JPH0224389A - Liquid crystal composition and liquid crystal element containing the same composition - Google Patents

Liquid crystal composition and liquid crystal element containing the same composition

Info

Publication number
JPH0224389A
JPH0224389A JP17578688A JP17578688A JPH0224389A JP H0224389 A JPH0224389 A JP H0224389A JP 17578688 A JP17578688 A JP 17578688A JP 17578688 A JP17578688 A JP 17578688A JP H0224389 A JPH0224389 A JP H0224389A
Authority
JP
Japan
Prior art keywords
liquid crystal
formulas
tables
crystal composition
response speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17578688A
Other languages
Japanese (ja)
Other versions
JP2756262B2 (en
Inventor
Masataka Yamashita
眞孝 山下
Gouji Toga
門叶 剛司
Masahiro Terada
匡宏 寺田
Kazuharu Katagiri
片桐 一春
Junko Sato
純子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17578688A priority Critical patent/JP2756262B2/en
Priority to DE68917832T priority patent/DE68917832T2/en
Priority to EP89111487A priority patent/EP0355313B1/en
Priority to ES89111487T priority patent/ES2058402T3/en
Priority to AT89111487T priority patent/ATE110763T1/en
Publication of JPH0224389A publication Critical patent/JPH0224389A/en
Priority to US08/094,927 priority patent/US5364559A/en
Application granted granted Critical
Publication of JP2756262B2 publication Critical patent/JP2756262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a liq. crystal element exhibiting a high response speed and having a decreased dependence of the response speed on the temp. by employing a ferromagnetic liq. crystal compsn. contg. two particular compds. CONSTITUTION:A liq. crystal element is formed by employing a ferromagnetic chiral smectic liq. crystal compsn. contg. the following components A and B. Component A is at least one compd. of formula I, wherein each of R1 and R2 is a straight-chain or branched alkyl group which may have a 1-18C substituent; each of X1 and X2 is a single bond, -O-, a group of the formula II, etc.; Y1 is -CH2O- or -OCH2-; and each of m and n is 1 or 2. Component B is at least one compd. of formula III, wherein R3 is a straight-chain or branched alkyl group which may have a 1-18C substituent; X3 is any one of a single bond, -O- and a group of formula II; Z is a single bond or a group of formula II; formula IV is formula V or formula VI; and p is 1-12.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は液晶表示素子や液晶−光シヤツター等に利用さ
れる液晶素子に用いる液晶組成物に関し、更に詳しくは
、電界に対する応答特性が改善された新規な液晶組成物
に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a liquid crystal composition used for liquid crystal elements used in liquid crystal display elements, liquid crystal light shutters, etc. This invention relates to a liquid crystal composition.

〔背景技術〕[Background technology]

従来より、液晶は電気光学素子として種々の分野で応用
されている。現在実用化されている液晶素子はほとんど
が、例えばM 、 S c h a d tとW、He
1frich著“Applied Physics L
etters  Vo、18、No、4 (1971,
2,15)、P、127〜128の“Voltage−
3pendent  0ptical  Activi
ty  of  aTwisted  Nematic
  Liquid  Crystaビに示されたTN 
(twisted  nematic)型の液晶を用い
たものである。
Conventionally, liquid crystals have been applied as electro-optical elements in various fields. Most of the liquid crystal elements currently in practical use include, for example, M, Schadt and W, He.
“Applied Physics L” by 1frich
etters Vo, 18, No. 4 (1971,
2, 15), P, 127-128 “Voltage-
3pendent 0ptical Activi
Ty of a Twisted Nematic
TN shown in Liquid Crystabi
(twisted nematic) type liquid crystal is used.

これらは、液晶の誘電的配列効果に基づいており、液晶
分子の誘電異方性のために平均分子軸方向が、加えられ
た電場により特定の方向を向く効果を利用している。こ
れらの素子の光学的な応答速度の限界はミリ秒であると
いわれ、多(の応用のためには遅すぎる。一方、大型平
面デイスプレィへの応用では、価格、生産性などを考え
合せると単純マトリクス方式による駆動が最も有力であ
る。単純マトリクス方式においては、走査電極群と信号
電極群をマトリクス状に構成した電極構成が採用され、
その駆動のためには、走査電極群に順次周期的にアドレ
ス信号を選択印加し、信号電極群には所定の情報信号を
アドレス信号と同期させて並列的に選択印加する時分割
駆動方式が採用される。
These are based on the dielectric alignment effect of liquid crystals, and utilize the effect that the average molecular axis direction is oriented in a specific direction due to the dielectric anisotropy of liquid crystal molecules due to an applied electric field. It is said that the limit of the optical response speed of these elements is milliseconds, which is too slow for large-scale applications.On the other hand, when considering the cost and productivity, it is difficult to apply them to large flat displays. The most promising method is driving by the matrix method. In the simple matrix method, an electrode configuration in which a scanning electrode group and a signal electrode group are arranged in a matrix is adopted.
To drive this, a time-division drive method is adopted in which address signals are selectively and periodically applied to the scanning electrode group, and predetermined information signals are selectively applied in parallel to the signal electrode group in synchronization with the address signal. be done.

しかしこのような駆動方式の素子に前述したTN型の液
晶を採用すると走査電極が選択され、信号電極が選択さ
れない領域、或いは走査電極が選択されず、信号電極が
選択される領域(所謂“半選択点”)にも有限に電界が
かかってしまう。選択点にかかる電圧と、半選択点にか
かる電圧の差が充分に大きく、液晶分子を電界に垂直に
配列させるのに要する電圧閾値がこの中間の電圧値に設
定されるならば、表示素子は正常に動作するわけである
が、走査線数(N)を増やして行った場合、画面全体(
1フレーム)を走査する間に一つの選択点に有効な電界
がかかっている時間(duty比)が1/Nの割合で減
少してしまう。このために、くり返し走査を行った場合
の選択点と非選択点にかかる実効値としての電圧差は、
走査線数が増えれば増える程小さ(なり、結果的には画
像コントラストの低下やクロストークが避は難い欠点と
なっている。
However, if the above-mentioned TN type liquid crystal is used as an element of such a driving method, there will be an area where the scanning electrode is selected and the signal electrode is not selected, or an area where the scanning electrode is not selected and the signal electrode is selected (the so-called "half area"). A finite electric field is also applied to the selected point ("). If the difference between the voltage applied to the selected point and the voltage applied to the half-selected point is sufficiently large, and the voltage threshold required to align the liquid crystal molecules perpendicular to the electric field is set to an intermediate voltage value, the display element will It works normally, but if you increase the number of scanning lines (N), the entire screen (
The time during which an effective electric field is applied to one selected point (duty ratio) decreases at a rate of 1/N while scanning one frame. For this reason, the effective voltage difference between selected points and non-selected points when repeated scanning is
The more the number of scanning lines increases, the smaller the size becomes, resulting in unavoidable drawbacks such as a reduction in image contrast and crosstalk.

このような現象は、双安定性を有さない液晶(電極面に
対し、液晶分子が水平に配向しているのが安定状態であ
り、電界が有効に印加されている間のみ垂直に配向する
)を時間的蓄積効果を利用して駆動する(即ち、繰り返
し走査する)ときに生ずる本質的には避は難い問題点で
ある。この点を改良するために、電圧平均化法、2周波
駆動法や、多重マトリクス法等が既に提案されているが
、いずれの方法でも不充分であり、表示素子の大画面化
や高密度化は、走査線数が充分に増やせないことによっ
て頭打ちになっているのが現状である。
This phenomenon is caused by liquid crystals that do not have bistability (the stable state is when the liquid crystal molecules are aligned horizontally with respect to the electrode surface, and they are aligned vertically only while an electric field is effectively applied). ) is essentially an unavoidable problem that arises when driving using the temporal accumulation effect (that is, repeatedly scanning). In order to improve this point, voltage averaging method, dual-frequency driving method, multiple matrix method, etc. have already been proposed, but all of these methods are insufficient, and it is necessary to increase the screen size and density of display elements. Currently, the number of scanning lines has reached a plateau due to the inability to increase the number of scanning lines sufficiently.

この様な従来型の液晶素子の欠点を改善するものとして
、双安定性を有する液晶素子の使用がC1ark及びL
agerwallにより提案されている(特開昭56−
107216号公報、米国特許第 4367924号明
細書等)。双安定性液晶としては一般に、カイラルスメ
クチックC相(SmC*)又はH相(SmH*)を有す
る強誘電性液晶が用いられる。この強誘電性液晶は電界
に対して第1の光学的安定状態と第2の光学的安定状態
からなる双安定状態を有し、従って前述のTN型の液晶
で用いられた光学変調素子とは異なり、例えば一方の電
界ベクトルに対して第1の光学的安定状態に液晶が配向
し、他方の電界ベクトルに対しては第2の光学的安定状
態に液晶が配向される。また、この型の液晶は、加えら
れる電界に応答して、上記2つの安定状態のいずれかを
取り、且つ電界の印加のないときはその状態を維持する
性質(双安定性)を有する。
In order to improve the drawbacks of conventional liquid crystal elements, the use of bistable liquid crystal elements has been proposed for C1ark and L
proposed by Agerwall (Japanese Unexamined Patent Application Publication No. 1983-1999)
107216, US Pat. No. 4,367,924, etc.). As the bistable liquid crystal, a ferroelectric liquid crystal having a chiral smectic C phase (SmC*) or H phase (SmH*) is generally used. This ferroelectric liquid crystal has a bistable state consisting of a first optically stable state and a second optically stable state in response to an electric field, and therefore is different from the optical modulation element used in the above-mentioned TN type liquid crystal. Differently, for example, the liquid crystal is oriented in a first optically stable state with respect to one electric field vector, and the liquid crystal is oriented in a second optically stable state with respect to the other electric field vector. Further, this type of liquid crystal has a property (bistability) of taking one of the above two stable states in response to an applied electric field and maintaining that state when no electric field is applied.

以上のような双安定性を有する特徴に加えて、強誘電液
晶は高速応答性であるという優れた特徴を持つ。それは
強誘電液晶の持つ自発分極と印加電場が直接作用して配
向状態の転移を誘起するためであり、誘電率異方性と電
場の作用による応答速度より3〜4オーダー速い。
In addition to the above-mentioned feature of bistability, ferroelectric liquid crystals have the excellent feature of high-speed response. This is because the spontaneous polarization of the ferroelectric liquid crystal and the applied electric field directly act to induce a transition in the orientation state, which is 3 to 4 orders of magnitude faster than the response speed due to the effect of the dielectric anisotropy and the electric field.

このように強誘電液晶はきわめて優れた特性を潜在的に
有しており、このような性質を利用することにより、上
述した従来のTN型素子の問題点の多くに対して、かな
り本質的な改善が得られる。特に、高速光学光シャッタ
ーや、高密度、大画面デイスプレィへの応用が期待され
る。このため強誘電性を持つ液晶材料に関しては広く研
究がなされているが、現在までに開“発された□強誘電
性液晶材料は、低温作動特性、高速応答性等を含めて液
晶素子に用いる十分な特性を備えているとは云い難い。
In this way, ferroelectric liquid crystals potentially have extremely excellent properties, and by utilizing these properties, many of the problems of conventional TN-type devices mentioned above can be overcome, which is quite essential. Improvement can be obtained. In particular, it is expected to be applied to high-speed optical shutters and high-density, large-screen displays. For this reason, extensive research has been conducted on liquid crystal materials with ferroelectric properties, and the ferroelectric liquid crystal materials developed to date are suitable for use in liquid crystal devices, including their low-temperature operating characteristics and high-speed response. It is hard to say that it has sufficient characteristics.

