JPH02244771A - Inp series compound semiconductor - Google Patents

Inp series compound semiconductor

Info

Publication number
JPH02244771A
JPH02244771A JP1066712A JP6671289A JPH02244771A JP H02244771 A JPH02244771 A JP H02244771A JP 1066712 A JP1066712 A JP 1066712A JP 6671289 A JP6671289 A JP 6671289A JP H02244771 A JPH02244771 A JP H02244771A
Authority
JP
Japan
Prior art keywords
substrate
light
inp
carrier concentration
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1066712A
Other languages
Japanese (ja)
Other versions
JP2705016B2 (en
Inventor
Naoyuki Yamabayashi
直之 山林
Yasunori Miura
祥紀 三浦
Takashi Iwasaki
孝 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6671289A priority Critical patent/JP2705016B2/en
Publication of JPH02244771A publication Critical patent/JPH02244771A/en
Application granted granted Critical
Publication of JP2705016B2 publication Critical patent/JP2705016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve light transmissivity of a substrate without decreasing the thickness of the substrate by setting carrier concentration of an InP monocrystalline substrate in a particular range and using the substrate having no displacement. CONSTITUTION:An InP monocrystalline ingot is manufactured by VCZ process, and this is sliced to fabricate an n<+> type InP monocrystalline substrate 1, and carrier concentration thereof is made to be 1X10<17>-3X10<18>cm<-3> and dislocation density (EPD) thereof is suppressed to be not larger than 500<1>/cm<2>. An n<-> type InGaAs light absorbing layer 3 is formed on this substrate by gas-phase growing process. In the wafer thus obtained, the carrier concentration is lower than in the past, the light transmissivity of the substrate is increased, and the light absorption by the substrate is reduced, so that the light receiving sensitivity and the light emitting efficiency of the semiconductor device can be improved. Further, because the InP monocrystalline substrate has no displacement, the light receiving sensitivity, etc., can be improved without lowering the characteristics for the dark current, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光がInP単結晶基板中を通過して受光ま
たは発光等がなされるInP系化合物半導体装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an InP-based compound semiconductor device in which light passes through an InP single crystal substrate to receive or emit light.

[従来の技術] 光がInP単結晶基板中を通過して受光するInP系化
合物半導体装置としては、第1図に示すようなPINフ
ォトダイオードがある。第1図を参照して、n−InP
基板1の上にはn−1nGaAs層2が形成されている
。n−1nGaAs層2の中央部分には、p−1nGa
As層3が形成されており、この上にはp電極5が形成
されている。p電極5の周囲にはパッシベーション4が
設けられている。n−InP基板1の反対側の面には反
射防止膜6が設けられている。反射防止膜6の周囲には
n電極7が設けられている。
[Prior Art] As an InP-based compound semiconductor device in which light passes through an InP single crystal substrate and is received, there is a PIN photodiode as shown in FIG. Referring to FIG. 1, n-InP
An n-1n GaAs layer 2 is formed on the substrate 1. In the central part of the n-1nGaAs layer 2, p-1nGa
An As layer 3 is formed, and a p-electrode 5 is formed thereon. A passivation 4 is provided around the p-electrode 5. An antireflection film 6 is provided on the opposite surface of the n-InP substrate 1. An n-electrode 7 is provided around the anti-reflection film 6.

第1図に示すPINフォトダイオードは、裏面入射タイ
プのものであり、反射防止膜6が設けられている側から
光が入射し、n−InP基板1中を通過した光が受光さ
れる。通常、n−InP基板1には、転位を少なくする
ため硫黄がドープされており、キャリア濃度は5X10
” cm−’以上である。
The PIN photodiode shown in FIG. 1 is of a back-illuminated type, and light enters from the side where the antireflection film 6 is provided, and the light that passes through the n-InP substrate 1 is received. Normally, the n-InP substrate 1 is doped with sulfur to reduce dislocations, and the carrier concentration is 5×10
”cm-' or more.

