JPH0224521A - Apparatus for predicting collapse of natural ground - Google Patents

Apparatus for predicting collapse of natural ground

Info

Publication number
JPH0224521A
JPH0224521A JP17280488A JP17280488A JPH0224521A JP H0224521 A JPH0224521 A JP H0224521A JP 17280488 A JP17280488 A JP 17280488A JP 17280488 A JP17280488 A JP 17280488A JP H0224521 A JPH0224521 A JP H0224521A
Authority
JP
Japan
Prior art keywords
ground
sensor
signal
collapse
natural ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17280488A
Other languages
Japanese (ja)
Inventor
Akimi Chichibu
秩父 顕美
Kazuhiro Jo
城 和裕
Masahiro Nakamura
正博 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP17280488A priority Critical patent/JPH0224521A/en
Publication of JPH0224521A publication Critical patent/JPH0224521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To predict the collapse of natural ground by sensing the deformation of the natural ground with an AE sensor based on an acoustic emission (AE) phenomenon, and analyzing the output with a computer. CONSTITUTION:The deformation of natural ground E is sensed with an AE sensor 2 based on an AE phenomenon. Noises are removed through a filter 3. Thereafter, the signal is amplified in an amplifier 4. The signal is sent into an AE counter 5 and a waveform transmitting device 6. In the AE counter 5, only the AE signal having the amplitude of a preset value or more is counted. At the same time, the waveform data from the AE sensor 2 are digitalized in the AE sensor 2. The obtained counted data and waveform data are sent into a microcomputer 7, and recorded. At the same time, the characteristics of the signal, the occurring frequency of the signals, the waveform data and the like are analyzed in accordance with a program which is imparted beforehand, and the collapse of the natural ground is predicted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は地山の崩壊が予想される土木工事において、地
山の崩壊を監視しながら安全作業を行なうために使用す
る地山崩壊予知装置に係るものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is a rock collapse prediction device used for safe work while monitoring rock collapse in civil engineering work where rock collapse is expected. This is related to.

(従来の技術) 地山の崩壊が予想される土木工事では、地山の変形を計
測しながら工事を進行し、安全作業を図っていた。
(Conventional technology) In civil engineering work where the collapse of the ground is expected, construction work is carried out while measuring the deformation of the ground to ensure safe work.

しかしながら地山が崩壊するときの前兆現象は必らずし
も地表面や地中での変位として、EJI著な形で現われ
ないため、早期予知が非常に困難であった。特に突発的
に崩壊が起きる場合の予知は困難で、必要な防災対策を
講するのが不可能であった。
However, early prediction has been extremely difficult because the precursory phenomena when a rock collapses do not necessarily appear in the form of significant EJI displacements on the ground surface or underground. In particular, it was difficult to predict sudden collapses, making it impossible to take necessary disaster prevention measures.

当初、安定を保っていた地山を、掘削等によって人為的
に安定を乱していく土木工事では、工事の進行に伴って
どの段階から地山のバランスを保持することが不可能な
状態になったかを予測する必要がある。
In civil engineering work, where the stability of the ground is initially disrupted by excavation, etc., as the work progresses, it becomes impossible to maintain the balance of the ground at any stage. We need to predict what will happen.

従来、このような地山の変化を検知する手段として、地
山の変形を計測する方法が主に用いられてきたが、地山
のバランスが乱れ始めた初期の頃には、地表面や地中で
の変化として顕著な形で表われないため、早期予知が非
常に困難であった。
Conventionally, the main method used to detect such changes in the ground has been to measure the deformation of the ground, but in the early stages when the balance of the ground begins to be disrupted, Early prediction has been extremely difficult because changes within the body do not appear in any noticeable way.

第4図は従来の地山崩壊予知装置を示すものである。FIG. 4 shows a conventional rock collapse prediction device.

i)地表面変位計は地山の2点A、B間にピアノ線(a
)を張設し、同2点間の間隔の変位を変位針(x)で計
測することによって、地山の移動状況を把握する。この
とき変位計(X)を設定する位置は地山が移動していな
い不動点である必要がある。
i) The ground surface displacement meter is connected with a piano wire (a) between the two points A and B of the ground.
) and measure the displacement of the interval between the two points with a displacement needle (x) to understand the movement status of the ground. At this time, the position where the displacement meter (X) is set needs to be a fixed point where the ground is not moving.