応答時間τと自発分極の大きさPsおよび粘度ηの間に
は の関係が存在する。したがって応答速度を速(するには
、 (ア)自発分極の大きさPsを太き(する(イ)粘度η
を小さ(する (つ)印加電圧Eを高くする 方法がある。しかし印加電圧は、IC等で駆動するため
上限があり、出来るだけ低い方が望ましい。
There exists a relationship between the response time τ, the magnitude of spontaneous polarization Ps, and the viscosity η. Therefore, in order to increase the response speed, (a) increase the magnitude of the spontaneous polarization Ps (b) increase the viscosity η
There is a method of reducing the voltage and increasing the applied voltage E.However, since the applied voltage is driven by an IC or the like, there is an upper limit to the applied voltage, and it is desirable that the applied voltage be as low as possible.

よって、実際には粘度ηを小さくするか、自発分極の大
きさPsの値を太き(する必要がある。
Therefore, in reality, it is necessary to reduce the viscosity η or increase the value of the spontaneous polarization magnitude Ps.

−船釣に自発分極の□大きい強誘電性カイラルスメクチ
ック液晶化合物においては、自発分極のもたらすセルの
内部電界も大きく、双安定状態をとり得る素子構成への
制約が多くなる傾向にある。又、いたずらに自発分極を
大きくしても、それにつれて粘度も太き(なる傾向にあ
り、結果的には応答速度はあまり速(ならないことが考
えられる□。
- For boat fishing In ferroelectric chiral smectic liquid crystal compounds with large spontaneous polarization, the internal electric field of the cell caused by the spontaneous polarization is also large, and there tends to be more restrictions on device configurations that can take a bistable state. Furthermore, even if the spontaneous polarization is unnecessarily increased, the viscosity tends to increase as well, and as a result, the response speed may not become very fast (□).

また、実際のデイスプレィとしての使用温度範囲が例え
ば5〜40℃程度とした場合、応答速度の変化が一般に
20倍程もあり、駆動電圧及び周波数による調節の限界
を越えているのが現状である。
Furthermore, when the actual operating temperature range for a display is, for example, 5 to 40 degrees Celsius, the response speed generally changes by about 20 times, which is currently beyond the limits of adjustment by drive voltage and frequency. .

以上述べたように、強誘電性液晶素子を実用化するため
には、粘度が低く高速応答性を有し、かつ応答速度の温
度依存性の小さな強誘電性カイラルスメクチック液晶組
成物が要求される。
As mentioned above, in order to put ferroelectric liquid crystal devices into practical use, a ferroelectric chiral smectic liquid crystal composition that has low viscosity, high-speed response, and small temperature dependence of response speed is required. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、強誘電性液晶素子を実用できるように
、応答速度が速く、しかもその応答速度の温度依存性が
軽減されたカイラルスメクチック液晶組成物および該液
晶組成物を使用する液晶素子を提供することにある。
An object of the present invention is to provide a chiral smectic liquid crystal composition that has a high response speed and reduced temperature dependence of the response speed, and a liquid crystal element using the liquid crystal composition, so that a ferroelectric liquid crystal element can be put to practical use. It is about providing.

[問題を解決するための手段] 本発明は下記一般式(1) (ただし、R1,R2はCI’=CIIIの置換基を有
していてもよい直鎖状又は分岐状のアルキル基、Ylは
−CH2〇−又は−〇〇H2−1m、 nはl又は2)
で示される化合物の少なくとも一種と、下記一般式(I
I ) (ただし、R3はc + ””’ 01Bの置換基を有
していてもよい直鎖状又は分岐状のアルキル基であり、
X3はをしめす。) で示される化合物の少な(とも一種とを含有することを
特徴とする強誘電性カイラルスメクチック液晶組成物な
らびに該液晶組成物を一対の電極基板間に配置してなる
液晶素子を提供するものである。
[Means for solving the problem] The present invention is based on the following general formula (1) (wherein R1 and R2 are linear or branched alkyl groups which may have a substituent of CI'=CIII, Yl is -CH2〇- or -〇〇H2-1m, n is l or 2)
At least one compound represented by the following general formula (I
I) (However, R3 is a linear or branched alkyl group that may have a substituent of c + ""' 01B,
X3 shows. The present invention provides a ferroelectric chiral smectic liquid crystal composition characterized by containing a small amount (at least one kind) of the compound shown in be.

前述の一般式(I)で示される化合物のうち、好ましい
化合物例としては、下記(I−a)〜(I−f)式で表
わされる化合物が挙げられる。
Among the compounds represented by the above general formula (I), preferred examples include compounds represented by the following formulas (I-a) to (If).

R、−X 、−◎−CH20−◎−X2−R2(I−a
)R,−X、−◎−0CH2−◎−X2  R2(I 
 b)R、−X 、−◎−CH20−◎−◎−X2R2
(1−c)R,−X、−◎−0CH20−◎−◎−X2
−  R2(I  d)R、−X 、−◎−◎−CH2
0−◎−X2  R2(I  e)R,−X、−ぺ)←
0−OCH2−◎−X2−R2(t−r)又さらに、上
述の(I−a)〜(I−f)式におけるXl、 X2の
好ましい例としては下記(1−i)〜(1−viii)
を挙げることができる。
R, -X, -◎-CH20-◎-X2-R2(I-a
)R, -X, -◎-0CH2-◎-X2 R2(I
b) R, -X, -◎-CH20-◎-◎-X2R2
(1-c) R, -X, -◎-0CH20-◎-◎-X2
-R2(I d)R, -X, -◎-◎-CH2
0-◎-X2 R2 (I e) R, -X, -pe)←
0-OCH2-◎-X2-R2(t-r) Furthermore, preferable examples of Xl and X2 in the above formulas (I-a) to (I-f) include the following (1-i) to (1- viii)
can be mentioned.

XI が 単結合、  x2 が 単結合X、 が 単
結合、  x2 が −〇−X、 が 単結合、  x
2 が −COX、 が 単結合、  X2 が −O
CX、  が −0−1X2 が 単結合x1が一〇−
1x2が X、が−0−1X2が−CO X、が−〇−1x2が−OC (1−i) (1−it) (1−4ii) (■ 1v) (1−v) (1−vi) (1−vii) (I viii) 又さらに、上述の(I−a)〜(I−f)式におけるR
、、  R2の好ましい例としては(1−ix)〜(1
−xiii )(pは0〜7であり、R5は直鎖状又は
分岐状のアルキル基) CH3 R2がRモCH21CHRs 。
XI is a single bond, x2 is a single bond X, is a single bond, x2 is -〇-X, is a single bond, x
2 is -COX, is a single bond, X2 is -O
CX, is -0-1X2 is single bond x1 is 10-
1x2 is X, is -0-1X2 is -CO ) (1-vii) (Iviii) Furthermore, R in the above formulas (I-a) to (If)
,, Preferred examples of R2 include (1-ix) to (1
-xiii) (p is 0 to 7, R5 is a linear or branched alkyl group) CH3 R2 is RmoCH21CHRs.

* (p、 qはθ〜7であり、R,、R6は直鎖状もしく
は分岐状のアルキル基) (1−xi) R1がn−アルキル基。
* (p, q are θ~7, R,, R6 are linear or branched alkyl groups) (1-xi) R1 is an n-alkyl group.

戸 R2が CH2−CH−CrH2r+1−n * (1−xii)R,がn−アルキル基。door R2 is CH2-CH-CrH2r+1-n * (1-xii) R is an n-alkyl group.

0日3 翫 R2が(−CH2入CSモCH2ヂto−R7ネ (Sは0〜7、tはOまたは1.R7は直鎖状もしくは
分岐状のアルキル基) また、前述の一般式(II )で示される化合物のうち
、好ましい化合物例としては、下記式(II −a )
〜、(II−b)式で示される化合物が挙げられる。
Day 0 3 R2 is (-CH2-containing CSmoCH2to-R7ne (S is 0 to 7, t is O or 1.R7 is a linear or branched alkyl group) In addition, the above general formula ( Among the compounds represented by formula (II), preferred examples include the following formula (II-a):
~, (II-b) Compounds represented by the formula are mentioned.

(IT−a) (II−b) (rは1〜12) 前記一般式 で示される化合物の具体的な構 造式の例を以下に示す。(IT-a) (II-b) (r is 1 to 12) The above general formula The specific structure of the compound shown in An example of the construction formula is shown below.

n C7HIS# 0CH2+OC6H,7nn C@
 H17+ CH20+OCa HI3Ca Hl?+
 CH2o■)(涙0−C8H,7n Cs Hrym
 CH2o+o−c a H13n C? Hlsm 
CM 2 o(沖o−c 6 H,1n−C@ H17
−0−◎−OCH2+OCa H11(I (] n−C、H、、+cH2o(■@−co−c s H1
7−n邑 C? H+s o−@)CH204■−05HC6H1
3−n(+−67) 前記一般式(I)で示される化合物は特開昭60−14
9547 (1985年)、特開昭61−63633 
(1986年)に記載される合成法により得られる。代
表的な合成例を以下に示す。
n C7HIS# 0CH2+OC6H,7nn C@
H17+ CH20+OCa HI3Ca Hl? +
CH2o ■) (Tear 0-C8H, 7n Cs Hrym
CH2o+o-c a H13n C? Hlsm
CM 2 o (Oki oc 6 H, 1n-C @ H17
-0-◎-OCH2+OCa H11(I (] n-C, H,, +cH2o(■@-co-c s H1
7-n-eup C? H+s o-@)CH204■-05HC6H1
3-n(+-67) The compound represented by the general formula (I) is disclosed in JP-A-60-14
9547 (1985), JP-A-61-63633
(1986). Typical synthesis examples are shown below.

合成例1(化合物No、1−54の合成)30mlナス
フラスコに下記アルコール誘導体1.0g(4,81m
mol)を入れ、冷却下、塩化チオニル3 m lを加
え、撹拌しながら室温まで昇温させ、さらに冷却管を取
りつけ、外温70°C〜80℃で4時間加熱環流を行っ
た。反応後過剰の塩化チオニルを留去し、塩化物を得た
。これをトルエン15m1に溶解した。
Synthesis Example 1 (Synthesis of Compound No. 1-54) 1.0 g of the following alcohol derivative (4.81 m
mol) was added thereto, 3 ml of thionyl chloride was added under cooling, and the temperature was raised to room temperature while stirring.Furthermore, a cooling tube was attached, and heating and reflux was performed at an external temperature of 70°C to 80°C for 4 hours. After the reaction, excess thionyl chloride was distilled off to obtain a chloride. This was dissolved in 15 ml of toluene.

次に200m1の三つロフラスコに60%油性水素化ナ
トリウム0.33gを入れ乾燥n−ヘキサンで数回洗っ
た後、下記フェノール誘導体1.52g (4,81m
mol)のTHF溶液15m1を室温下滴下し、さらに
DMSOを20m1加え1時間撹拌した。これに、先に
述べた塩化物のトルエン溶液をゆっくりと滴下し、滴下
終了後さらに室温にて16時間撹拌を続けた。
Next, 0.33 g of 60% oily sodium hydride was placed in a 200 ml three-necked flask, washed several times with dry n-hexane, and 1.52 g of the following phenol derivative (4.81 m
mol) of THF solution was added dropwise at room temperature, and further 20 ml of DMSO was added and stirred for 1 hour. To this, the toluene solution of the chloride mentioned above was slowly added dropwise, and after the dropwise addition was completed, stirring was continued for 16 hours at room temperature.

