けられたブースタ
圧縮機14を有する。
The high bypass ratio turbofan engine 10 of the present invention shown in FIG. It has a booster compressor 14.

さらにエンジン1Gはブースタ圧縮機14の後方に設け
られたコア部分18を有する。代表的に、コア部分18
は燃焼室に通ずる高圧圧縮機を有し、燃焼室は高温燃焼
生成物を1つ又はそれ以上の高圧タービンを通して排出
する。コア18のこれらの要素は、当業者には容易に判
る通り、それら要素がターボファンエンジンのコア部分
の代表的な要素であるため図示されていない。
Furthermore, the engine 1G has a core portion 18 provided behind the booster compressor 14. Typically, the core portion 18
has a high pressure compressor communicating with a combustion chamber that exhausts hot combustion products through one or more high pressure turbines. These elements of core 18 are not shown because they are typical of the core portion of a turbofan engine, as will be readily apparent to those skilled in the art.

本発明によれば、さらにエンジン10は、コア後方に設
けられ、ファン部分およびブースタ圧縮機を駆動する低
圧タービン装置を有する。図示のように、低圧タービン
装置は、全体的に20で示された二重反転するタービン
を有する。二重反転タービン20は、独立して回転する
ようにエンジン10内の軸受に取付けられた内側ドラム
24が延在する少なくとも1組の回転タービンブレード
22を有している。更に二重反転タービン2oは、回転
可能なケーシングまたは外側ドラム28から延在し且つ
内側ドラム24を囲んでいる少なくとも1組の反対方向
に回転する反対回転タービンブレード26を有している
。この実施例において、第1の回転タービンブレード2
2は反対回転タービンブレード26より高い回転速度R
PMで作動するように設計、構成されている。回転可能
なシール32はエンジン10のフレーム34に対して外
側ドラム28をシールしている。
According to the invention, the engine 10 further includes a low pressure turbine arrangement located behind the core and driving the fan section and the booster compressor. As shown, the low pressure turbine system has a counter-rotating turbine, generally designated 20. Counter-rotating turbine 20 has at least one set of rotating turbine blades 22 extending from an inner drum 24 mounted on bearings within engine 10 for independent rotation. Additionally, the counter-rotating turbine 2o has at least one set of counter-rotating turbine blades 26 extending from a rotatable casing or outer drum 28 and surrounding the inner drum 24 in opposite directions. In this embodiment, the first rotating turbine blade 2
2 is a higher rotational speed R than the counter-rotating turbine blade 26
Designed and configured to operate with PM. A rotatable seal 32 seals outer drum 28 to frame 34 of engine 10.

本発明によればエンジン10はさらに、タービンブレー
ドをブースタ圧縮機に結合する外側軸装置、および反対
回転タービンをファン部分に直接結合する内側軸装置を
有する。図示のように、内側と外側軸装置は、夫々の軸
受30.31に二重スプールとして設けられた、二重反
転する同心の内側および外側軸36.38を有する。内
側軸36は一端で二重反転するタービンブレード26お
よび外側ドラム28に直接連結され、他端でファン部分
12に連結され、ファン部分12を反対回転のタービン
ブレードおよび外側ドラム28と同じ回転速度で直接駆
動する。
In accordance with the present invention, engine 10 further includes an outer shaft arrangement that couples the turbine blades to the booster compressor and an inner shaft arrangement that couples the counter-rotating turbine directly to the fan section. As shown, the inner and outer shaft devices have counter-rotating concentric inner and outer shafts 36.38 mounted as double spools in respective bearings 30.31. The inner shaft 36 is connected directly to the counter-rotating turbine blades 26 and outer drum 28 at one end and to the fan section 12 at the other end, driving the fan section 12 at the same rotational speed as the counter-rotating turbine blades and outer drum 28. Drive directly.

外側軸38は第1タービンブレード22および内側ドラ
ム24を連結軸4oを介してブースタ圧縮機14に直接
結合し、ブースタ圧縮機14を第1タービンブレード2
2と同じ高い回転速度で駆動する。
Outer shaft 38 directly couples first turbine blade 22 and inner drum 24 to booster compressor 14 via connecting shaft 4o, and connects booster compressor 14 to first turbine blade 2
It is driven at the same high rotational speed as 2.