〔発明が解決しようとする課題] このような光が基板中を通過するタイプのInP系化合
物半導体装置においては、受光感度や発光効率などを向
上させるため、基板による光の吸収ができるだけ少ない
ことが望ましい。このような光吸収を向上させるための
方法の1つとして、基板の厚みを薄くすることが考えら
れるが、基板を薄くすると、ウェハの加工工程において
基板が割れたり欠けたりする頻度が高まり、歩留りの低
下をもたらす。通常、基板の厚みは、少なくとも300
μm以上であることが望ましい。
[Problems to be Solved by the Invention] In this type of InP-based compound semiconductor device in which light passes through the substrate, in order to improve the light receiving sensitivity and luminous efficiency, it is necessary to minimize the absorption of light by the substrate. desirable. One way to improve such light absorption is to reduce the thickness of the substrate, but thinning the substrate increases the frequency of cracking or chipping of the substrate during the wafer processing process, which reduces yield. resulting in a decrease in Typically, the substrate thickness is at least 300 mm
It is desirable that the thickness is μm or more.

この発明の目的は、基板の厚みを薄くすることなく、基
板の光透過率を向上させたInP系化合物半導体装置を
提供することにある。
An object of the present invention is to provide an InP-based compound semiconductor device in which the light transmittance of the substrate is improved without reducing the thickness of the substrate.

[課題を解決するための手段および作用]この発明のI
rnP系化合物半導体装置では、InP単結晶基板のキ
ャリア濃度がlXl0”〜3X10” cm−”であり
、かつ該基板が無転位であることを特徴としている。
[Means and effects for solving the problem] I of this invention
The rnP compound semiconductor device is characterized in that the carrier concentration of the InP single crystal substrate is 1X10'' to 3X10''cm-'' and that the substrate is dislocation-free.

第2図は、InP基板中のキャリア濃度と光透過率との
関係を示す図である。第2図に示されるように、キャリ
ア濃度が低下するにつれて、基板の光透過率が増加する
。この発明において、キャリア濃度を3X10” cr
rV ’以下としているのは、高い光透過率を確保し、
基板内における光の吸収をできるだけ少なくするためで
ある。
FIG. 2 is a diagram showing the relationship between carrier concentration and light transmittance in an InP substrate. As shown in FIG. 2, as the carrier concentration decreases, the light transmittance of the substrate increases. In this invention, the carrier concentration is set to 3×10” cr
The reason why it is below rV' is to ensure high light transmittance,
This is to minimize absorption of light within the substrate.

また、この発明において、キャリア濃度をI×1017
以上としているのは、キャリア濃度が低下すると、一般
に動作時の電気抵抗が上昇する傾向があるので、通常の
光通信に使用する周波数帯域に応答するためには、lX
l0” cm−”以上のキャリア濃度が必要だからであ
る。
In addition, in this invention, the carrier concentration is I×1017
The reason for the above is that when the carrier concentration decreases, the electrical resistance during operation generally tends to increase, so in order to respond to the frequency band used for normal optical communication,
This is because a carrier concentration of 10"cm-" or more is required.

この発明においてはキャリア濃度を1. X 10 ’
7〜3X10” cm−’としており、従来一般に用い
られているInP基板中のキャリア濃度5XIO” a
m−’ ”以上よりも小さな値となっている。このため
、第2図に示されるように、この発明に従えば基板の光
透過率を増大させ、基板における光吸収を少なくするこ
とができる。
In this invention, the carrier concentration is set to 1. X 10'
7 to 3X10"cm-', and the carrier concentration in the conventionally commonly used InP substrate is 5XIO" a
Therefore, as shown in FIG. 2, according to the present invention, the light transmittance of the substrate can be increased and the light absorption in the substrate can be reduced. .

しかしながら、単にキャリア濃度を低下させるために硫
黄のドープ量を減少させた場合、基板に多数の結晶欠陥
が生じ、この結果暗電流が大きくなり、デバイス特性が
低下する。
However, if the amount of sulfur doped is reduced simply to lower the carrier concentration, a large number of crystal defects will occur in the substrate, resulting in an increase in dark current and deterioration in device characteristics.

この発明は、このようなデバイス特性の低下を抑制する
ため、InP単結晶基板として上記範囲のキャリア濃度
になるよう硫黄のドープ量を低下させても、なおかつ無
転位である基板を使用している。
In order to suppress such deterioration of device characteristics, the present invention uses an InP single crystal substrate that is free of dislocations even if the amount of sulfur doped is reduced so that the carrier concentration falls within the above range. .