反応終了後約200 m lの氷水にあけ、有機層を分
離しさらに水層をベンゼン50m1にて2回抽出を行い
、先に分離した有機層と共に5%塩酸水溶液で2回洗っ
た後、イオン交換水で1回、さらに5%NaOH水溶液
で1回洗いその後、水層のpH値が中性を示すまでイオ
ン交換水で有機層を水洗した。
After the reaction was completed, the mixture was poured into about 200 ml of ice water, the organic layer was separated, and the aqueous layer was extracted twice with 50 ml of benzene. After washing with the previously separated organic layer twice with 5% aqueous hydrochloric acid, the ions were extracted. After washing once with exchanged water and once with 5% NaOH aqueous solution, the organic layer was washed with ion-exchanged water until the pH value of the aqueous layer became neutral.

有機層を取り出し硫酸マグネシウムを用いて乾燥し、溶
媒留去して粗製物を得た。これを展開液n−ヘキサン/
ジクロロメタン、3/lOを用いて、シリカゲルカラム
クロマトグラフィーにて精製を行った。
The organic layer was taken out, dried using magnesium sulfate, and the solvent was distilled off to obtain a crude product. Add this to the developing solution n-hexane/
Purification was performed by silica gel column chromatography using dichloromethane, 3/1O.

溶媒留去して得た結晶を、n−へキサンを用いて再結晶
して精製目的物を得た。さらに室温にて減圧乾燥を行い
最終精製目的物を0.69g得た。収率は28.5%で
あった。
The crystals obtained by distilling off the solvent were recrystallized using n-hexane to obtain the purified target product. Further, the product was dried under reduced pressure at room temperature to obtain 0.69 g of the final purified target product. The yield was 28.5%.

元素分析値(wt%)CHN 計算値  78.33   8.57    0.00
測定値  78.96   8.69    0.02
相転位 合成例2(化合物No、1−68の合成)30mlナス
フラスコに下記アルコール誘導体1.25gC3H,7
0−◎(涙CH20H (4,01mmol)を入れ、冷却下、塩化チオニル3
mlを加え、撹拌しながら室温まで昇温させ、さらに冷
却管を取りつけ、外温70°C〜80℃で4時間加熱環
流を行った。反応後過剰の塩化チオニルを留去し、塩化
物を得た。これをトルエン15 m lに溶解した。
Elemental analysis value (wt%) CHN Calculated value 78.33 8.57 0.00
Measured value 78.96 8.69 0.02
Phase Rearrangement Synthesis Example 2 (Synthesis of Compound No. 1-68) 1.25 g of the following alcohol derivative was added to a 30 ml eggplant flask.
0-◎(Tears) Add CH20H (4,01 mmol) and add thionyl chloride 3 under cooling.
ml was added, the temperature was raised to room temperature while stirring, a cooling tube was attached, and heating and reflux was performed at an external temperature of 70°C to 80°C for 4 hours. After the reaction, excess thionyl chloride was distilled off to obtain a chloride. This was dissolved in 15 ml of toluene.

次に200m1の三つロフラスコに60%油性水素化ナ
トリウム0.31gを入れ乾燥n−ヘキサンで数回洗っ
た後、下記フェノール誘導体0.79g (4,Olm
mol)のTHF溶液15m1を室温下滴下し、さらに
DMSOを20m1加え1時間撹拌した。これに、先に
述べた塩化物のトルエン溶液をゆっくりと滴下し、滴下
終了後さらに室温にて16時間撹拌を続けた。
Next, 0.31 g of 60% oily sodium hydride was placed in a 200 ml three-necked flask, washed several times with dry n-hexane, and then 0.79 g of the following phenol derivative (4, Olm
mol) of THF solution was added dropwise at room temperature, and further 20 ml of DMSO was added and stirred for 1 hour. To this, the toluene solution of the chloride mentioned above was slowly added dropwise, and after the dropwise addition was completed, stirring was continued for 16 hours at room temperature.

反応終了後約200 m lの氷水にあけ、有機層を分
離しさらに水層をベンゼン50 m lにて2回抽出を
行い、先に分離した有機層と共に5%塩酸水溶液で2回
洗った後、イオン交換水で1回、さらに5%NaOH水
溶液で1回洗いその後、水層のpH値が中性を示すまで
イオン交換水で有機層を水洗した。
After the reaction was completed, the mixture was poured into approximately 200 ml of ice water, the organic layer was separated, and the aqueous layer was extracted twice with 50 ml of benzene, and the organic layer was washed twice with 5% aqueous hydrochloric acid solution together with the previously separated organic layer. The organic layer was washed once with ion-exchanged water and once with 5% NaOH aqueous solution, and then the organic layer was washed with ion-exchanged water until the pH value of the aqueous layer became neutral.

有機層を取り出し硫酸マグネシウムを用いて乾燥し、溶
媒留去して粗製物を得た。これを展開液n−ヘキサン/
ジクロロメタン、3/10を用いて、シリカゲルカラム
クロマトグラフィーにて精製を行った。
The organic layer was taken out, dried using magnesium sulfate, and the solvent was distilled off to obtain a crude product. Add this to the developing solution n-hexane/
Purification was performed by silica gel column chromatography using dichloromethane, 3/10.

溶媒留去して得た結晶を、n−ヘキサンを用いて再結晶
して精製目的物を得た。さらに室温にて減圧乾燥を行い
最終精製目的物を0.51g得た。
The crystals obtained by distilling off the solvent were recrystallized using n-hexane to obtain the purified target product. Further, the product was dried under reduced pressure at room temperature to obtain 0.51 g of the final purified target product.

収率 前記一般式(n) で示される化合物の具体的な は26.0%であった。yield The general formula (n) The specific compound shown in was 26.0%.

構造式の例を以下に示す。An example of a structural formula is shown below.

CHN分析値(wt%) 計算値 78.33 8.63 0、Oo 理論値 78.62 8.86 0.02 相転位 S 2 + は未同定 IRスペクトル 2975゜ 2925゜ 2850゜ 1610゜ 1510゜ 1470゜ 1380゜ 1295゜ 1280゜ 1240゜ 1220゜ 1130゜ 1020、 1000. 810  cm−’+8) 一般式(IT)で示される化合物は下記に示すような合
成経路A、B、Cで得ることができる。
CHN analysis value (wt%) Calculated value 78.33 8.63 0, Oo Theoretical value 78.62 8.86 0.02 Phase transition S 2 + is unidentified IR spectrum 2975° 2925° 2850° 1610° 1510° 1470゜1380゜1295゜1280゜1240゜1220゜1130゜1020, 1000. 810 cm-'+8) The compound represented by the general formula (IT) can be obtained by synthetic routes A, B, and C as shown below.

合成経路A 合成経路B 合成経路C (X3:0) (R3,X3.Pは前述の通りである)一般式(1)で
示される化合物の代表的な合成例を以下に示す。
Synthetic route A Synthetic route B Synthetic route C (X3:0) (R3, X3.P are as described above) Representative synthetic examples of the compound represented by general formula (1) are shown below.

合成例1(化合物No、2−17の合成)p−2−フル
オロオクチルオキシフェノール1.OOg(4、16m
 M )をピリジン10m1、トルエン5 m lに溶
解させ、トランス−4−n−ペンチルシクロヘキサンカ
ルボン酸クロライド1 、30 g (6、00m M
 )をトルエン5 m lに溶解した溶液を、5℃以下
、20〜40分間で滴下した。滴下後、室温で一晩撹拌
し、白色沈殿を得た。
Synthesis Example 1 (Synthesis of Compound No. 2-17) p-2-fluorooctyloxyphenol 1. OOg (4, 16m
M) was dissolved in 10 ml of pyridine and 5 ml of toluene, and 1,30 g of trans-4-n-pentylcyclohexanecarboxylic acid chloride (6,00 m M
) dissolved in 5 ml of toluene was added dropwise at 5° C. or lower over 20 to 40 minutes. After the dropwise addition, the mixture was stirred at room temperature overnight to obtain a white precipitate.

反応終了後、反応物をベンゼンで抽出し、さらにこのベ
ンゼン層を蒸留水で洗ったのち、ベンゼン層を硫酸マグ
ネシウムで乾燥し、ベンゼンを留去した。さらにシリカ
ゲルカラムクロマトグラフィーを用いて精製し、さらに
エタノール/メタノールで再結晶して、トランス−4−
n−ペンチルシクロヘキサンカルボン酸−p−2−フル
オロオクチルオキシフェニルエステル1.20g (2
,85mM)を 得た。(収率68.6%) NMRデータ(ppm) 0.83〜2.83ppm  (34H,m)4、OO
〜4.50ppm  (2H,q)7、llppm  
     (4H,5)IRデータ(c m−’ ) 3456、 29.2B、  2852. 1742.
 1508゜1470、 1248. 1200.  
1166、  1132゜854゜ 相転移温度(℃) (ここで、s3.s4.s5.s6は、SmC*よりも
秩序度の高い相を示す。) 合成例2(化合物No、2−29の合成)十分に窒素置
換された容器に、(−)−2−フルオロヘプタツール0
 、40 g (3、0m m o I )と乾燥ピリ
ジン1.00g (13mmol)を入れ水冷下で30
分間乾燥した。その溶液にp−)ルエンスルホン酸りロ
リド0 、69 g (3、6m m o + )を加
え、そのまま5時間撹拌を続けた。反応終了後、lNH
cllomlを加え、塩化メチレン10m1で2回抽出
を行った後、その抽出液を蒸留水10m1で1回洗浄し
た。得られた塩化メチレン溶液に無水硫酸ナトリウムを
適宜加えて乾燥したのち、溶媒を留去しく+) −2フ
ルオロヘプチルp−トルエンスルホン酸エステル0.5
9g (2,0mmo+)を得た。
After the reaction was completed, the reaction product was extracted with benzene, and the benzene layer was further washed with distilled water, and then the benzene layer was dried over magnesium sulfate, and the benzene was distilled off. It was further purified using silica gel column chromatography and recrystallized from ethanol/methanol.
n-pentylcyclohexanecarboxylic acid-p-2-fluorooctyloxyphenyl ester 1.20g (2
, 85mM) was obtained. (Yield 68.6%) NMR data (ppm) 0.83-2.83ppm (34H, m)4, OO
~4.50ppm (2H,q)7,llppm
(4H,5) IR data (cm-') 3456, 29.2B, 2852. 1742.
1508°1470, 1248. 1200.
1166, 1132° 854° Phase transition temperature (°C) (Here, s3.s4.s5.s6 indicates a phase with a higher degree of order than SmC*.) Synthesis Example 2 (Synthesis of Compound No. 2-29) ) In a container that is sufficiently purged with nitrogen, add (-)-2-fluoroheptatorol 0.
, 40 g (3.0 m m o I) and 1.00 g (13 mmol) of dry pyridine were added and heated under water cooling for 30 g.
Dry for a minute. To the solution was added 0.69 g (3.6 mm o + ) of p-)luenesulfonic acid chloride, and stirring was continued for 5 hours. After the reaction is complete, lNH
After extracting twice with 10 ml of methylene chloride, the extract was washed once with 10 ml of distilled water. After appropriately adding anhydrous sodium sulfate to the obtained methylene chloride solution and drying, the solvent was distilled off.
9 g (2.0 mmo+) were obtained.