本発明によれば、さらにエンジン1oはタービンブレー
ドをファン部分に結合し、その回転速度を減速してファ
ン部分の回転速度に一致させ、タービンブレードの使用
可能な出力をブースタ圧縮機とファンに分割する減速歯
車装置を有する。図示のように、減速歯車装置は減速歯
車42を有し、減速歯車42は第1タービンブレード2
2および内側ドラム24に連結された軸装置の外側軸に
よって直接駆動される入力軸44、およびファンを駆動
するためファン部分12に連結された外側出力軸46を
有する。減速歯車42は第1タービンブレード22の高
回転速度とファン部分12の回転速度に等しい内側軸3
6の低回転速度を一致させるように作用する。
According to the invention, the engine 1o further couples the turbine blades to the fan section, reduces its rotational speed to match the rotational speed of the fan section, and divides the usable power of the turbine blades between the booster compressor and the fan. It has a reduction gear device. As shown, the reduction gearing has a reduction gear 42, the reduction gear 42 being the first turbine blade 2.
2 and an input shaft 44 directly driven by the outer shaft of the shaft device coupled to the inner drum 24, and an outer output shaft 46 coupled to the fan section 12 for driving the fan. The reduction gear 42 has a high rotational speed of the first turbine blade 22 and an inner shaft 3 equal to the rotational speed of the fan section 12.
It acts to match the low rotational speed of 6.

さらに、減速歯車42は、出力軸46の回転方向を内側
軸の回転方向に一致させファン部分12に伝達される軸
出力を補完しかつ補足するように、外側軸の回転方向を
逆転する装置を有する。外側軸38の回転方向を逆転す
る装置を有する減速歯車42の作動状態は、本発明の範
囲を限定しもしくは制限するものではない。本発明に対
して使用可能な減速歯車42の多くの通常の具体的構造
が当業者に知られている。たとえばただし限定の意味で
なく、1984年マツグロー・ヒル社(Mac−Gra
v 11111)発行に掛かるダールΦW・ダッドレー
(Darle W、Dudley)著[実用歯車設計ハ
ンドブック」に開示されている。
Additionally, the reduction gear 42 includes a device for reversing the direction of rotation of the outer shaft so that the direction of rotation of the output shaft 46 matches the direction of rotation of the inner shaft to complement and supplement the shaft power transmitted to the fan portion 12. have The operating condition of the reduction gear 42 with the device for reversing the direction of rotation of the outer shaft 38 does not limit or limit the scope of the invention. Many common implementations of reduction gears 42 that can be used with the present invention are known to those skilled in the art. For example, but not in a limited sense, in 1984 Mac-Gra Hill Co.
v 11111) by Darle W. Dudley (Practical Gear Design Handbook).

本発明は第2図の実施例に示すように、第1図に示す通
常のまたは従来技術を超えた、いくつかの利点を有する
。第1に、第1タービンブレード22は高速で回転して
低圧タービン20の効率を改善するとともに、ブースタ
圧縮機14を同じ高回転速度で駆動してブースタ圧縮機
14が一層良い効率を得るように構成されている。第2
に、同じ出力を得るため、ブースタ圧縮機14に一層少
ない段数しか必要でなく、低回転速度で駆動されるブー
スタ圧縮機に付随する結氷の問題は実質的に解消される
。第3に、低圧タービン20のタービンブレードにおけ
る所定のタービン応力限界に対して、連続した列のブレ
ードと反対回転するブレードとの間の相対速度が、(要
素が二重反転するため)従来技術のファン駆動タービン
より大きく設計しうるので、−層多くの仕事を取出すこ
とができる。第4に、減速歯車42はファン出力の一部
だけを伝達するため、減速歯車42および潤滑油冷却装
置の重量および寸法を減少することができる。最後に、
同じタービンブレード応力限界に対して従来技術の構造
の低圧タービンと同じ軸出力を取出す為に、低圧タービ
ン20では、−層少ない段数しか必要でない。
The present invention, as illustrated in the embodiment of FIG. 2, has several advantages over the conventional or prior art technique illustrated in FIG. First, the first turbine blades 22 rotate at a high speed to improve the efficiency of the low pressure turbine 20 and drive the booster compressor 14 at the same high rotational speed so that the booster compressor 14 has better efficiency. It is configured. Second
Additionally, fewer stages are required in the booster compressor 14 to achieve the same output, and the icing problems associated with booster compressors operated at low rotational speeds are substantially eliminated. Third, for a given turbine stress limit on the turbine blades of low pressure turbine 20, the relative velocities between the successive rows of blades and the counter-rotating blades (because the elements counter-rotate) are lower than those of the prior art. Because they can be designed larger than fan-driven turbines, more work can be extracted. Fourth, because the reduction gear 42 transmits only a portion of the fan output, the weight and size of the reduction gear 42 and the lubricant cooling system can be reduced. lastly,
In order to obtain the same shaft power as a low pressure turbine of prior art construction for the same turbine blade stress limit, the low pressure turbine 20 requires -fewer stages.

第2図に示す本発明によって、速度範囲および内側およ
び外側軸36.38間に動力を分配することができる。
The invention shown in FIG. 2 allows power to be distributed between the speed range and the inner and outer shafts 36,38.