ii)地中変位計は、前記地表面変位計と原理は同じで
、地中の2点A’ 、B’間に鋼線(b)を張設し、同
2点間の変位を地中変位計(■で計測する。
ii) The underground displacement meter has the same principle as the ground surface displacement meter described above, and a steel wire (b) is stretched between two underground points A' and B', and the displacement between the two points is measured underground. Measure with a displacement meter (■).

ii)主にすべり面Cの位置を推定するために、地中に
鉛直に設けられた管(0)内に傾斜角を測定する傾斜計
(Z)を挿入し、同傾斜計の計測値から地中の変形量を
計算する。
ii) Mainly to estimate the position of the slip surface C, an inclinometer (Z) that measures the inclination angle is inserted into a pipe (0) installed vertically underground, and from the measured value of the inclinometer Calculate the amount of underground deformation.

以上のように、従来は地表面変位計、地中変位計及び傾
斜計で地表面の変位や地中変位を計測する方法が行なわ
れていた。
As described above, conventional methods have been used to measure ground surface displacement and underground displacement using ground surface displacement meters, underground displacement meters, and inclinometers.

(発明が解決しようとする課題) 崩壊する地山を大きなマスと考えると、前記従来の変位
計で測定する変位量はマクロ的なものである。このよう
なマクロ的な変形は地山内部において発生するミクロ的
な亀裂や変形が累積されて表われてくると考えられる。
(Problems to be Solved by the Invention) When a collapsing rock is considered to be a large mass, the amount of displacement measured by the conventional displacement meter is macroscopic. It is thought that such macroscopic deformation appears as a result of the accumulation of microscopic cracks and deformations that occur inside the rock.

従って、地山が崩壊するときの可成り初期の段階では、
力のバランスの乱れる程度が小さいこと、地山全体が移
動するようなマクロ的な変化が表われ始めるのは、ミク
ロ的な変化が可成り累積されてからであると考えること
ができる。
Therefore, at the very early stage when the ground collapses,
It can be assumed that the degree of disturbance in the balance of forces is small, and that macroscopic changes such as the movement of the entire ground begin to appear only after microscopic changes have accumulated to a considerable extent.

従って、従来から行なわれているような変位計測による
監視システムでは、地盤の崩壊を早期に検知することは
困難であった。特に亀裂の多い軟岩等で構成される地山
では、崩壊前に非常に小さい変位しか示さず、突発的に
崩壊することが多いため、変位計測による予想が大変難
かしいのが現状である。
Therefore, it has been difficult to detect ground collapse at an early stage using conventional monitoring systems based on displacement measurement. In particular, the current situation is that it is very difficult to make predictions based on displacement measurements, especially in rocks made of soft rock with many cracks, which show only very small displacements before collapse, and often collapse suddenly.

本発明は前記従来の問題点に鑑みて提案されたもので、
その目的とする処は、地山崩壊の兆候をできるだけ早期
に検知し、災害を未然に防止しうる地山崩壊予知装置を
提供する点にある。
The present invention was proposed in view of the above-mentioned conventional problems, and
The purpose is to provide a rock collapse prediction device that can detect signs of rock collapse as early as possible and prevent disasters from occurring.

(課題を解決するための手段) 本発明に係る地山崩壊予知装置は、前記の目的を達成す
るため、地山の内部で発生した亀裂や変位に伴って音の
エネルギーが放出されるアコースティックエミッション
(以下AEという)現象に着目して提案されたものであ
って、地山内、若しくは地山貫入部材に配設され、地山
の変形を感知して電気信号に変換するアコースティック
エミッションセンサーと、同センサーに接続されたアコ
ースティックエミッション電気信号の計数回路と、同計
数回路のカウントデータを入力、解析して地山崩壊を予
測するコンピューターとより構成されている。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the rock collapse prediction device according to the present invention uses an acoustic emission system in which sound energy is emitted as a result of cracks and displacements occurring inside the rock. It was proposed with a focus on the phenomenon (hereinafter referred to as AE), and is similar to an acoustic emission sensor that is installed inside the ground or on a member that penetrates the ground and detects the deformation of the ground and converts it into an electrical signal. It consists of a counting circuit for acoustic emission electrical signals connected to a sensor, and a computer that inputs and analyzes the count data from the counting circuit to predict rock collapse.