収率は66%である。生成物の比旋光度およびIRデー
タは下記の通りである。
Yield is 66%. The specific rotation and IR data of the product are as follows.

比旋光度[α]碧’+2.59゜ (cm1.CHCl  3 )。Specific optical rotation [α] Ao’+2.59° (cm1.CHCl 3 ).

比旋光度[αコ溜+9.58゜ (c=IS 0MCl  、、)。Specific optical rotation [α + 9.58° (c=IS 0MCl   ,,).

IR(cm−’): 2900、  2850、  1600、  1450
.1350、  1170、  1090、  980
.810、   660、   550゜上記のように
して得られた(+)−2−フルオロヘプチルp−)ルエ
ンスルホン酸エステル0.43g(1,5mmol)と
5−オクチル−2−(4−ヒドロ・キシフェニル)ピリ
ミジン0.28g (1,0mmol)に1−ブタノー
ル0.2mlを加えよく撹拌した。その溶液に、あらか
じめ!−ブタノール1.Om目こ水酸化ナトリウム0 
、048 g (1、2m m o + )を溶解させ
て調製しておいたアルカリ溶液を速やかに注ぎ5時間半
、加熱環流した。反応終了後蒸留水10 m lを加え
、ベンゼン10m1および5 m lでそれぞれ1回づ
つ抽出を行った後、その抽出液を無水硫酸ナトリウムを
適宜加えて乾燥した。乾燥後、溶媒を留去し、シリカゲ
ルカラム(クロロホルム)により目的物である(+) 
−5−オクチル−2−[4(2−フルオロへブチルオキ
シ)フェニル]ピリミジン0.17g (0,43mm
ol)を得た。
IR (cm-'): 2900, 2850, 1600, 1450
.. 1350, 1170, 1090, 980
.. 810, 660, 550° 0.43 g (1.5 mmol) of (+)-2-fluoroheptyl p-)luenesulfonic acid ester obtained as above and 5-octyl-2-(4-hydro-xyphenyl ) 0.2 ml of 1-butanol was added to 0.28 g (1.0 mmol) of pyrimidine and stirred well. Into the solution in advance! -Butanol1. Om this sodium hydroxide 0
An alkaline solution prepared by dissolving . After the reaction was completed, 10 ml of distilled water was added, and extraction was performed once each with 10 ml and 5 ml of benzene, and the extract was dried by appropriately adding anhydrous sodium sulfate. After drying, the solvent was distilled off and the desired product (+) was collected using a silica gel column (chloroform).
-5-octyl-2-[4(2-fluorohebutyloxy)phenyl]pyrimidine 0.17 g (0.43 mm
ol) was obtained.

収率は43%であり、以下のような比旋光度およびIR
データが得られた。
The yield was 43%, and the specific rotation and IR were as follows:
The data was obtained.

比旋光度[α];1,5J + 0.44゜(C−1、
CHCl  3 )。
Specific optical rotation [α]; 1.5J + 0.44° (C-1,
CHCl3).

比旋光度[α]溜+4.19゜ (cml、CHCl  3)。Specific optical rotation [α] +4.19° (cml, CHCl 3).

IR(cm−’): 2900、 2850、1600、1580゜1420
、 1250、1260、800゜720、  650
、 5500 本発明の液晶組成物は前記一般式(1)で示される化合
物の少なくとも1種と、前記一般式(II )で示され
る化合物の少なくとも1種と、さらに他の液晶性化合物
1種以上とを適当な割合で混合することにより得ること
ができる。また、本発明による液晶組成物は、強誘電性
液晶組成物、特に強誘電性カイラルスメクチック液晶組
成物が好ましい。
IR (cm-'): 2900, 2850, 1600, 1580°1420
, 1250, 1260, 800°720, 650
, 5500 The liquid crystal composition of the present invention comprises at least one compound represented by the general formula (1), at least one compound represented by the general formula (II), and one or more other liquid crystal compounds. It can be obtained by mixing in an appropriate ratio. Further, the liquid crystal composition according to the present invention is preferably a ferroelectric liquid crystal composition, particularly a ferroelectric chiral smectic liquid crystal composition.

本発明で用いる他の液晶性化合物の具体例を下記にあげ
る。
Specific examples of other liquid crystal compounds used in the present invention are listed below.

C5HITO+COS + 0CH2CHC2H5ネ υ υ 本発明の一般式(1)で示される液晶性化合物および一
般式(II )で示される液晶性化合物それぞれと、一
種以上の上述した他の液晶性化合物あるいは、それを含
む強誘電性液晶組成物(以下強誘電性液晶材料と略す)
との配向割合は、強誘電性液晶材料100重量部当り、
本発明一般式(1)および一般式(II )で示される
液晶性化合物それぞれを1〜300重量部、より好まし
くは5〜100重量部とすることが好ましい。
C5HITO+COS + 0CH2CHC2H5ne υ υ Each of the liquid crystalline compounds represented by the general formula (1) and the liquid crystalline compound represented by the general formula (II) of the present invention, and one or more other liquid crystalline compounds mentioned above, or containing them Ferroelectric liquid crystal composition (hereinafter abbreviated as ferroelectric liquid crystal material)
The orientation ratio is per 100 parts by weight of the ferroelectric liquid crystal material,
It is preferable that each of the liquid crystalline compounds represented by the general formula (1) and the general formula (II) of the present invention be contained in an amount of 1 to 300 parts by weight, more preferably 5 to 100 parts by weight.

また、本発明の一般式(1)および一般式(II )で
示される液晶性化合物の一方もしくは両方を2種以上用
いる場合も強誘電性液晶材料との配合割合は前述した強
誘電性液晶材料100重量部当り、本発明一般式(1)
および一般式(II)で示される液晶性化合物の一方も
しくは両方の2種以上の混合物を1〜500重量部、よ
り好ましくは10−100重量部とすることが好ましい
Furthermore, when using two or more of one or both of the liquid crystal compounds represented by the general formula (1) and general formula (II) of the present invention, the blending ratio with the ferroelectric liquid crystal material is as described above. General formula (1) of the present invention per 100 parts by weight
It is preferable that the mixture of two or more of one or both of the liquid crystalline compound represented by the general formula (II) be 1 to 500 parts by weight, more preferably 10 to 100 parts by weight.

第1図は強誘電性液晶素子の構成の説明のために、本発
明の強誘電性液晶層を有する液晶素子の1例の断面概略
図である。
FIG. 1 is a schematic cross-sectional view of an example of a liquid crystal element having a ferroelectric liquid crystal layer according to the present invention, for explaining the structure of the ferroelectric liquid crystal element.

第1図において符号lは強誘電性液晶層、2はガラス基
板、3は透明電極、4は絶縁性配向制御層、5はスペー
サー、6はリード線、7は電源、8は偏光板、9は光源
を示している。
In FIG. 1, the symbol l is a ferroelectric liquid crystal layer, 2 is a glass substrate, 3 is a transparent electrode, 4 is an insulating alignment control layer, 5 is a spacer, 6 is a lead wire, 7 is a power source, 8 is a polarizing plate, 9 indicates a light source.

2枚のガラス基板2には、それぞれIn2O3゜5n0
2あるいはITO(In4ium−Tin  0xid
e)等の薄膜から成る透明電極が被覆されている。その
上にポリイミドの様な高分子の薄膜をガーゼやアセテー
ト植毛布等でラビングして、液晶をラビング方向に並べ
る絶縁性配向制御層が形成されている。また絶縁物質と
して例えばシリコン窒化物、水素を含有するシリコン炭
化物、シリコン酸化物、硼素窒化物、水素を含有する硼
素窒化物、セリウム酸化物、アルミニウム酸化物、ジル
コニウム酸化物、チタン酸化物やフッ化マグネシウムな
どの無機物質絶縁層を形成し、その上にポリビニルアル
コール、ポリイミド、ポリアミドイミド、ポリエステル
イミド、ポリパラキシレン、ポリエステル、ポリカーボ
ネート、ポリビニルアセタール、ポリ塩化ビニル、ポリ
酢酸ビニル、ポリアミド、ポリスチレン、セルロース樹
脂、メラミン樹脂、ユリャ樹脂、アクリル樹脂やフォト
レジスト樹脂などの有機絶縁物質を配向制御層として、
2層で絶縁性配向制御層が形成されていてもよく、また
無機物質絶縁性配向制御層あるいは有機物質絶縁性配向
制御層単層であっても良い。この絶縁性配向制御層が無
機系ならば蒸着法などで形成でき、有機系ならば有機絶
縁物質を溶解させた溶液、またはその前駆体溶液(溶剤
0.1〜20重量%、好ましくは0.2〜10重量%)
を用いて、スピンナー塗布法、浸漬塗布法、スクリーン
印刷法、スプレー塗布法、ロール塗布法等で塗布し、所
定の硬化条件下(例えば加熱下)で硬化させ形成させる
ことができる。
The two glass substrates 2 each have In2O3゜5n0
2 or ITO (In4ium-Tin Oxid
A transparent electrode made of a thin film such as e) is coated. On top of this, a thin film of a polymer such as polyimide is rubbed with gauze or acetate flocked cloth to form an insulating alignment control layer that aligns the liquid crystals in the rubbing direction. Insulating materials such as silicon nitride, hydrogen-containing silicon carbide, silicon oxide, boron nitride, hydrogen-containing boron nitride, cerium oxide, aluminum oxide, zirconium oxide, titanium oxide, and fluoride Form an insulating layer of inorganic material such as magnesium, and then apply polyvinyl alcohol, polyimide, polyamideimide, polyesterimide, polyparaxylene, polyester, polycarbonate, polyvinyl acetal, polyvinyl chloride, polyvinyl acetate, polyamide, polystyrene, cellulose resin. , an organic insulating material such as melamine resin, Yulia resin, acrylic resin or photoresist resin as an orientation control layer.
The insulating alignment control layer may be formed of two layers, or may be a single layer of an insulating alignment control layer of an inorganic substance or an insulating alignment control layer of an organic substance. If this insulating alignment control layer is inorganic, it can be formed by a vapor deposition method, or if it is organic, it can be formed using a solution in which an organic insulating substance is dissolved or its precursor solution (solvent 0.1 to 20% by weight, preferably 0.5% by weight). 2-10% by weight)
It can be applied by a spinner coating method, dip coating method, screen printing method, spray coating method, roll coating method, etc., and cured and formed under predetermined curing conditions (for example, under heating).

絶縁性配向制御層の層厚は通常30人〜1μm1好まし
くは30人〜3000人、さらに好ましくは50人〜1
000人が適している。
The thickness of the insulating orientation control layer is usually 30 to 1 μm, preferably 30 to 3000, more preferably 50 to 1 μm.
000 people is suitable.

この2枚のガラス基板2はスペーサー5によって任意の
間隔に保たれている。例えば所定の直径を持つシリカビ
ーズ、アルミナビーズをスペーサーとしてガラス基板2
枚で挾持し、周囲をシール材、例えばエポキシ系接着材
を用いて密封する方法がある。その他スペーサーとして
高分子フィルムやガラスファイバーを使用しても良い。
These two glass substrates 2 are kept at an arbitrary distance by a spacer 5. For example, using silica beads or alumina beads with a predetermined diameter as spacers, the glass substrate 2
There is a method in which the material is held between two sheets and the surrounding area is sealed using a sealing material such as an epoxy adhesive. In addition, a polymer film or glass fiber may be used as a spacer.