例示としてただし限定の意味でなく、軸36.38の代
表的動力分割および運転速度は下記の通りである。ここ
で、SI−軸36の回転速度(R,P、M、) 、Sz
−軸38の回転速度(R,P、 M、 ) 、T+−軸
36のトルク、T2−軸38のトルク、そしてHP−符
号1,2で夫々示す各々の軸36.38の出力である。
By way of example, but not limitation, typical power splits and operating speeds for shafts 36,38 are as follows. Here, the rotational speed of the SI-axis 36 (R, P, M,), Sz
- rotational speed (R, P, M, ) of shaft 38, T+-torque of shaft 36, T2-torque of shaft 38, and HP-power of each shaft 36, 38, designated 1 and 2, respectively.

例;SI           −2000(Sl +
52)2/ (Sz)2=49/25(Sz /S+ 
) 2−6. 25 7:/T+        =1. 0HP2 /HP
I      −2,5ブ一スタ圧縮機HP   −全
HPの20%51HPZ全HP     −28,6%
S+HP/ファンHP   −35,7%減速歯車HP
/全HP    −51,4%減速歯車HP/ファンH
P−64.3%上記例において、第1図のエンジンの軸
!10が速度S2で回転するとすれば、反対回転タービ
ン20前後のおよびタービン102前後のエンタルピの
同じ変化に対して、1膜力たり出力仕事は夫々の軸速度
の二乗の比に直接関連するため、従来技術の構造におけ
るエンジンの低圧タービン102に対して必要なものに
対して、反対回転タービン20に必要なタービン段数は
約二分の−すなわち49/25となる。
Example; SI -2000 (Sl +
52)2/(Sz)2=49/25(Sz/S+
) 2-6. 25 7:/T+ =1. 0HP2 /HP
I - 2,5 blaster compressor HP - 20% of total HP 51HPZ Total HP - 28,6%
S+HP/Fan HP -35.7% reduction gear HP
/Total HP -51.4% reduction gear HP/Fan H
P-64.3% In the above example, the engine shaft in Figure 1! 10 rotates at a speed S2, for the same change in enthalpy before and after the counter-rotating turbine 20 and before and after the turbine 102, one membrane force or output work is directly related to the ratio of the square of the respective shaft speeds. The number of turbine stages required for the counter-rotating turbine 20 is approximately half - or 49/25, as compared to that required for the low pressure turbine 102 of the engine in prior art configurations.

さらに、ブースタ圧縮機14に必要な段数は、第1図に
示す従来技術のターボファンエンジン100に比較して
、本発明の技術によるエンジンの構造によって減少する
ことができる。−層普通のファン速度RPMでよりも第
1タービンブレード22と同じ速度で回転するブースタ
圧縮機は、1膜力たりの出力を増加する。
Additionally, the number of stages required for the booster compressor 14 may be reduced by the construction of the engine in accordance with the present technique as compared to the prior art turbofan engine 100 shown in FIG. - A booster compressor rotating at the same speed as the first turbine blade 22 rather than at the normal fan speed RPM increases the power output per membrane force.

最後に、本発明の技術によるエンジンにおける減速歯車
42の寸法、重量および潤滑油冷却器容積は、減速歯車
42が全ファン出力の一部しか伝達しないため、第1図
に示す従来技術のエンジン100の所要の減速歯車およ
び潤滑油冷却器の僅かに約64.3%にすぎない。
Finally, the size, weight, and lubricant cooler volume of the reduction gear 42 in the engine according to the present technique are significantly smaller than the prior art engine 100 shown in FIG. only about 64.3% of the required reduction gear and lubricant cooler.

上記実施例において、軸38と軸36の間の任意の回転
速度の比は2.5:1に選択される。軸RPMの正確な
比は、反対回転タービン20のコストおよび重量とブー
スタ圧縮機14のコストおよび重量の好ましい折衷をは
かるため変更することができる。たとえば、軸36と軸
38の回転速度間の2.0:1の比は、反対回転タービ
ン20とブースタ圧縮機14は大きくなるが、重量が減
りそして一層小型の減速歯車42を得ることができる。
In the above embodiment, the arbitrary rotational speed ratio between shaft 38 and shaft 36 is selected to be 2.5:1. The exact ratio of shaft RPM can be varied to strike a favorable compromise between the cost and weight of counter-rotating turbine 20 and booster compressor 14. For example, a 2.0:1 ratio between the rotational speeds of shafts 36 and 38 may result in a larger counter-rotating turbine 20 and booster compressor 14, but reduced weight and a smaller reduction gear 42. .

軸36と軸38の間の回転速度の最適な比を、特定のエ
ンジンの運転範囲内で各用途に対して選択することがで
きる。
The optimum ratio of rotational speeds between shafts 36 and 38 can be selected for each application within the operating range of the particular engine.