ここで、無転位とは、スリップ(線状欠陥)がなく、E
PD (エッチ・ビット番デンシティ:結晶欠陥密度)
が500個/ e m 2以下であることをいう。スリ
ップについては、たとえばJ、Appi、Phys、5
4 (2)、February1983、p666〜6
72に詳細な説明がなされている。EPDは、フーバエ
ッチ観察により測定される結晶欠陥の密度である。
Here, dislocation-free means that there is no slip (linear defect) and E
PD (etch bit number density: crystal defect density)
is 500 pieces/em2 or less. For slips, see e.g. J, Appi, Phys, 5
4 (2), February 1983, p666-6
A detailed explanation is given in 72. EPD is the density of crystal defects measured by Huber etch observation.

このように硫黄のドープ量を減少させても、なおかつ無
転位状態であるようなInP基板は1.たとえばVCZ
 (Vapor  PressureControl 
 Czochralshki)法などにより得られるイ
ンゴットをスライスして得ることができる。このVCZ
法は、たとえばm−V族化合物半導体単結晶を製造させ
る場合、V族元素の蒸気圧中で結晶成長させる液体封止
チョクラルスキー法である。このVCZ法については、
1rist、Phys、Conf、Ser、No、91
:chapter  5に詳細な説明がなされている。
Even if the amount of sulfur doped is reduced in this way, an InP substrate that is still in a dislocation-free state is 1. For example, VCZ
(Vapor Pressure Control
It can be obtained by slicing an ingot obtained by the Czochralshki method or the like. This VCZ
For example, when producing an m-V group compound semiconductor single crystal, the method is a liquid-sealed Czochralski method in which crystal growth is performed under the vapor pressure of a V group element. Regarding this VCZ method,
1list,Phys,Conf,Ser,No,91
:Chapter 5 provides a detailed explanation.

また、VGF (Vertical  Gradten
t  Freeze)法により得られる単結晶も無転位
であるので、これを利用することもできる。この方法は
、原料として既に合成された化合物半導体多結晶を用い
、これをるつぼに入れて溶融させた後、融液をるつぼ下
端に配置した種子結晶と接触させて種子っけを行ない、
融液に垂直な方向の温度勾配をつけた状態で下端より徐
々に冷却して上方に向かって化合物半導体単結晶を成長
させていく方法である。このVGF法については、J、
Eleetrochem、Soc、5olid−8ta
te  5CIENCE  AND  TECHNOL
OGY、  F e b r u a r y  19
88、特開昭63−85082号公報および特開昭63
274684号公報などに説明がなされている。
In addition, VGF (Vertical Gradten
Since the single crystal obtained by the t Freeze method is also dislocation-free, it can also be used. This method uses a compound semiconductor polycrystal that has already been synthesized as a raw material, puts it in a crucible and melts it, and then seeds the melt by bringing it into contact with a seed crystal placed at the lower end of the crucible.
In this method, a compound semiconductor single crystal is grown upward by gradually cooling the melt from the bottom with a temperature gradient perpendicular to the melt. Regarding this VGF method, see J.
Eleetrochem, Soc, 5olid-8ta
te 5CIENCE AND TECHNOL
OGY, F e b r u a r y 19
88, JP-A-63-85082 and JP-A-63
This is explained in JP-A No. 274684 and the like.

この発明に従えば、従来のInP単結晶基板よりもキャ
リア濃度が低いため、高い光透過率を得ることができ、
基板による光吸収を少なくして受光感度や発光効率等を
向上させることができる。
According to this invention, since the carrier concentration is lower than that of a conventional InP single crystal substrate, high light transmittance can be obtained.
By reducing light absorption by the substrate, light receiving sensitivity, light emitting efficiency, etc. can be improved.

また、基板が無転位であるため、暗電流が高くなってデ
バイス特性を低下させることもない。
Furthermore, since the substrate is dislocation-free, dark current does not increase and device characteristics do not deteriorate.