この2枚のガラス基板の間に強誘電性液晶が封入されて
いる。
A ferroelectric liquid crystal is sealed between these two glass substrates.

強誘電性液晶が封入された強誘電性液晶層は、一般には
0.5〜20μm1好ましくは1〜5μmである。
The ferroelectric liquid crystal layer in which the ferroelectric liquid crystal is sealed is generally 0.5 to 20 μm, preferably 1 to 5 μm.

また、この強誘電性液晶は室温を含む広い温度域(特に
低温側)でSmC”相(カイラルスメクチックC相)を
有し、かつ、素子とした場合には粘度が低く高速応答性
を有すことが望ましい。さらに応答速度の温度依存性が
小さいことが望まれる。
In addition, this ferroelectric liquid crystal has a SmC" phase (chiral smectic C phase) in a wide temperature range including room temperature (especially on the low temperature side), and when used as an element, it has low viscosity and high-speed response. It is desirable that the temperature dependence of the response speed be small.

また、特に素子とした場合に良好な均−配向性を示しモ
ノドメイン状態を得るには、その強誘電性液晶は等吉相
からCh相(コレステリック相)−3mA相(スメクチ
ックA相)−SmC*相(カイラルスメクチックC相)
という相転移系列を有していることが望ましい。
In addition, in order to exhibit good homogeneous orientation and obtain a monodomain state especially when used as an element, the ferroelectric liquid crystal must be changed from the Tomoyoshi phase to the Ch phase (cholesteric phase)-3mA phase (smectic A phase)-SmC* Phase (chiral smectic C phase)
It is desirable to have the following phase transition series.

透明電極3からはリード線によって外部電源7に接続さ
れている。
The transparent electrode 3 is connected to an external power source 7 by a lead wire.

またガラス基板2の外側には偏光板8が貼り合わせであ
る。
Further, a polarizing plate 8 is bonded to the outside of the glass substrate 2.

第1図は透明型なので光源9を備えている。The device shown in FIG. 1 is of a transparent type and is equipped with a light source 9.

第2図は強誘電性液晶素子の動作説明のために、セルの
例を模式的に描いたものである。21aと21bはそれ
ぞれIn2O3,5n02あるいはITO(Indiu
m−Tin  0xide)等の薄膜からなる透明電極
で被覆された基板(ガラス板)であり、その間に液晶分
子層22がガラス面に垂直になるよう配向したSmC*
相またはSmH”相の液晶が封入されている。太線で示
した線23が液晶分子を表わしており、この液晶分子2
3はその分子に直交した方向に双極子モーメント(P±
)24を有している。基板21aと21b上の電極間に
一定の閾値以上の電圧を印加すると、液晶分子23のら
せん構造がほどけ、双極子モーメント(P土)24がす
べて電界方向に向くよう、液晶分子23は配向方向を変
えることができる。液晶分子23は細長い形状を有して
おり、その長袖方向と短軸方向で屈折率異方性を示し、
従って例えばガラス面の上下に互いにクロスニコルの偏
光子を置けば、電圧印加極性によって光学特性が変わる
液晶光学変調素子となることは容易に理解される。
FIG. 2 schematically depicts an example of a cell for explaining the operation of a ferroelectric liquid crystal element. 21a and 21b are In2O3, 5n02 or ITO (Indiu
A substrate (glass plate) coated with a transparent electrode made of a thin film such as m-Tin oxide), between which a liquid crystal molecular layer 22 is oriented perpendicular to the glass surface.
A liquid crystal of phase or SmH” phase is enclosed.The thick line 23 represents the liquid crystal molecule, and the liquid crystal molecule 2
3 is the dipole moment (P±
)24. When a voltage equal to or higher than a certain threshold is applied between the electrodes on the substrates 21a and 21b, the helical structure of the liquid crystal molecules 23 is unraveled, and the liquid crystal molecules 23 are aligned in the direction such that the dipole moment (P) 24 is all directed in the direction of the electric field. can be changed. The liquid crystal molecules 23 have an elongated shape and exhibit refractive index anisotropy in the long axis direction and the short axis direction,
Therefore, it is easily understood that, for example, if crossed Nicol polarizers are placed above and below a glass surface, a liquid crystal optical modulation element whose optical characteristics change depending on the polarity of applied voltage can be obtained.

本発明の光学変調素子で好ましく用いられる液晶セルは
、その厚さを充分に薄く(例えば10μ以下)すること
ができる。このように液晶層が薄くなるにしたがい、第
3図に示すように電界を印加していない状態でも液晶分
子のらせん構造がほどけ、その双極子モーメントPaま
たはpbは上向き(34a)または下向き(34b)の
どちらかの状態をとる。このようなセルに、第3図に示
す如く一定の閾値以上の極性の異る電界EaまたはEb
を電圧印加手段と31bにより付与すると、双極子モー
メントは電界EaまたはEbの電界ベクトルに対応して
上向き34aまたは下向き34bと向きを変え、それに
応じて液晶分子は、第1の安定状態33aかあるいは第
2の安定状態33bの何れか一方に配向する。
The liquid crystal cell preferably used in the optical modulation element of the present invention can have a sufficiently thin thickness (for example, 10 μm or less). As the liquid crystal layer becomes thinner, the helical structure of the liquid crystal molecules unravels even when no electric field is applied, as shown in Figure 3, and the dipole moment Pa or pb is directed upward (34a) or downward (34b). ). In such a cell, an electric field Ea or Eb of different polarity above a certain threshold value is applied as shown in FIG.
is applied by the voltage applying means and 31b, the dipole moment changes direction to upward direction 34a or downward direction 34b corresponding to the electric field vector of electric field Ea or Eb, and accordingly, the liquid crystal molecules are in the first stable state 33a or Orientation to one of the second stable states 33b.

このような強誘電性を光学変調素子として用いることの
利点は先にも述べたが2つある。
As mentioned above, there are two advantages to using such ferroelectricity as an optical modulation element.

その第1は、応答速度が極めて速いことであり、第2は
液晶分子の配向が双安定性を有することである。第2の
点を例えば第3図によって更に説明すると、電界Eaを
印加すると液晶分子は第1の安定状態33aに配向する
が、この状態は電界を切っても安定である。また、逆向
きの電界Ebを印加すると、液晶分子は第2の安定状態
33bに配向してその分子の向きを変えるが、やはり電
界を切ってもこの状態に留っている。また与える電界E
aあるいはEbが一定の閾値を越えない限り、それぞれ
前の配向状態にやはり維持されている。
The first is that the response speed is extremely fast, and the second is that the alignment of liquid crystal molecules has bistability. To further explain the second point with reference to FIG. 3, for example, when the electric field Ea is applied, the liquid crystal molecules are oriented in a first stable state 33a, and this state remains stable even when the electric field is turned off. Furthermore, when an electric field Eb in the opposite direction is applied, the liquid crystal molecules are oriented to the second stable state 33b and change their orientation, but they remain in this state even after the electric field is turned off. Also, the electric field E
As long as a or Eb does not exceed a certain threshold, the respective previous orientations are maintained.

以下実施例により本発明について更に詳細に説明するが
、本発明はこれらの実施例に限定されるものではない。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.

実施例1 下記重量部で混合した液晶組成物1−Aを作成した。Example 1 A liquid crystal composition 1-A was prepared by mixing the following parts by weight.

01(5構   造   式           重
量部金物No。
01 (5 Structural Formula Weight Part Hardware No.

この液晶組成物1−Aに対して例示化合物1−1.2−
3をそれぞれ下記の重量部で混合し、液晶組成物1−B
を得た。
Exemplary compound 1-1.2- for this liquid crystal composition 1-A
3 were mixed in the following weight parts, respectively, to prepare liquid crystal composition 1-B.
I got it.

 −A 次に、これらの液晶組成物を以下の手順で作製したセル
を用いて、光学的な応答を観察した。
-A Next, optical responses were observed using cells prepared using these liquid crystal compositions according to the following procedure.

2枚の1.1mm厚のガラス板を用意し、それぞれのガ
ラス板上にITO膜を形成し、電圧印加電極を作成し、
さらにこの上にSiO2を蒸着させ絶縁層とした。
Prepare two 1.1 mm thick glass plates, form an ITO film on each glass plate, create a voltage application electrode,
Furthermore, SiO2 was deposited on top of this to form an insulating layer.

この基板上にポリイミド樹脂前駆体[東し■5P−51
0] 1.0%ジメチルアセトアミド溶液を回転数30
0Or、p、mのスピンナーで15秒間塗布した。成膜
後、60分間、300℃加熱縮合焼成処理を施した。こ
の時の塗膜の膜厚は約120人であった。
On this substrate, a polyimide resin precursor [Toshi ■ 5P-51
0] 1.0% dimethylacetamide solution at 30 revolutions
Coating was performed for 15 seconds using a 0Or, p, m spinner. After the film was formed, a heating condensation firing process was performed at 300° C. for 60 minutes. The thickness of the coating film at this time was about 120 people.

この焼成後の被膜には、アセテート植毛布によるラビン
グ処理がなされ、その後イソプロピルアルコール液で洗
浄し、平均粒径1.5μmのシリカビーズを一方のガラ
ス板上に散布した後、それぞれのラビング処理軸が互い
に平行となる様にし、接着シール剤[リクソンボンド(
チッソ(掬)]を用いてガラス板をはり合わせ、60分
間、100℃にて加熱乾燥しセルを作成した。このセル
のセル厚をベレツク位相板によって測定したところ約1
.5μmであった。
This fired coating was rubbed with acetate flocked cloth, then washed with isopropyl alcohol solution, and silica beads with an average particle size of 1.5 μm were sprinkled on one glass plate. so that they are parallel to each other, and apply adhesive sealant [Rixon Bond (
Glass plates were glued together using a Chisso (scoop) and dried by heating at 100° C. for 60 minutes to create a cell. The cell thickness of this cell was measured using a Bereck phase plate and was approximately 1
.. It was 5 μm.

このセルに上述の液晶組成物1−Bを等方性液体状態で
注入し、等吉相から20°C/hで25℃まで徐冷する
ことにより、強誘電性液晶素子を作成した。
A ferroelectric liquid crystal element was prepared by injecting the liquid crystal composition 1-B described above in an isotropic liquid state into this cell and slowly cooling it from the isokyoshi phase to 25°C at a rate of 20°C/h.

この強誘電性液晶素子を用いて、ピーク・トウ・ピーク
電圧V pp = 25 Vの電圧印加により直交ニコ
ル下での光学的な応答(透過光量変化0〜90%)を検
知して応答速度(以後光学応答速度という)を測定した
。その結果を次に示す。
Using this ferroelectric liquid crystal element, the optical response under crossed Nicols (transmitted light amount change 0 to 90%) is detected by applying a voltage of peak-to-peak voltage V pp = 25 V, and the response speed ( (hereinafter referred to as optical response speed) was measured. The results are shown below.

lOoC25°0   40℃ 応答速度   960 μsec   265 μse
c    8s μsecまた、25℃におけるこの駆
動時のコントラストは12で、明瞭なスイッチング動作
が観察された。
lOoC25°0 40°C Response speed 960 μsec 265 μsec
c 8s μsec Further, the contrast during this driving at 25° C. was 12, and a clear switching operation was observed.