また本発明は前記AEセンサーの電気信号より周囲の騒
音を除去するため、前記アコースティックエミッション
センサーとアコースティックエミッション電気信号の計
数回路との間に、前記電気信号から周囲の騒音を除去す
るフィルターを介在せしめて構成されている。
Further, in the present invention, in order to remove ambient noise from the electrical signal of the AE sensor, a filter for removing ambient noise from the electrical signal is interposed between the acoustic emission sensor and the acoustic emission electrical signal counting circuit. It is composed of

(作用) 本発明は前記したように構成されているので、地山の変
形をAE現象によってAEセンサーが感知し、同AEセ
ンサーは固体中を伝播する微弱な振動を電気信号に変換
し、同A已センサーに接続されたAE倍信号計数回路に
よ、ってAE倍信号発生頻度をカウントしてコンピュー
ターに入力し、同コンピューターにおいてこの入力信号
を解析して地山の崩壊を特徴する 請求項2の発明は前記AEセンサーとAE倍信号計数回
路に介在されたフィルターによって、前記AEセンサー
からの電気信号から、周囲の騒音を除去して前記計数回
路にAE倍信号送るものである。
(Function) Since the present invention is configured as described above, the AE sensor detects the deformation of the ground by the AE phenomenon, and the AE sensor converts the weak vibrations propagating through the solid body into an electrical signal. A claim in which the frequency of occurrence of the AE multiplied signal is counted by an AE multiplied signal counting circuit connected to the A sensor and inputted to a computer, and the computer analyzes this input signal to characterize the collapse of the ground. In the second invention, ambient noise is removed from the electrical signal from the AE sensor by a filter interposed between the AE sensor and the AE multiplied signal counting circuit, and the AE multiplied signal is sent to the counting circuit.

(実施例) 以下本発明を図示の実施例について説明する。(Example) The present invention will be described below with reference to the illustrated embodiments.

地山([りが安定を保っている時点においてポーリング
孔(1)を掘孔し、同ポーリング孔(1)内の所定位置
にAEセンサー(2)を取付ける。
When the ground remains stable, a polling hole (1) is dug and an AE sensor (2) is installed at a predetermined position within the polling hole (1).

同AEセンサー(2)にはフィルター(3)、増幅器(
4)が接続され、同増幅器(4)はAE計数器(5)及
び・波形伝送装置(6)に接続され、更に同波形伝送装
置(6)及び前記計数器(5)がコンピューター(7)
に接続されている。
The AE sensor (2) includes a filter (3) and an amplifier (
4) is connected, the amplifier (4) is connected to an AE counter (5) and a waveform transmission device (6), and the waveform transmission device (6) and the counter (5) are connected to a computer (7).
It is connected to the.

前記AEセンサー(2)はケーブル(8)によって観測
小屋(9)内に設置された前記フィルター(3)、増幅
器(4)、AE計数器(5)、波形伝送装置(5)に接
続されている。
The AE sensor (2) is connected by a cable (8) to the filter (3), amplifier (4), AE counter (5), and waveform transmission device (5) installed in the observation hut (9). There is.

なお前記AEセンサー(2)は地山(E)の状況によっ
て設置個所を決められる。
The installation location of the AE sensor (2) can be determined depending on the condition of the ground (E).

図示の実施例は前記したように構成されているので、地
山((りの変形をAE現象によってAEセンサー(2)
が感知し、同AEセンサー(2)によって固体中を伝播
する微弱な振動を電気信号に変換し、フィルター(3)
によってこのAEセンサー(2)からのAE倍信号ら工
事中の重機0ω等の騒音を除去する。
Since the illustrated embodiment is configured as described above, the deformation of the ground is detected by the AE sensor (2) using the AE phenomenon.
The AE sensor (2) converts the weak vibrations propagating through the solid into an electrical signal, which is then sent to the filter (3).
This eliminates noise from heavy machinery during construction work, etc., from the AE multiplied signal from this AE sensor (2).

前記フィルター(3)は、工事中の重機OI等の雑音の
大部分がlKH2以下の周波数のものであるので、バイ
パスフィルターを通してl KH2以下の信号を除去す
るように構成されている。
The filter (3) is configured to remove signals of 1KH2 or less through a bypass filter, since most of the noise from heavy machinery OI during construction has a frequency of 1KH2 or less.

前記フィルター(3)によって雑音を除去されたAEセ
ンサー(2)からのAE倍信号増幅器(4)で増幅され
、AE計数器(5)及び波形伝送装置(6)に送られ、
AE計数器(5)において設定値以上の振幅をもったA
E倍信号通過した場合にのみカウントされるようになっ
ており、かくして前記AE計数器(5)はAE倍信号発
生頻度をカウントする。
The AE signal from the AE sensor (2) from which noise has been removed by the filter (3) is amplified by the AE multiplier signal amplifier (4) and sent to the AE counter (5) and the waveform transmission device (6),
A with an amplitude greater than the set value in the AE counter (5)
It is counted only when the E-fold signal passes, and thus the AE counter (5) counts the frequency of occurrence of the AE-fold signal.