[実施例] VCZ法によりInP単結晶インゴットを製造し、これ
をスライスしてn+型InP単結晶基板を得た。面指数
は(100)2°オフであり、キャリア濃度は2X10
” crrv ”であった。また基板の厚みは350μ
mであった。スリップはなく、転位密度(EPD)は5
00個/cm−2以下であった。
[Example] An InP single crystal ingot was manufactured by the VCZ method and sliced to obtain an n+ type InP single crystal substrate. The plane index is (100)2°off and the carrier concentration is 2X10
It was "crrv". Also, the thickness of the board is 350μ
It was m. No slip, dislocation density (EPD) is 5
00 pieces/cm-2 or less.

この基板の上に、気相成長法で、n−型1nGaAs光
吸収層3を形成した。このエピタキシャル成長層の厚み
は約6 It mであり、キャリア濃度は約3X10”
 cm−’であった。
On this substrate, an n-type 1nGaAs light absorption layer 3 was formed by vapor phase growth. The thickness of this epitaxially grown layer is about 6 It m, and the carrier concentration is about 3 x 10"
cm-'.

以上のようにして得られたウェハを用い、第1図に示す
ような裏面入射型のPINフォトダイオド受光素子を作
製し、受光感度を評価した。その結果、受光感度は、従
来のキャリア濃度が5×10” cm−’以上のInP
単結晶基板を用いたフォトダイオード受光素子よりも向
上することが確認された。
Using the wafer obtained as described above, a back-illuminated PIN photodiode light-receiving element as shown in FIG. 1 was manufactured, and its light-receiving sensitivity was evaluated. As a result, the light-receiving sensitivity is lower than that of InP with a conventional carrier concentration of 5 x 10"cm-' or more.
It was confirmed that this device is improved compared to a photodiode light-receiving element using a single-crystal substrate.

以上の実施例では、この発明のInP系化合物半導体装
置として、受光素子であるPINフォトダイオードを例
にして説明したが、この発明の化合物半導体装置はこの
ようなものに限定されることはなく、たとえば面発光L
ED等のような発光素子にも適用されるものである。こ
の場合、基板が無転位であるので、素子の寿命や信頼性
を低下させることなく、発光効率を向上させることがで
きる。
In the above embodiments, the InP-based compound semiconductor device of the present invention was explained using a PIN photodiode as a light receiving element, but the compound semiconductor device of the present invention is not limited to such a device. For example, surface emitting L
It is also applicable to light emitting elements such as EDs. In this case, since the substrate is dislocation-free, the light emitting efficiency can be improved without reducing the lifetime or reliability of the device.

[発明の効果] 以上説明したように、この発明のInP系化合物半導体
装置は、キャリア濃度がlXl0”〜3X10” cm
−’であるので、従来よりもキャリア濃度が低く、基板
の光透過率を増大し、基板による光吸収を少なくして、
半導体装置の受光感度や発光効率等を向上させることが
できる。
[Effects of the Invention] As explained above, the InP-based compound semiconductor device of the present invention has a carrier concentration of 1X10" to 3X10" cm.
-', the carrier concentration is lower than before, increasing the light transmittance of the substrate and reducing light absorption by the substrate.
The light receiving sensitivity, light emitting efficiency, etc. of a semiconductor device can be improved.

またInP単結晶基板が無転位であるので、暗電流等の
特性を低下させることなく、受光感度等の向上を図るこ
とができる。
Furthermore, since the InP single crystal substrate is dislocation-free, it is possible to improve light-receiving sensitivity and the like without deteriorating characteristics such as dark current.

【図面の簡単な説明】 第1図は、PINフォトダイオードの構造を示す断面図
である。第2図は、InP基板中のキャリア濃度と光透
過率との関係を示す図である。 図において、1はn−InP基板、2はn−1nG a
 A s層、3はp−1nGaAs層、4はパッシベー
ション、5はp電極、6は反射防止膜、7はn電極を示
す。 第1図 第2図 (ほか2名)−−1 ★ダリア;9 (c−n−リ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing the structure of a PIN photodiode. FIG. 2 is a diagram showing the relationship between carrier concentration and light transmittance in an InP substrate. In the figure, 1 is an n-InP substrate, 2 is an n-1nGa
3 is a p-1nGaAs layer, 4 is passivation, 5 is a p-electrode, 6 is an antireflection film, and 7 is an n-electrode. Figure 1 Figure 2 (and 2 others) --1 ★Dahlia; 9 (c-n-ri)