比較例1 実施例1で混合した液晶組成物1−Bのうち例示化合物
No、 1−1を混合せずに1−Aに対して例示化合物
No、 2−3のみを混合した液晶組成物1−Cと例示
化合物No、 2−3を混合せずに1−Aに対して例示
化合物No、 1−1のみを混合した液晶組成物l−り
を作成した。
Comparative Example 1 Liquid crystal composition 1 in which only exemplary compound No. 2-3 was mixed with 1-A without mixing exemplary compound No. 1-1 of liquid crystal composition 1-B mixed in Example 1. A liquid crystal composition L-2 was prepared by mixing only exemplary compound No. 1-1 with 1-A without mixing -C with exemplary compound No. 2-3.

液晶組成物1−Bを用いる代わりに液晶組成物1−A、
  1−C及び1−Dをセル内に注入する以外は、全〈
実施例1と同様の方法で強誘電性液晶素子を作成し、光
学応答速度を測定した。その結果を次に示す。
Instead of using liquid crystal composition 1-B, liquid crystal composition 1-A,
Except for injecting 1-C and 1-D into the cell, all <
A ferroelectric liquid crystal device was produced in the same manner as in Example 1, and its optical response speed was measured. The results are shown below.

応答速度  10℃    25℃   40℃1−A
    l600 μsec    430 p se
c    120 p 5ee1−C1150p se
c   290 μsec   90 μsec1−D
    1380 μsec    380 p se
c    110 p see実施例1と比較例1より
明らかな様に、本発明による液晶性組成物1−Bを含有
する強誘電性液晶素子の方が、低温における作動特性、
高速応答性が改善され、かつ応答速度の温度依存性が軽
減されて実施例2 実施例1で混合した液晶組成物1−Aに対して、以下に
示す例示化合物を以下に示す重量部で混合して液晶組成
物2−Bを得た。
Response speed 10℃ 25℃ 40℃1-A
l600 μsec 430 pse
c 120 p 5ee1-C1150p se
c 290 μsec 90 μsec1-D
1380 μsec 380 psec
c 110 p see As is clear from Example 1 and Comparative Example 1, the ferroelectric liquid crystal element containing the liquid crystal composition 1-B according to the present invention has better operating characteristics at low temperatures,
Example 2 The following exemplified compounds were mixed in the following parts by weight with respect to the liquid crystal composition 1-A mixed in Example 1. A liquid crystal composition 2-B was obtained.

−A これを用いた他は実施例1と同様の方法で強誘電性液晶
素子を作成し、実施例1と同様の方法で光学応答速度を
測定し、スイッチング状態等を観察した。
-A A ferroelectric liquid crystal element was produced in the same manner as in Example 1 except that this was used, and the optical response speed was measured in the same manner as in Example 1, and the switching state etc. were observed.

この液晶素子内の均−配向性は良好であり、モノドメイ
ン状態が得られた。測定結果を次に示す。
The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown below.

応答速度 10℃     25℃     40℃940 p 
sec   260 p sec   85 p se
cまた、25℃におけるこの駆動時のコントラストは1
3で、明瞭なスイッチング動作が観察され、電圧印加を
止めた際の双安定性も良好であった。
Response speed 10℃ 25℃ 40℃940p
sec 260 p sec 85 p se
c Also, the contrast during this drive at 25°C is 1
3, a clear switching action was observed, and the bistability was also good when the voltage application was stopped.

比較例2 実施例2で混合した液晶組成物2−Hのうち例示化合物
No、l−5,1−24,1−37を混合せずに1−A
に対して例示化合物No、2−26.2−54のみを混
合した液晶組成物2−Cと例示化合物No、2−26゜
2−54を混合せずに1−Aに対して例示化合物No、
l−5,1−24,1−37のみを混合した液晶組成物
2−Dを作成した。
Comparative Example 2 Among the liquid crystal compositions 2-H mixed in Example 2, 1-A was prepared without mixing exemplified compounds No. 1-5, 1-24, and 1-37.
Exemplary compound No. 2-C and exemplified compound No. 2-26. Exemplified compound No. 2-C and exemplified compound No. 1-A without mixing 2-54. ,
A liquid crystal composition 2-D was prepared by mixing only 1-5, 1-24, and 1-37.

液晶組成物1−Bを用いる代わりに液晶組成物2−C及
び2−Dをセル内に注入する以外は、全〈実施例1と同
様の方法で強誘電性液晶素子を作成し、光学応答速度を
測定した。その結果を次に示す。
A ferroelectric liquid crystal element was prepared in the same manner as in Example 1, except that liquid crystal compositions 2-C and 2-D were injected into the cell instead of using liquid crystal composition 1-B, and the optical response was The speed was measured. The results are shown below.

応答速度 10℃    25℃    40℃2−C
I50 μsec   275 μsec   95 
p 5ec2−D   1300 μsec   33
0 μsec   110μsec実施例2と比較例2
より明らかな様に、本発明による液晶性組成物2−Bを
含有する強誘電性液晶素子の方が、低温における作動特
性、高速応答性が改善され、かつ応答速度の温度依存性
が軽減されている。
Response speed 10℃ 25℃ 40℃2-C
I50 μsec 275 μsec 95
p 5ec2-D 1300 μsec 33
0 μsec 110 μsec Example 2 and Comparative Example 2
As is clearer, the ferroelectric liquid crystal element containing the liquid crystal composition 2-B according to the present invention has improved operating characteristics and high-speed response at low temperatures, and has reduced temperature dependence of response speed. ing.

実施例3 下記重量部で混合した液晶組成物3−Aを作成した。Example 3 A liquid crystal composition 3-A was prepared by mixing the following parts by weight.

例示化        構   造   式%式% この液晶組成物3−Aに対して例示化合物1−1.2−
3をそれぞれ下記の重量部で混合し、液晶組成物3−B
を得た。
Exemplification Structure Formula % Formula % For this liquid crystal composition 3-A, exemplified compound 1-1.2-
3 in the following parts by weight, respectively, to prepare liquid crystal composition 3-B.
I got it.

例示化 合物No。exemplification Compound No.

構   造   式 液晶組成物1−Bをこの液晶組成物3−Bζこ代えたほ
かは実施例1と同様の方法で強誘電性液晶素子を作成し
、実施例1と同様の方法で光学応答速度を測定し、スイ
ッチング状態等を観察した。この液晶素子内の均−配向
性は良好でありモノドメイン状態が得られた。測定結果
を次に示す。
A ferroelectric liquid crystal element was prepared in the same manner as in Example 1, except that liquid crystal composition 1-B was replaced with liquid crystal composition 3-Bζ, and the optical response speed was determined in the same manner as in Example 1. was measured and the switching state etc. was observed. The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown below.

lOoo      25℃     40°C応答速
度 1280μsec  3307zsec  115
μsecまた、25℃におけるこの駆動時のコントラス
トは14で、明瞭なスイッチング動作が観察された。
lOoo 25℃ 40℃Response speed 1280μsec 3307zsec 115
The contrast during this driving at 25° C. was 14 μsec, and a clear switching operation was observed.

比較例3 実施例3で混合した液晶組成物3−Bのうち例示化合物
No、 1−1を混合せずに3−Aに対して例示化合物
No、 2−3のみを混合した液晶組成物3−Cと例示
化合物No、 2−3を混合せずに3−Aに対して例示
化合物No、 1−1のみを混合した液晶組成物3−D
を作成した。
Comparative Example 3 Liquid crystal composition 3 in which only exemplary compound No. 2-3 was mixed with 3-A without mixing exemplary compound No. 1-1 of liquid crystal composition 3-B mixed in Example 3. Liquid crystal composition 3-D in which only exemplary compound No. 1-1 was mixed with 3-A without mixing -C and exemplary compound No. 2-3
It was created.

液晶組成物1−Bを用いる代わりに液晶組成物3−A、
3−C及び3−Dをセル内に注入する以外は、全〈実施
例1同様の方法で強誘電性液晶素子を作成し光学応答速
度を測定した。その結果を次に示す。
Instead of using liquid crystal composition 1-B, liquid crystal composition 3-A,
A ferroelectric liquid crystal device was prepared in the same manner as in Example 1 except that 3-C and 3-D were injected into the cell, and the optical response speed was measured. The results are shown below.

10℃  25℃  40℃ 応答速度  μsec   μsec   μ5ec3
−A    2000  530   1583−C1
500380125 3−D    1750  470   145実施例
3と比較例3より明らかな様に、本発明による液゛晶組
酸物3−Bを含有する強誘電性液晶素子の方が低温にお
ける作動特性、高速応答性が改善され、かつ応答速度の
温度依存性が軽減されている。
10℃ 25℃ 40℃ Response speed μsec μsec μ5ec3
-A 2000 530 1583-C1
500380125 3-D 1750 470 145 As is clear from Example 3 and Comparative Example 3, the ferroelectric liquid crystal element containing the liquid crystal composite oxide 3-B according to the present invention has better operating characteristics at low temperatures and faster response. The temperature dependence of the response speed is reduced.

実施例4 実施例3で混合した液晶組成物3〜Aに対して、以下に
示す例示化合物を以下に示す重量部で混合して液晶組成
物4−Bを得た。
Example 4 Liquid crystal compositions 3-A mixed in Example 3 were mixed with the following exemplified compounds in the weight parts shown below to obtain liquid crystal composition 4-B.

例示化 合物Nα 構  造  式 構  造  式 重量部 これを用いた他は実施例1と同様の方法で強誘電性液晶
素子を作成し、実施例1と同様の方法で光学応答速度を
測定し、スイッチング状態等を観察した。この液晶素子
内の均一配向性は良好であり、モノドメイン状態が得ら
れた。測定結果を次に示す。
Exemplary Compound Nα Structure Formula Structure Formula Weight Part A ferroelectric liquid crystal device was prepared in the same manner as in Example 1 except that this was used, and the optical response speed was measured in the same manner as in Example 1. The condition etc. were observed. The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown below.

10℃     25℃     40℃応答速度  
1210 μsec  300 μsec  110 
μsecまた、25℃におけるこの駆動時のコントラス
トは13で、明瞭なスイッチング動作が観察され、電圧
印加を止めた際の双安定性も良好であった。
10℃ 25℃ 40℃Response speed
1210 μsec 300 μsec 110
Further, the contrast during this driving at 25° C. was 13, a clear switching operation was observed, and the bistability was also good when the voltage application was stopped.

比較例4 実施例4で混合した液晶組成物4−Hのうち例示化合物
No、l−5,1−24,1−37を混合せずに3−A
に対して例示化合物No、2−26.2−54のみを混
合した液晶組成物4−Cと例示化合物No、2−26゜
2−54を混合せずに3−Aに対して例示化合物No、
1−5. 1−24. 1−37のみを混合した液晶組
成物4−Dを作成した。
Comparative Example 4 Among the liquid crystal compositions 4-H mixed in Example 4, 3-A was prepared without mixing exemplified compounds No. 1-5, 1-24, and 1-37.
Exemplary compound No. 4-C and exemplified compound No. 2-26. Exemplified compound No. 3-A without mixing 2-54 with exemplified compound No. 4-C and exemplified compound No. ,
1-5. 1-24. A liquid crystal composition 4-D was prepared by mixing only 1-37.