追加的な利点および変型は当業者によって容易になしう
るちのである。したがって、本発明はその広範囲の事項
において、特定の詳細事項、代表的な装置および図示し
かつ記載した説明の実施例に限定されるものでない。し
たがって、特許請求の範囲の記載およびそれらの均等物
によって定められる一般的発明概念の精神および範囲か
ら逸脱することなく、このような詳細事項に拘束されな
い。
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus and embodiments shown and described. Accordingly, one is not bound by such details without departing from the spirit and scope of the general inventive concept as defined by the claims and their equivalents.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はファンに伝達される全ての軸出力が減速歯車装
置を通って伝達される従来の高バイパス比ターボファン
エンジンの概略図、そして第2図は本発明を取り入れた
高バイパス比ターボファンエンジンの概略図である。 主な符号の説明 1G・・・ターボファンエンジンエンジン、12・・・
ファン部分、14・・・ブースタ圧縮機、18・・・コ
ア部分、20・・・反対回転タービン、22・・・ター
ビンブレード、24・・・内側ドラム、26・・・反対
回転タービンブレード、28・・・外側ドラム、30.
31・・・軸受、32・・・シール、34・・・フレー
ム、36・・・内側軸、38・・・外側軸、40・・・
連結軸ミ42・・・減速歯車、44・・・入力軸、46
・・・出力軸。
FIG. 1 is a schematic diagram of a conventional high-bypass ratio turbofan engine in which all shaft power transmitted to the fan is transmitted through a reduction gearing, and FIG. 2 is a high-bypass-ratio turbofan incorporating the present invention. It is a schematic diagram of an engine. Explanation of main codes 1G...Turbofan engine, 12...
Fan portion, 14... Booster compressor, 18... Core portion, 20... Counter rotating turbine, 22... Turbine blade, 24... Inner drum, 26... Counter rotating turbine blade, 28 ...outer drum, 30.
31...Bearing, 32...Seal, 34...Frame, 36...Inner shaft, 38...Outer shaft, 40...
Connection shaft Mi 42... Reduction gear, 44... Input shaft, 46
...output shaft.

Claims (1)

【特許請求の範囲】 1、ファン部分と、 エンジンを通る燃焼ガス流に関して前記ファン部分の後
方に設けられたブースタ圧縮機と、前記ブースタ圧縮機
部分の後方に設けられたコア部分と、 少なくとも1組の回転可能な第1タービンブレードおよ
び少なくとも1組の反対方向に回転可能な第2タービン
ブレードを有する反対回転タービンを備え、前記コア部
分の後方に設けられたタービン装置と、 前記第1ブレードを前記ブースタ圧縮機に結合する外側
軸装置と、 前記反対回転するタービンブレードを前記ファン部分に
結合する内側軸装置と、 前記外側軸装置を前記ファン部分に結合しその回転速度
を減速して前記ファン部分の回転速度および方向に一致
させそれにより前記第1タービンブレードの使用可能な
出力を前記ファン部分と前記ブースタ圧縮機とに分割す
る減速歯車装置とを含む高バイパス比ターボファンエン
ジン。 2、前記第1タービンブレードは前記反対回転するター
ビンブレードより高い回転速度で作動するよう作用する
請求項1記載のエンジン。 3、前記内側及び外軸装置は、二重スプールとして夫々
配置された同心の内側および外側軸を有し、前記内側軸
は前記反対回転タービンプレートと前記ファン部分との
間に直接延在して前記ファン部分を駆動する、前記請求
項1記載のエンジン。 4、前記タービンブレードは軸方向に離れた内側ブレー
ド列として設けられ且つ回転可能な内側ドラムから半径
方向外方に延在し、前記内側ドラムは前記外側軸に固定
され、前記反対回転タービンブレードは軸方向に離れた
外側ブレード列として設けられ且つ前記内側ドラムの周
囲に設けられた回転可能な外側ドラムから半径方向内方
に延在し、前記外側ドラムは前記内側軸に固定して連結
された、請求項1記載のエンジン。 5、前記減速歯車装置は、前記外側軸に連結された入力
軸および前記ファン部分に連結された外側軸を備えた減
速歯車を有し、前記減速歯車は前記外側軸の回転方向が
前記内側軸の回転方向に一致するように前記外側軸の回
転方向を逆転する装置を有する、請求項4記載のエンジ
ン。
Claims: 1. a fan section; a booster compressor disposed aft of the fan section with respect to combustion gas flow through the engine; and a core section disposed aft of the booster compressor section; at least one a counter-rotating turbine having a set of rotatable first turbine blades and at least one set of oppositely rotatable second turbine blades, the turbine arrangement being disposed aft of the core portion; an outer shaft assembly that couples the booster compressor to the booster compressor; an inner shaft assembly that couples the counter-rotating turbine blades to the fan section; and an inner shaft assembly that couples the outer shaft assembly to the fan section to reduce the rotational speed of the fan section. a high bypass ratio turbofan engine including a reduction gearing for matching the rotational speed and direction of the sections and thereby dividing the usable power of the first turbine blade between the fan section and the booster compressor. 2. The engine of claim 1, wherein the first turbine blade is operative to operate at a higher rotational speed than the counter-rotating turbine blade. 3. The inner and outer shaft devices have concentric inner and outer shafts arranged as double spools, respectively, and the inner shaft extends directly between the counter-rotating turbine plate and the fan section. The engine of claim 1 driving the fan portion. 4. The turbine blades are provided in an axially spaced row of inner blades and extend radially outwardly from a rotatable inner drum, the inner drum being fixed to the outer shaft, and the counter-rotating turbine blades extending radially inwardly from a rotatable outer drum provided in an axially spaced row of outer blades and disposed about the inner drum, the outer drum being fixedly connected to the inner shaft; , The engine according to claim 1. 5. The reduction gear device includes a reduction gear including an input shaft connected to the outer shaft and an outer shaft connected to the fan portion, and the reduction gear has a rotation direction of the outer shaft that is aligned with the inner shaft. 5. The engine of claim 4, further comprising a device for reversing the direction of rotation of said outer shaft to match the direction of rotation of said outer shaft.
JP1336777A 1989-01-03 1989-12-27 High bypass ratio turbofan engine Expired - Lifetime JPH0674771B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/292,841 US4969325A (en) 1989-01-03 1989-01-03 Turbofan engine having a counterrotating partially geared fan drive turbine
US292,841 1989-01-03

Publications (2)

Publication Number Publication Date
JPH02245455A true JPH02245455A (en) 1990-10-01
JPH0674771B2 JPH0674771B2 (en) 1994-09-21

Family

ID=23126434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336777A Expired - Lifetime JPH0674771B2 (en) 1989-01-03 1989-12-27 High bypass ratio turbofan engine

Country Status (6)

Country Link
US (1) US4969325A (en)
JP (1) JPH0674771B2 (en)
DE (1) DE3943102A1 (en)
FR (1) FR2641332B1 (en)
GB (1) GB2226599B (en)
IL (1) IL92825A0 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264940A (en) * 2004-03-19 2005-09-29 Rolls Royce Plc Turbine engine structure and turbine engine
JP2008032016A (en) * 2006-07-31 2008-02-14 General Electric Co <Ge> Gas turbine engine assembly
JP2008111437A (en) * 2006-10-27 2008-05-15 General Electric Co <Ge> Gas turbine engine assembly
JP2008115856A (en) * 2006-10-31 2008-05-22 General Electric Co <Ge> Gas turbine engine assembly
JP2008115859A (en) * 2006-10-31 2008-05-22 General Electric Co <Ge> Turbofan engine assembly
JP2013181542A (en) * 2012-02-29 2013-09-12 United Technologies Corp <Utc> Gas turbine engine
JP2015163793A (en) * 2013-02-04 2015-09-10 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Method of improving performance of gas turbine engine
JP2016509153A (en) * 2013-01-18 2016-03-24 ゼネラル・エレクトリック・カンパニイ Engine configuration with reverse rotation integrated drive and vaneless turbine
JP2016196883A (en) * 2015-04-06 2016-11-24 ゼネラル・エレクトリック・カンパニイ Fan bearings for turbine engine
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0558769A1 (en) * 1992-02-29 1993-09-08 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Fanjet with booster compressor
US5361580A (en) * 1993-06-18 1994-11-08 General Electric Company Gas turbine engine rotor support system
DE19515966C2 (en) * 1995-05-02 1996-05-09 Kastens Karl Turbo engine for supersonic aircraft with deceleration thrust and attitude control
DE19828562B4 (en) * 1998-06-26 2005-09-08 Mtu Aero Engines Gmbh Engine with counter-rotating rotors
FR2817912B1 (en) * 2000-12-07 2003-01-17 Hispano Suiza Sa REDUCER TAKING OVER THE AXIAL EFFORTS GENERATED BY THE BLOWER OF A TURBO-JET
US6708482B2 (en) 2001-11-29 2004-03-23 General Electric Company Aircraft engine with inter-turbine engine frame
US6684626B1 (en) 2002-07-30 2004-02-03 General Electric Company Aircraft gas turbine engine with control vanes for counter rotating low pressure turbines
US6711887B2 (en) 2002-08-19 2004-03-30 General Electric Co. Aircraft gas turbine engine with tandem non-interdigitated counter rotating low pressure turbines
US6763653B2 (en) 2002-09-24 2004-07-20 General Electric Company Counter rotating fan aircraft gas turbine engine with aft booster
US6763652B2 (en) 2002-09-24 2004-07-20 General Electric Company Variable torque split aircraft gas turbine engine counter rotating low pressure turbines
US6763654B2 (en) 2002-09-30 2004-07-20 General Electric Co. Aircraft gas turbine engine having variable torque split counter rotating low pressure turbines and booster aft of counter rotating fans
US7185484B2 (en) * 2004-08-11 2007-03-06 General Electric Company Methods and apparatus for assembling a gas turbine engine
EP1825113B1 (en) * 2004-12-01 2012-10-24 United Technologies Corporation Counter-rotating gearbox for tip turbine engine
DE102005018139A1 (en) * 2005-04-20 2006-10-26 Mtu Aero Engines Gmbh Jet engine
US7490460B2 (en) * 2005-10-19 2009-02-17 General Electric Company Gas turbine engine assembly and methods of assembling same
US7493754B2 (en) * 2005-10-19 2009-02-24 General Electric Company Gas turbine engine assembly and methods of assembling same
WO2008105815A2 (en) * 2006-08-22 2008-09-04 Rolls-Royce North American Technologies, Inc. Gas turbine engine with intermediate speed booster
US7661260B2 (en) * 2006-09-27 2010-02-16 General Electric Company Gas turbine engine assembly and method of assembling same
WO2008045072A1 (en) 2006-10-12 2008-04-17 United Technologies Corporation Dual function cascade integrated variable area fan nozzle and thrust reverser
US7926259B2 (en) * 2006-10-31 2011-04-19 General Electric Company Turbofan engine assembly and method of assembling same
US7716914B2 (en) * 2006-12-21 2010-05-18 General Electric Company Turbofan engine assembly and method of assembling same
US9359960B2 (en) 2007-06-28 2016-06-07 United Technologies Corporation Gas turbines with multiple gas flow paths
US8844265B2 (en) 2007-08-01 2014-09-30 United Technologies Corporation Turbine section of high bypass turbofan
US11149650B2 (en) 2007-08-01 2021-10-19 Raytheon Technologies Corporation Turbine section of high bypass turbofan
US11346289B2 (en) 2007-08-01 2022-05-31 Raytheon Technologies Corporation Turbine section of high bypass turbofan
US11242805B2 (en) 2007-08-01 2022-02-08 Raytheon Technologies Corporation Turbine section of high bypass turbofan
US11486311B2 (en) 2007-08-01 2022-11-01 Raytheon Technologies Corporation Turbine section of high bypass turbofan
US20150377123A1 (en) 2007-08-01 2015-12-31 United Technologies Corporation Turbine section of high bypass turbofan
US8015798B2 (en) * 2007-12-13 2011-09-13 United Technologies Corporation Geared counter-rotating gas turbofan engine
US8191352B2 (en) * 2008-12-19 2012-06-05 General Electric Company Geared differential speed counter-rotatable low pressure turbine
FR2942273B1 (en) 2009-02-18 2011-06-10 Snecma DOUBLE FLOW MOTOR WITH CONTRAROTATIVE TURBINE WHEELS
US8063528B2 (en) * 2009-12-18 2011-11-22 General Electric Company Counter-rotatable generator
US10287914B2 (en) * 2012-01-31 2019-05-14 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section and bearing support features
US20130219922A1 (en) * 2012-02-29 2013-08-29 Jonathan Gilson Geared gas turbine engine with reduced fan noise
US9194290B2 (en) 2012-02-29 2015-11-24 United Technologies Corporation Counter-rotating low pressure turbine without turbine exhaust case
US9080512B2 (en) 2012-02-29 2015-07-14 United Technologies Corporation Counter-rotating low pressure turbine with gear system mounted to mid turbine frame
US20130219859A1 (en) * 2012-02-29 2013-08-29 Gabriel L. Suciu Counter rotating low pressure compressor and turbine each having a gear system
US9011076B2 (en) * 2012-02-29 2015-04-21 United Technologies Corporation Counter-rotating low pressure turbine with gear system mounted to turbine exhaust case
US10107191B2 (en) 2012-02-29 2018-10-23 United Technologies Corporation Geared gas turbine engine with reduced fan noise
US9022725B2 (en) 2012-02-29 2015-05-05 United Technologies Corporation Counter-rotating low pressure turbine with gear system mounted to turbine exhaust case
US9353754B2 (en) * 2012-03-13 2016-05-31 Embry-Riddle Aeronautical University, Inc. Multi-stage axial compressor with counter-rotation using accessory drive
US20130259650A1 (en) * 2012-04-02 2013-10-03 Frederick M. Schwarz Geared turbofan with three turbines with first two co-rotating and third rotating in an opposed direction
US10125693B2 (en) 2012-04-02 2018-11-13 United Technologies Corporation Geared turbofan engine with power density range
US9074485B2 (en) * 2012-04-25 2015-07-07 United Technologies Corporation Geared turbofan with three turbines all counter-rotating
US9163717B2 (en) 2012-04-30 2015-10-20 United Technologies Corporation Multi-piece fluid manifold for gas turbine engine
US8956108B2 (en) 2012-05-11 2015-02-17 Pratt & Whitney Canada Corp Geared fan assembly
US9228535B2 (en) 2012-07-24 2016-01-05 United Technologies Corporation Geared fan with inner counter rotating compressor
BR112015007733B1 (en) * 2012-10-08 2022-05-03 United Technologies Corporation Gas turbine engines, and, method for distributing weight between a propeller assembly and a gas generator assembly of a gas turbine engine
EP3961016A1 (en) * 2013-02-13 2022-03-02 Raytheon Technologies Corporation Gas turbine engine geared architecture
EP3575561B1 (en) * 2013-03-13 2022-04-13 Raytheon Technologies Corporation A turbofan engine and a method of controlling loads on a speed reduction device
US9752500B2 (en) * 2013-03-14 2017-09-05 Pratt & Whitney Canada Corp. Gas turbine engine with transmission and method of adjusting rotational speed
WO2015002680A2 (en) * 2013-06-06 2015-01-08 United Technologies Corporation Manifold for gas turbine
US9739205B2 (en) 2013-12-23 2017-08-22 United Technologies Corporation Geared turbofan with a gearbox upstream of a fan drive turbine
US9410430B2 (en) 2014-06-19 2016-08-09 Jay HASKIN Turbine apparatus with counter-rotating blades
BE1024024B1 (en) * 2014-10-09 2017-10-30 Safran Aero Boosters S.A. AXIAL TURBOMACHINE COMPRESSOR WITH CONTRAROTATIVE ROTOR
GB201516570D0 (en) * 2015-09-18 2015-11-04 Rolls Royce Plc A Shafting Arrangement
US9745860B1 (en) * 2016-11-02 2017-08-29 Jay HASKIN Power transmission system for turbine or compressor having counter-rotating blades
US10260367B2 (en) * 2016-11-02 2019-04-16 Jay HASKIN Power transmission system for turbines or compressors having counter-rotating blades
US10823114B2 (en) 2017-02-08 2020-11-03 General Electric Company Counter rotating turbine with reversing reduction gearbox
US10781717B2 (en) 2017-09-20 2020-09-22 General Electric Company Turbomachine with alternatingly spaced turbine rotor blades
US10738617B2 (en) * 2017-09-20 2020-08-11 General Electric Company Turbomachine with alternatingly spaced turbine rotor blades
US10823000B2 (en) 2017-09-20 2020-11-03 General Electric Company Turbomachine with alternatingly spaced turbine rotor blades
US10823001B2 (en) 2017-09-20 2020-11-03 General Electric Company Turbomachine with alternatingly spaced turbine rotor blades
US10815881B2 (en) * 2017-09-20 2020-10-27 General Electric Company Counter rotating turbine with reversing speed reduction assembly
US11098592B2 (en) 2017-09-20 2021-08-24 General Electric Company Turbomachine with alternatingly spaced turbine rotor blades
EP3578763A1 (en) 2018-06-07 2019-12-11 Haskin, Jay Power transmission system for turbine, a turbocharger, a compressor, or a pump
EP3587772A1 (en) * 2018-06-27 2020-01-01 Rolls-Royce plc Gas turbine
US11118506B2 (en) 2018-12-21 2021-09-14 General Electric Company Gear assembly for a turbo machine
US11753939B2 (en) 2019-02-20 2023-09-12 General Electric Company Turbomachine with alternatingly spaced rotor blades
US11073088B2 (en) 2019-02-20 2021-07-27 General Electric Company Gearbox mounting in a turbomachine
US11085515B2 (en) 2019-02-20 2021-08-10 General Electric Company Gearbox coupling in a turbomachine
US11021970B2 (en) 2019-02-20 2021-06-01 General Electric Company Turbomachine with alternatingly spaced rotor blades
US11156097B2 (en) 2019-02-20 2021-10-26 General Electric Company Turbomachine having an airflow management assembly
BE1027469B1 (en) * 2019-08-01 2021-03-03 Safran Aero Boosters Sa TURBOMACHINE ARCHITECTURE WITH ACCELERATED BOOSTER
US11428160B2 (en) 2020-12-31 2022-08-30 General Electric Company Gas turbine engine with interdigitated turbine and gear assembly

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1455278A (en) * 1965-08-05 1966-04-01 Snecma Double-flow turbojet
GB1113542A (en) * 1967-01-06 1968-05-15 Rolls Royce Gas turbine engine
FR1561980A (en) * 1967-12-14 1969-04-04
US3673802A (en) * 1970-06-18 1972-07-04 Gen Electric Fan engine with counter rotating geared core booster
GB1309721A (en) * 1971-01-08 1973-03-14 Secr Defence Fan
GB1411380A (en) * 1971-12-28 1975-10-22 Rolls Royce Planet carrier for planetary gearing
GB1484898A (en) * 1974-09-11 1977-09-08 Rolls Royce Ducted fan gas turbine engine
FR2360758A1 (en) * 1976-08-02 1978-03-03 Gen Electric Gas turbine for aviation propulsion - has differential gear between turbine and compressor and blower drive shafts
US4159624A (en) * 1978-02-06 1979-07-03 Gruner George P Contra-rotating rotors with differential gearing
US4251987A (en) * 1979-08-22 1981-02-24 General Electric Company Differential geared engine
NL8303401A (en) * 1982-11-01 1984-06-01 Gen Electric DRIVE TURBINE FOR OPPOSITE ROTATING PROPELLERS.
GB2194292A (en) * 1986-08-29 1988-03-02 Gen Electric High bypass ratio counterrotating turbofan engine
GB8630754D0 (en) * 1986-12-23 1987-02-04 Rolls Royce Plc Turbofan gas turbine engine
DE3812027A1 (en) * 1988-04-11 1989-10-26 Mtu Muenchen Gmbh PROPFAN TURBO ENGINE
US5010729A (en) * 1989-01-03 1991-04-30 General Electric Company Geared counterrotating turbine/fan propulsion system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4624145B2 (en) * 2004-03-19 2011-02-02 ロールス・ロイス・ピーエルシー Turbine engine structure and turbine engine
JP2005264940A (en) * 2004-03-19 2005-09-29 Rolls Royce Plc Turbine engine structure and turbine engine
JP2008032016A (en) * 2006-07-31 2008-02-14 General Electric Co <Ge> Gas turbine engine assembly
JP2008111437A (en) * 2006-10-27 2008-05-15 General Electric Co <Ge> Gas turbine engine assembly
JP2008115856A (en) * 2006-10-31 2008-05-22 General Electric Co <Ge> Gas turbine engine assembly
JP2008115859A (en) * 2006-10-31 2008-05-22 General Electric Co <Ge> Turbofan engine assembly
JP2012132469A (en) * 2006-10-31 2012-07-12 General Electric Co <Ge> Turbofan engine assembly
JP2013181542A (en) * 2012-02-29 2013-09-12 United Technologies Corp <Utc> Gas turbine engine
JP2016509153A (en) * 2013-01-18 2016-03-24 ゼネラル・エレクトリック・カンパニイ Engine configuration with reverse rotation integrated drive and vaneless turbine
JP2015163793A (en) * 2013-02-04 2015-09-10 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Method of improving performance of gas turbine engine
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
JP2016196883A (en) * 2015-04-06 2016-11-24 ゼネラル・エレクトリック・カンパニイ Fan bearings for turbine engine
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system

Also Published As

Publication number Publication date
FR2641332A1 (en) 1990-07-06
GB8928790D0 (en) 1990-02-28
IL92825A0 (en) 1990-09-17
GB2226599A (en) 1990-07-04
JPH0674771B2 (en) 1994-09-21
GB2226599B (en) 1993-07-28
FR2641332B1 (en) 1994-07-01
DE3943102A1 (en) 1990-07-05
US4969325A (en) 1990-11-13

Similar Documents

Publication Publication Date Title
JPH02245455A (en) High bypass ratio turbofan engine
US11041443B2 (en) Multi-spool gas turbine engine architecture
US10458340B2 (en) Turbine shaft power take-off
US4916894A (en) High bypass turbofan engine having a partially geared fan drive turbine
US7647851B2 (en) Propulsion power transmission device with a hydrodynamic reverse clutch
US20230151772A1 (en) Reverse-flow gas turbine engine
EP1577491B1 (en) Turbine engine arrangements
EP3273033B1 (en) Turbine shaft power take-off
JP2005513346A (en) Gas turbine engine with offset drive
JP2007113584A (en) Gas turbine engine assembly
JP4095150B2 (en) Turbine engine with optimized compression system
CA2971053A1 (en) Turbine shaft power take-off
US2528635A (en) Power gas generator for internalcombustion power units
US9109733B2 (en) Hydraulic fluid transfer coupling
US4192137A (en) Turboshaft engine
US4602478A (en) Marine gas turbine power transmission
US6224324B1 (en) Axial-flow turbine
EP0087302A1 (en) Gas turbine engine operating method and apparatus therefor
RU2141051C1 (en) Turbojet engine
JPS5982532A (en) Power transmitting apparatus of ship gas turbine
WO1990001624A1 (en) High pressure intercooled turbine engine
JPH029915A (en) Supercharger and driving of compressor of supercharger
WO2022091274A1 (en) Compressed air supply system
JPH1073003A (en) Gas turbine engine
GB2472016A (en) A gear train for contra-rotating propeller gas turbine engine