Claims (2)

【特許請求の範囲】[Claims] (1)光がInP単結晶基板中を通過するInP系化合
物半導体装置において、 前記InP単結晶基板のキャリア濃度が、1×10^1
^7〜3×10^1^8cm^−^3であり、かつ該基
板が無転位であることを特徴とする、InP系化合物半
導体装置。
(1) In an InP-based compound semiconductor device in which light passes through an InP single crystal substrate, the carrier concentration of the InP single crystal substrate is 1×10^1
An InP-based compound semiconductor device, characterized in that the substrate has a thickness of ^7 to 3 x 10^1^8 cm^-^3 and is dislocation-free.
(2)前記InP単結晶基板が、VCZ法により製造さ
れた基板であることを特徴とする、請求項1記載のIn
P系化合物半導体装置。
(2) The InP single crystal substrate according to claim 1, wherein the InP single crystal substrate is a substrate manufactured by a VCZ method.
P-based compound semiconductor device.
JP6671289A 1989-03-17 1989-03-17 InP-based compound semiconductor device Expired - Lifetime JP2705016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6671289A JP2705016B2 (en) 1989-03-17 1989-03-17 InP-based compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6671289A JP2705016B2 (en) 1989-03-17 1989-03-17 InP-based compound semiconductor device

Publications (2)

Publication Number Publication Date
JPH02244771A true JPH02244771A (en) 1990-09-28
JP2705016B2 JP2705016B2 (en) 1998-01-26

Family

ID=13323804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6671289A Expired - Lifetime JP2705016B2 (en) 1989-03-17 1989-03-17 InP-based compound semiconductor device

Country Status (1)

Country Link
JP (1) JP2705016B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079763A1 (en) * 2013-11-27 2015-06-04 住友電気工業株式会社 Light receiving element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079763A1 (en) * 2013-11-27 2015-06-04 住友電気工業株式会社 Light receiving element
JPWO2015079763A1 (en) * 2013-11-27 2017-03-16 住友電気工業株式会社 Light receiving element

Also Published As

Publication number Publication date
JP2705016B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
US4303464A (en) Method of manufacturing gallium phosphide single crystals with low defect density
US6325849B1 (en) P-type gaas single crystal and method for manufacturing the same
US20090072205A1 (en) Indium phosphide substrate, indium phosphide single crystal and process for producing them
EP0102192B1 (en) Method for manufacturing green light emitting diodes
US4216484A (en) Method of manufacturing electroluminescent compound semiconductor wafer
US7214269B2 (en) Si-doped GaAs single crystal substrate
JP3797824B2 (en) p-type GaAs single crystal and method for producing the same
JPH02244771A (en) Inp series compound semiconductor
JP2953236B2 (en) InP single crystal substrate material
JPH05218484A (en) Manufacture of semiconductor photodetective element
KR930007856B1 (en) Wafer of compound semiconductor
EP0151000B1 (en) A liquid-phase epitaxial growth method of a iiib-vb group compound
EP4206368A1 (en) Indium phosphide substrate, semiconductor epitaxial wafer, method for producing indium phosphide single crystal ingot, and method for producing indium phosphide substrate
US6433365B1 (en) Epitaxial wafer and light emitting diode
GB2080619A (en) Epitaxial semiconductor device
JPH0316119A (en) Compound semiconductor wafer
US5514881A (en) Gap light emitting device having a low carbon content in the substrate
JPH07193331A (en) Gaas substrate for light-emitting element
JPH10261813A (en) Substrate for long-wavelength photodetector and epitaxial wafer
US5851850A (en) Method for fabricating a gap type semiconductor substrate of red light emitting devices
JPS60211912A (en) Low-transition semi-insulation substrate
Grant Progress in III-V materials technology
JPH03265595A (en) Inp epitaxial wafer
EP0580953A1 (en) GaP light emitting device and method for fabricating the same
JPS589578B2 (en) Optical semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12