液晶組成物1−Bを用いる代わりに液晶組成物4−C及
び4−Dをセル内に注入する以外は、全〈実施例1同様
の方法で強誘電性液晶素子を作成し光学応答速度を測定
した。その結果を次に示す。
A ferroelectric liquid crystal element was prepared in the same manner as in Example 1, except that liquid crystal compositions 4-C and 4-D were injected into the cell instead of using liquid crystal composition 1-B, and the optical response speed was improved. It was measured. The results are shown below.

lOoC25℃  40°C 応答速度  μ5ectLsec   μ5ec4−C
1440360120 4−D    1600  420  135実施例4
と比較例4より明らかな様に、本発明による液晶組成物
4−Bを含有する強誘電性液晶素子の方が低温における
作動特性、高速応答性が改善され、かつ応答速度の温度
依存性が軽減されている。
lOoC25℃ 40℃ Response speed μ5ectLsec μ5ec4-C
1440360120 4-D 1600 420 135 Example 4
As is clear from Comparative Example 4, the ferroelectric liquid crystal element containing the liquid crystal composition 4-B according to the present invention has improved operating characteristics and high-speed response at low temperatures, and has a lower temperature dependence of response speed. It has been reduced.

実施例5 下記重量部で混合した液晶組成物5−Aを作成した。Example 5 A liquid crystal composition 5-A was prepared by mixing the following parts by weight.

例示化 合物N0 構 造 式 この液晶組成物5−Aに対して例示化合物1−1.2−
3をそれぞれ下記の重量部で混合し、液晶組成物5−B
を得た。
Exemplified Compound No. Structural formula: For this liquid crystal composition 5-A, Exemplified Compound 1-1.2-
3 in the following weight parts, respectively, to prepare liquid crystal composition 5-B.
I got it.

液晶組成物1−Bをこの液晶組成物5−Bに代えたほか
は実施例1と同様の方法で強誘電性液晶素子を作成し、
実施例1と同様の方法で光学応答速度を測定し、スイッ
チング状態等を観察した。この液晶素子内の均−配向性
は良好でありモノドメイン状態が得られた。測定結果を
次に示す。
A ferroelectric liquid crystal element was prepared in the same manner as in Example 1 except that liquid crystal composition 1-B was replaced with liquid crystal composition 5-B.
The optical response speed was measured in the same manner as in Example 1, and the switching state etc. were observed. The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown below.

10℃     25℃     40℃応答速度 3
65 μsec  90 μsec  35 μsec
また、25℃におけるこの駆動時のコントラストは14
で、明瞭なスイッチング動作が観察された。
10℃ 25℃ 40℃ Response speed 3
65 μsec 90 μsec 35 μsec
Also, the contrast during this drive at 25°C is 14
A clear switching behavior was observed.

比較例5 実施例5で混合した液晶組成物5−Bのうち例示化合物
No、 1−1を混合せずに5−Aに対して例示化合物
No、 2−3のみを混合した液晶組成物5−Cと例示
化合物No、 2−3を混合せずに5−Aに対して例示
化合物No、 1−1のみを混合した液晶組成物5−り
を作成した。
Comparative Example 5 Liquid crystal composition 5 in which only exemplary compound No. 2-3 was mixed with 5-A without mixing exemplary compound No. 1-1 of liquid crystal composition 5-B mixed in Example 5. A liquid crystal composition 5-2 was prepared by mixing only exemplary compound No. 1-1 with 5-A without mixing -C with exemplary compound No. 2-3.

液晶組成物1−Bを用いる代わりに液晶組成物5−A、
 5−C及び5−Dをセル内に注入する以外は、全(実
施例1同様の方法で強誘電性液晶素子を作成し光学応答
速度を測定した。その結果を次に示す。
Instead of using liquid crystal composition 1-B, liquid crystal composition 5-A,
A ferroelectric liquid crystal device was prepared in the same manner as in Example 1, except that 5-C and 5-D were injected into the cell, and the optical response speed was measured. The results are shown below.

10℃  25℃  40℃ 応答速度  μSeCμsec   μ5eC5−A 
   620   170  525−C440115
40 5−D    510   140  45実施例5と
比較例5より明らかな様に、本発明による液晶組成物5
−Bを含有する強誘電性液晶素子の方が低温における作
動特性、高速応答性が改善され、かつ応答速度の温度依
存性が軽減されている。
10℃ 25℃ 40℃ Response speed μSeCμsec μ5eC5-A
620 170 525-C440115
40 5-D 510 140 45 As is clear from Example 5 and Comparative Example 5, liquid crystal composition 5 according to the present invention
The ferroelectric liquid crystal element containing -B has improved operating characteristics and high-speed response at low temperatures, and has reduced temperature dependence of the response speed.

実施例6 実施例5で混合した液晶組成物5−Aに対して、以下に
示す例示化合物を以下に示す重量部で混合して液晶組成
物6−Bを得た。
Example 6 Liquid crystal composition 5-A mixed in Example 5 was mixed with the following exemplified compounds in the weight parts shown below to obtain liquid crystal composition 6-B.

−A これを用いた他は実施例1と同様の方法で強誘電性液晶
素子を作成し、実施例1と同様の方法で光学応答速度を
測定し、スイッチング状態等を観察した。
-A A ferroelectric liquid crystal element was produced in the same manner as in Example 1 except that this was used, and the optical response speed was measured in the same manner as in Example 1, and the switching state etc. were observed.

この液晶素子内の均−配向性は良好であり、モノドメイ
ン状態が得られた。測定結果を次に示す。
The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown below.

10℃   25℃  40℃ 応答速度  370 μsec  95 μsec  
35 p secまた、25℃におけるこの駆動時のコ
ントラストは13で、明瞭なスイッチング動作が観察さ
れ、電圧印加を止めた際の双安定性も良好であった。
10℃ 25℃ 40℃ Response speed 370 μsec 95 μsec
35 p sec Furthermore, the contrast during this drive at 25° C. was 13, a clear switching operation was observed, and the bistability was also good when the voltage application was stopped.

比較例6 実施例6で混合した液晶組成物6−Hのうち例示化合物
No、1−5. 1−24. 1−37を混合せずに5
−Aに対して例示化合物No、2−26.2−54のみ
を混合した液晶組成物6−Cと例示化合物No、2−2
6゜2−54を混合せずに5−Aに対して例示化合物N
o、1−5. 1−24. 1−37のみを混合した液
晶組成物6−Dを作成した。
Comparative Example 6 Among the liquid crystal compositions 6-H mixed in Example 6, exemplified compounds No. 1-5. 1-24. 5 without mixing 1-37
Liquid crystal composition 6-C in which only exemplary compound No. 2-26.2-54 was mixed with -A and exemplary compound No. 2-2
Exemplary compound N for 5-A without mixing 6゜2-54
o, 1-5. 1-24. A liquid crystal composition 6-D was prepared by mixing only 1-37.

液晶組成物1−Bを用いる代わりに液晶組成物6−C及
び6−Dをセル内に注入する以外は、全〈実施例1同様
の方法で強誘電性液晶素子を作成し、光学応答速度を測
定した。その結果を次に示す。
A ferroelectric liquid crystal element was prepared in the same manner as in Example 1 except that liquid crystal compositions 6-C and 6-D were injected into the cell instead of using liquid crystal composition 1-B, and the optical response speed was was measured. The results are shown below.

10℃  25℃  40℃ 応答速度  μsec   μSeCμ5eC6−C4
9013045 6−D    530  140  45実施例6と比
較例6より明らかな様に、本発明による液晶組成物6−
Bを含有する強誘電性液晶素子の方が低温における作動
特性、高速応答性が改善され、かつ応答速度の温度依存
性が軽減されている。
10℃ 25℃ 40℃ Response speed μsec μSeCμ5eC6-C4
9013045 6-D 530 140 45 As is clear from Example 6 and Comparative Example 6, the liquid crystal composition 6-D according to the present invention
A ferroelectric liquid crystal element containing B has improved operating characteristics and high-speed response at low temperatures, and has reduced temperature dependence of response speed.

実施例7 実施例1及び比較例1で使用した液晶組成物 を5i0
2を用いずに、ポリイミド樹脂だけで配向 制御層を作
成した以外は全〈実施例1と同様の方法で強誘電性液晶
素子を作成し、実施例1と同様の 方法で光学応答速度
を測定した。その結果を次に示す。
Example 7 The liquid crystal composition used in Example 1 and Comparative Example 1 was 5i0
A ferroelectric liquid crystal element was created in the same manner as in Example 1, except that the alignment control layer was created only with polyimide resin without using 2. The optical response speed was measured in the same manner as in Example 1. did. The results are shown below.

応答速度   10℃    25℃    40℃1
−B   900 μsec   240μsec  
 80 μsec1−C1080p sec   27
5 B sec   90 μsec1−D   13
00 μsec   370 μsec   105 
μsec1−A   1520 μsec   420
 μsec   120 μsec実施例7より明らか
な様に、素子構成を変えた場合でも本発明に従う強誘電
性液晶組成物を含有する素子は、他の液晶性組成物を含
む素子に比べ実施例Iと同様に低温作動特性が非常に改
善され、かつ応答速度の温度依存性が軽減されたものと
なっている。
Response speed 10℃ 25℃ 40℃1
-B 900 μsec 240 μsec
80 μsec1-C1080psec 27
5 B sec 90 μsec1-D 13
00 μsec 370 μsec 105
μsec1-A 1520 μsec 420
μsec 120 μsec As is clear from Example 7, even when the device configuration is changed, the device containing the ferroelectric liquid crystal composition according to the present invention is similar to Example I compared to the device containing other liquid crystal compositions. The low-temperature operating characteristics have been greatly improved, and the temperature dependence of response speed has been reduced.

実施例8〜15 実施例1.3.5で用いた例示化合物および液晶性組成
物に代えて表1に示した例示化合物および液晶性組成物
を各重量部で用い8−B−15−Hの液晶性組成物を得
た。これらを用いた他は全〈実施例1と同様の方法によ
り強誘電性液晶素子を作成し、実施例1と同様の方法で
光学応答速度を測定し、スイッチング状態等を観察した
。それぞれの液晶素子内の均−配向性は良好であり、モ
ノドメイン状態が得られた。測定結果を表1に示す。
Examples 8 to 15 8-B-15-H was prepared using each part by weight of the exemplified compounds and liquid crystal compositions shown in Table 1 in place of the exemplified compounds and liquid crystal compositions used in Example 1.3.5. A liquid crystalline composition was obtained. A ferroelectric liquid crystal element was prepared in the same manner as in Example 1 except for using these, and the optical response speed was measured in the same manner as in Example 1, and the switching state and the like were observed. Uniform alignment within each liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown in Table 1.

実施例8〜15より明らかな様に、本発明による液晶性
組成物8−B〜15−Bを含有する強誘電性液晶素子が
低温における作動特性、高速応答速度が改善され、かつ
応答速度の温度依存性が軽減されている。
As is clear from Examples 8 to 15, the ferroelectric liquid crystal elements containing liquid crystal compositions 8-B to 15-B according to the present invention have improved operating characteristics and high response speed at low temperatures, and have improved response speed. Temperature dependence is reduced.