同時に前記波形伝送装置(6)を用いて、増幅器(4)
で増幅されたAEセンサー(2)がらの波形データをデ
ジタル化する。
At the same time, using the waveform transmission device (6), the amplifier (4)
The amplified waveform data from the AE sensor (2) is digitized.

このように前記AE計数器(5)及び波形伝送装置(6
)によって得られた、増幅されたAE倍信号カウントデ
ータと波形データとは、マイクロコンピュータ−(7)
に送られて記録されると同時に、予め与えられであるプ
ログラムによって信号の特性、その発生頻度、及び波形
データ等を解析して地山の崩壊を予測する。
In this way, the AE counter (5) and the waveform transmission device (6)
) The amplified AE multiplied signal count data and waveform data obtained by the microcomputer (7)
At the same time as the signal is sent to and recorded, a program given in advance analyzes the characteristics of the signal, its frequency of occurrence, waveform data, etc. to predict the collapse of the ground.

図中(F)はすべり面である。In the figure, (F) is the slip surface.

なお前記AEセンサー(2)は、地山([りに貫入:れ
た鉄筋鋼棒(11)の地上部分に取付けてもよい。
Note that the AE sensor (2) may be attached to the above-ground portion of the reinforcing steel rod (11) that has penetrated the ground.

(第2図参照) (発明の効果) 本発明によれば前記とまたように、地山内または地山貫
入部材に取付けられたAEセンサーを、同ヒンサーのA
E信号計数回路に接続し、AE倍信号発生頻度をカラン
Fしてマイクロコンピュータ−にカウントデータを伝送
し、同マイクロコンピュータ−によってAE倍信号特性
、発生頻度を検出、解析して、地山の崩壊をその極く初
期において検知するとともに、地山の崩壊の規模やすべ
り面の位置を成る程度11定することができ、従来から
用いられている変位計測定値等のデータと本発明の装置
によって得られたデータを総合的に評価することによっ
て、より精度の高い地山の崩壊予知が可能となり、工事
を安全に遂行することができる。
(See Figure 2) (Effects of the Invention) According to the present invention, as described above, the AE sensor installed in the ground or on the ground penetrating member can be
It is connected to the E signal counting circuit, calculates the frequency of occurrence of the AE multiplied signal, and transmits the count data to a microcomputer, which detects and analyzes the characteristics and frequency of occurrence of the AE multiplied signal. In addition to detecting collapse at its very early stage, it is possible to determine the extent of the collapse of the ground and the position of the slip surface, using data such as conventionally used displacement meter measurements and the device of the present invention. By comprehensively evaluating the obtained data, it is possible to predict rock failure with higher accuracy, and construction work can be carried out safely.

請求項2の発明は、前記AEセンサーとA巳信号の計数
回路との間に、前記AE倍信号ら周囲の騒音を除去する
フィルターを介在せしめたことによって、より高精度の
地山の崩壊予知を可能ならしめるものである。
The invention as claimed in claim 2 provides for more accurate rock collapse prediction by interposing a filter between the AE sensor and the A-min signal counting circuit to remove ambient noise from the AE multiplied signal. This is what makes it possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る地山崩壊予知装置の一実施例のブ
ロック図、第2図は本発明の他の実施例のブロック図、
第3図は本発明の実権状況を示す斜視図、第4図は従来
の地山崩壊予知装置を示す縮断面図である。 (2)−A Eセンサー  (3)−フィルター(4)
・−増幅器     (5)・・−AE計数器(6)−
波形伝送装置 (7)−マイクロコンピュータ− (E)−地山 代理人 弁理士 岡 本 重 文 外2名 第3図
FIG. 1 is a block diagram of one embodiment of the rock collapse prediction device according to the present invention, FIG. 2 is a block diagram of another embodiment of the present invention,
FIG. 3 is a perspective view showing the practical state of the present invention, and FIG. 4 is a reduced sectional view showing a conventional rock failure prediction device. (2)-A E sensor (3)-Filter (4)
・-Amplifier (5)...-AE counter (6)-
Waveform transmission device (7) - Microcomputer - (E) - Jiyama agent Patent attorney Shige Okamoto 2 outsiders Figure 3

Claims (1)

【特許請求の範囲】 1、地山内、若しくは地山貫入部材に配設され、地山の
変形を感知して電気信号に変換するアコーステイツクエ
ミツシヨンセンサーと、同センサーに接続されたアコー
ステイツクエミツシヨン電気信号の計数回路と、同計数
回路のカウントデータを入力、解析して地山崩壊を予測
するコンピューターとよりなることを特徴とする地山崩
壊予知装置。 2、前記アコーステイツクエミツシヨンセンサーとアコ
ーステイツクエミツシヨン電気信号の計数回路との間に
、前記電気信号から周囲の騒音を除去するフィルターを
介在せしめた請求項1記載の地山崩壊予知装置。
[Scope of Claims] 1. An acoustic emission sensor disposed within the ground or on a member penetrating the ground, which detects deformation of the ground and converts it into an electrical signal, and an acoustic emission sensor connected to the sensor. A rock collapse prediction device characterized by comprising a counting circuit for a query electric signal and a computer that inputs and analyzes the count data of the counting circuit to predict a rock collapse. 2. The rock collapse prediction device according to claim 1, further comprising a filter interposed between the acoustic emission sensor and the acoustic emission electric signal counting circuit for removing ambient noise from the electric signal. .
JP17280488A 1988-07-13 1988-07-13 Apparatus for predicting collapse of natural ground Pending JPH0224521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17280488A JPH0224521A (en) 1988-07-13 1988-07-13 Apparatus for predicting collapse of natural ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17280488A JPH0224521A (en) 1988-07-13 1988-07-13 Apparatus for predicting collapse of natural ground

Publications (1)

Publication Number Publication Date
JPH0224521A true JPH0224521A (en) 1990-01-26

Family

ID=15948680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17280488A Pending JPH0224521A (en) 1988-07-13 1988-07-13 Apparatus for predicting collapse of natural ground

Country Status (1)

Country Link
JP (1) JPH0224521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2467419A (en) * 2009-01-29 2010-08-04 Univ Loughborough Monitoring soil slope displacement rate by detecting acoustic emissions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2467419A (en) * 2009-01-29 2010-08-04 Univ Loughborough Monitoring soil slope displacement rate by detecting acoustic emissions
WO2010086584A2 (en) 2009-01-29 2010-08-05 Loughborough University Apparatus and method for monitoring soil slope displacement rate by detecting acoustic emissions
GB2467419B (en) * 2009-01-29 2011-05-18 Univ Loughborough Apparatus and method for monitoring soil slope displacement rate by detecting acoustic emissions

Similar Documents

Publication Publication Date Title
KR100903949B1 (en) Method for predicting failure of geotechnical structure
JP2878804B2 (en) Piping abnormality monitoring device
JP2008003043A (en) Method, apparatus, and system for detecting damages
CN111042866B (en) Multi-physical-field cooperative water inrush monitoring method
KR100921382B1 (en) Method for predicting failure of geotechnical structure
Hu et al. Response of acoustic emission and vibration monitoring data during rock block collapse in the tunnel: Small-and large-scale experiments study
RU2743547C1 (en) Method for monitoring the condition of permafrost soils serving as base for buildings and structures, and device for implementing it
Srbulov Practical soil dynamics: Case studies in earthquake and geotechnical engineering
KR20090117402A (en) Measuring apparatus with ae sensor for predicting failure, method for installing the same and measuring apparatus set with ae sensor for predicting failure
JP2000065809A (en) Measuring method for damage degree of ground
JPH0224521A (en) Apparatus for predicting collapse of natural ground
TWI697605B (en) Device and method for predicting location of structural damage
Franklin et al. The monitoring of rock slopes
JP4818010B2 (en) Early prediction method of earthquake magnitude and early prediction program of earthquake magnitude based on building deformation during earthquake
EP0705422B1 (en) Continuous monitoring of reinforcements in structures
Dawn Technologies of ground support monitoring in block caving operations
EP1126290B1 (en) Improvements in or relating to seismic wave measuring devices
CN105116439A (en) Landslide pre-warning system used for detection of micro-vibration of mountain
JP5584973B2 (en) Ground looseness detection method, ground looseness detection system
CN205211122U (en) A landslide early warning system for detecting massif vibrates a little
JPH09218182A (en) Method for examining damage of structure support pile
JP3263737B2 (en) Fault vibration displacement measuring device
CN116950720B (en) Stress wave induced roadway instability fracture field and three-dimensional strain field monitoring system and method
Rausche et al. A new testing procedure for axial pile strength
Caicedo et al. Acoustic emission instrumentation method for slope monitoring