〔発明の効果〕〔Effect of the invention〕

本発明の強誘電性液晶組成物を含有する素子は、スイッ
チング特性が良好で、作動特性の改善された液晶素子、
および応答速度の温度依存性が軽減された液晶素子とす
ることができる。
A device containing the ferroelectric liquid crystal composition of the present invention is a liquid crystal device having good switching characteristics and improved operating characteristics.
In addition, a liquid crystal element with reduced temperature dependence of response speed can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は強誘電性液晶を用いた液晶表示素子の1例の断
面概略図、 第2図および第3図は強誘電性液晶素子の動作説明のた
めに、素子セルの一例を模式的に表す斜視図、 第1図において、 l・・・・・・・・・・・・・・強誘電性液晶層2・・
・・・・・・・・・・・・・・ガラス基板3・・・・・
・・・・・・・・・・・・・透明電極4・・・・・・・
・・・・・・絶縁性配向制御層5・・・・・・・・・・
・・・・・・スペーサー6 ・・・・・・・・・・・・
・・・ ・・リード線7・・・・・・・・・・・・・・
 ・・・・電源8・・・・・・・・・・・・・・  ・
・・偏光板9・・・・・・・・・・・・・・・・・・・
・光源1o・・・・・・・・・・・・・・・・・入射光
I・・・・・・・・・・・・・・・・・・・透過光第2
図において、 1a 1b 第3図において、 1a 1b 3a 3b 4a 電圧印加手段 ・・・・・・・・・・・・・・電圧印加手段第1の安定
状態 第2の安定状態 上向きの双極子モーメント 基板 基板 強誘電性液晶層 液晶分子 双極子モーメント(P上) 5゜ 補正の対象 明 細 書 6゜ 補正の内容 明細書第59頁の を削除する。
Figure 1 is a schematic cross-sectional view of an example of a liquid crystal display element using ferroelectric liquid crystal, and Figures 2 and 3 are schematic diagrams of an example of an element cell to explain the operation of a ferroelectric liquid crystal element. In the perspective view shown in FIG. 1, ferroelectric liquid crystal layer 2...
......Glass substrate 3...
・・・・・・・・・・・・Transparent electrode 4・・・・・・・
...Insulating orientation control layer 5 ......
・・・・・・Spacer 6 ・・・・・・・・・・・・
・・・・・・Lead wire 7・・・・・・・・・・・・・・・
・・・・Power supply 8・・・・・・・・・・・・・・
・・Polarizing plate 9・・・・・・・・・・・・・・・・・・・
・Light source 1o・・・・・・・・・・・・・・・・・・Incoming light I・・・・・・・・・・・・・・・・・・Transmitted light 2nd
In the figure, 1a 1b In Figure 3, 1a 1b 3a 3b 4a Voltage application means... Voltage application means First stable state Second stable state Upward dipole moment Substrate Substrate Ferroelectric liquid crystal layer Liquid crystal molecule dipole moment (on P) 5° correction target specification 6° correction contents specification page 59 is deleted.

Claims (2)

【特許請求の範囲】[Claims] (1)下記一般式( I ) ▲数式、化学式、表等があります▼( I ) (ただし、R_1、R_2はC_1〜C_1_8の置換
基を有していてもよい直鎖状又は分岐状のアルキル基、
X_1、X_2は単結合、−O−、▲数式、化学式、表
等があります▼、▲数式、化学式、表等があります▼、
▲数式、化学式、表等があります▼、Y_1は−CH_
2O−又は−OCH_2−、m、nは1又は2)で示さ
れる化合物の少なくとも一種と、 下記一般式(II) ▲数式、化学式、表等があります▼(II) (ただし、R_3はC_1〜C_1_8の置換基を有し
ていてもよい直鎖状又は分岐状のアルキル基であり、X
_3は単結合、−O−、▲数式、化学式、表等がありま
す▼のいずれかを示し、Zは単結合もしくは▲数式、化
学式、表等があります▼であり、▲数式、化学式、表等
があります▼は▲数式、化学式、表等があります▼もし
くは▲数式、化学式、表等があります▼である。又、P
は1〜12をしめす。) で示される化合物の少なくとも一種とを含有することを
特徴とする強誘電性カイラルスメクチツク液晶組成物。
(1) The following general formula (I) ▲Mathematical formulas, chemical formulas, tables, etc.▼(I) (However, R_1 and R_2 are linear or branched alkyl which may have substituents of C_1 to C_1_8. basis,
X_1 and X_2 are single bonds, -O-, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼,
▲There are mathematical formulas, chemical formulas, tables, etc.▼, Y_1 is -CH_
At least one compound represented by 2O- or -OCH_2-, m, n is 1 or 2) and the following general formula (II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) (However, R_3 is C_1~ A linear or branched alkyl group that may have a substituent of C_1_8, and
_3 indicates either a single bond, -O-, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, and Z is a single bond or ▲There are mathematical formulas, chemical formulas, tables, etc.▼, and ▲Mathematical formulas, chemical formulas, tables, etc. ▼ is ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼. Also, P
indicates 1 to 12. ) A ferroelectric chiral smectic liquid crystal composition, characterized in that it contains at least one of the following compounds.
(2)下記一般式( I ) ▲数式、化学式、表等があります▼( I ) (ただし、R_1、R_2はC_1〜C_1_8の置換
基を有していてもよい直鎖状又は分岐状のアルキル基、
X_1、X_2は単結合、−O−、▲数式、化学式、表
等があります▼、▲数式、化学式、表等があります▼、
▲数式、化学式、表等があります▼、Y_1は−CH_
2O−又は−OCH_2−、m、nは1又は2)で示さ
れる化合物の少なくとも一種と、 下記一般式(II) ▲数式、化学式、表等があります▼(II) (ただし、R_3はC_1〜C_1_8の置換基を有し
ていてもよい直鎖状又は分岐状のアルキル基であり、X
_3は単結合、−O−、▲数式、化学式、表等がありま
す▼のいずれかを示し、Zは単結合もしくは▲数式、化
学式、表等があります▼であり、▲数式、化学式、表等
があります▼は▲数式、化学式、表等があります▼もし
くは▲数式、化学式、表等があります▼である。又、P
は1〜12をしめす。) で示される化合物の少なくとも一種とを含有することを
特徴とする強誘電性カイラルスメクチツク液晶組成物を
一対の電極基板間に配置してなることを特徴とする液晶
素子。
(2) The following general formula (I) ▲Mathematical formulas, chemical formulas, tables, etc.▼(I) (However, R_1 and R_2 are linear or branched alkyl which may have substituents of C_1 to C_1_8. basis,
X_1 and X_2 are single bonds, -O-, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼,
▲There are mathematical formulas, chemical formulas, tables, etc.▼, Y_1 is -CH_
At least one compound represented by 2O- or -OCH_2-, m, n is 1 or 2) and the following general formula (II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) (However, R_3 is C_1~ A linear or branched alkyl group that may have a substituent of C_1_8, and
_3 indicates either a single bond, -O-, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, and Z is a single bond or ▲There are mathematical formulas, chemical formulas, tables, etc.▼, and ▲Mathematical formulas, chemical formulas, tables, etc. ▼ is ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼. Also, P
indicates 1 to 12. 1.) A liquid crystal element comprising a ferroelectric chiral smectic liquid crystal composition containing at least one of the compounds represented by the following formula, disposed between a pair of electrode substrates.
JP17578688A 1988-06-24 1988-07-13 Liquid crystal composition and liquid crystal device containing the same Expired - Fee Related JP2756262B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP17578688A JP2756262B2 (en) 1988-07-13 1988-07-13 Liquid crystal composition and liquid crystal device containing the same
DE68917832T DE68917832T2 (en) 1988-06-24 1989-06-23 Ferroelectric chiral smectic liquid crystal composition and device using the same.
EP89111487A EP0355313B1 (en) 1988-06-24 1989-06-23 Ferroelectric chiral smectic liquid crystal composition and liquid crystal device using same
ES89111487T ES2058402T3 (en) 1988-06-24 1989-06-23 COMPOSITION OF LIQUID CRYSTAL LIQUID CRYSTAL ESMECTICO AND LIQUID CRYSTAL DEVICE USING THE SAME.
AT89111487T ATE110763T1 (en) 1988-06-24 1989-06-23 FERROELECTRIC CHIRAL SMECTIC LIQUID CRYSTAL COMPOSITION AND DEVICE USING THE SAME.
US08/094,927 US5364559A (en) 1988-06-24 1993-07-22 Ferroelectric chiral smectic liquid crystal composition and liquid crystal device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17578688A JP2756262B2 (en) 1988-07-13 1988-07-13 Liquid crystal composition and liquid crystal device containing the same

Publications (2)

Publication Number Publication Date
JPH0224389A true JPH0224389A (en) 1990-01-26
JP2756262B2 JP2756262B2 (en) 1998-05-25

Family

ID=16002224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17578688A Expired - Fee Related JP2756262B2 (en) 1988-06-24 1988-07-13 Liquid crystal composition and liquid crystal device containing the same

Country Status (1)

Country Link
JP (1) JP2756262B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228285A (en) * 1988-07-15 1990-01-30 Canon Inc Liquid crystal composition and liquid crystal element containing the same composition
JP2008534298A (en) * 2005-04-01 2008-08-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Magnetic electrode guide for EDM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228285A (en) * 1988-07-15 1990-01-30 Canon Inc Liquid crystal composition and liquid crystal element containing the same composition
JP2008534298A (en) * 2005-04-01 2008-08-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Magnetic electrode guide for EDM

Also Published As

Publication number Publication date
JP2756262B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
JPH0343488A (en) Liquid crystal compound, liquid crystal composition containing the same compound and liquid crystal element using the composition
JP2691946B2 (en) Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same
JPH0312490A (en) Ferroelectric chiral smectic liquid crystal composition and liquid crystal element containing same
JPS63172788A (en) Liquid crystal composition and liquid crystal element containing the same
JPH0224389A (en) Liquid crystal composition and liquid crystal element containing the same composition
JP2796753B2 (en) Chiral smectic liquid crystal composition and liquid crystal device using the same
JP2749822B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP2791039B2 (en) Liquid crystal composition and liquid crystal device containing the same
JPH0426679A (en) Liquid crystalline compound, liquid crystal composition containing the same and liquid crystal element using the same
JPH0358980A (en) Liquid crystal compound, liquid crystal composition containing the compound and liquid crystal element using the same composition
JP2510681B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP2770953B2 (en) Liquid crystal composition and liquid crystal device containing the same
JPH04300871A (en) Optically active compound, liquid crystal composition containing the compound, liquid crystal element containing the composition and display and display device using the element or the like
JPH0251583A (en) Liquid crystal composition and liquid crystal element containing same
JPH0224387A (en) Liquid crystal composition and liquid crystal element containing the same composition
JP2774510B2 (en) Liquid crystal composition and liquid crystal device containing the same
JPS63291980A (en) Ferroelectric liquid crystal element
JPH02206679A (en) Liquid crystal composition and liquid crystal element containing the same
JPH0251584A (en) Liquid crystal composition and liquid crystal element containing same
JPH0236298A (en) Liquid crystal composition and liquid crystal element containing said composition
JPH0228285A (en) Liquid crystal composition and liquid crystal element containing the same composition
JPH02696A (en) Liquid crystal composition and liquid crystal element prepared by using same
JPH0251586A (en) Liquid crystal composition and liquid crystal element containing it
JPH0228286A (en) Liquid crystal composition and liquid crystal element containing the same composition
JPH0238489A (en) Liquid crystal composition and liquid crystal element containing same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees