JPH02243543A - Glass fiber, production and use thereof - Google Patents
Glass fiber, production and use thereofInfo
- Publication number
- JPH02243543A JPH02243543A JP1064391A JP6439189A JPH02243543A JP H02243543 A JPH02243543 A JP H02243543A JP 1064391 A JP1064391 A JP 1064391A JP 6439189 A JP6439189 A JP 6439189A JP H02243543 A JPH02243543 A JP H02243543A
- Authority
- JP
- Japan
- Prior art keywords
- alkali
- resistant glass
- glass fiber
- glass fibers
- strand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003365 glass fiber Substances 0.000 title claims abstract description 78
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000003513 alkali Substances 0.000 claims abstract description 82
- 239000011159 matrix material Substances 0.000 claims abstract description 17
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 13
- 238000010558 suspension polymerization method Methods 0.000 claims abstract description 11
- 238000000576 coating method Methods 0.000 claims abstract description 9
- 239000011248 coating agent Substances 0.000 claims abstract description 7
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 5
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 5
- 239000000047 product Substances 0.000 abstract description 21
- 239000000178 monomer Substances 0.000 abstract description 13
- 239000000203 mixture Substances 0.000 abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 10
- 239000011083 cement mortar Substances 0.000 abstract description 6
- 238000000465 moulding Methods 0.000 abstract description 5
- 239000012736 aqueous medium Substances 0.000 abstract description 4
- 239000003505 polymerization initiator Substances 0.000 abstract description 4
- 239000004342 Benzoyl peroxide Substances 0.000 abstract description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 abstract description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 abstract description 2
- 238000005520 cutting process Methods 0.000 abstract description 2
- 239000003381 stabilizer Substances 0.000 abstract description 2
- 239000000725 suspension Substances 0.000 abstract description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 abstract 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 abstract 1
- 239000007795 chemical reaction product Substances 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 238000005452 bending Methods 0.000 description 13
- 239000000378 calcium silicate Substances 0.000 description 12
- 229910052918 calcium silicate Inorganic materials 0.000 description 12
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 12
- 239000004568 cement Substances 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 8
- 238000004513 sizing Methods 0.000 description 8
- 230000003014 reinforcing effect Effects 0.000 description 7
- 238000010557 suspension polymerization reaction Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000011398 Portland cement Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 206010061592 cardiac fibrillation Diseases 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002600 fibrillogenic effect Effects 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- MKTRXTLKNXLULX-UHFFFAOYSA-P pentacalcium;dioxido(oxo)silane;hydron;tetrahydrate Chemical compound [H+].[H+].O.O.O.O.[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O MKTRXTLKNXLULX-UHFFFAOYSA-P 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229910003087 TiOx Inorganic materials 0.000 description 1
- ATMLPEJAVWINOF-UHFFFAOYSA-N acrylic acid acrylic acid Chemical compound OC(=O)C=C.OC(=O)C=C ATMLPEJAVWINOF-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- -1 catalog) Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002954 polymerization reaction product Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- SONHXMAHPHADTF-UHFFFAOYSA-M sodium;2-methylprop-2-enoate Chemical compound [Na+].CC(=C)C([O-])=O SONHXMAHPHADTF-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/1025—Coating to obtain fibres used for reinforcing cement-based products
- C03C25/103—Organic coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/001—Alkali-resistant fibres
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/24—Coatings containing organic materials
- C03C25/26—Macromolecular compounds or prepolymers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/24—Coatings containing organic materials
- C03C25/26—Macromolecular compounds or prepolymers
- C03C25/28—Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明は耐アルカリガラス繊維の表面に耐アルカリ性、
耐熱性の樹脂を多量に塗布してなる優れた機械的性質と
耐オートクレーブ性を有する耐アルカリガラス繊維、そ
の製造方法および当該耐アルカリガラス繊維にて補強さ
れてなる無機マトリックス(特に、セメント、セメント
モルタル、珪酸カルシウム等)を提供することにある。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides alkali-resistant glass fibers with alkali-resistant,
Alkali-resistant glass fibers with excellent mechanical properties and autoclave resistance coated with a large amount of heat-resistant resin, methods for producing the same, and inorganic matrices reinforced with the alkali-resistant glass fibers (especially cement, cement, etc.) mortar, calcium silicate, etc.).
(従来技術・発明が解決しようとするt!!M)耐アル
カリガラス繊維はアルカリ溶液に浸食され難いため、ア
ルカリ成分を含有または発生する無機マトリックス〔特
に、セメント、セメントモルタル、珪酸カルシウム等〕
の補強材として使用されている。耐アルカリガラス繊維
の耐アルカリ性はガラス組成の成分ZrO,の含有量に
よってほとんど決定されるが、ファイバー表面に塗布さ
れる有機高分子(以下、集束剤とも呼ぶ)の種類および
付着量によっても影響を受けるので、集束剤の種類と付
着量は耐アルカリガラス繊維の耐アルカリ性を向上させ
る上で重要な要因となる。集束剤組成を決める場合は、
使用される高分子原料は耐アルカリ性を有することは勿
論のこと、紡糸性および加工作業性、当該耐アルカリガ
ラス繊維による補強体製造時の作業性等を満足するもの
でなければならない。耐アルカリガラス繊維に要求され
る集束性の程度は成形法により異なる。たとえば、抄造
法では水中で解繊し易いソフトタイプ、ブリミックス法
では混合中に解繊し難い高集束のハードタイプが、更に
ブリミックス法より厳しい条件で混練される押出成形法
では超高集束の耐アルカリガラス繊維が要求され。従来
のハードタイプのチ町ツブは、今−歩集束性が不十分な
ためブリミックス法で混合時間を長くすると解繊してボ
ール状になったり、押出成形法に使用されると押出機の
スクリューの剪断力により損傷を受は粉々に折れてしま
い無機マトリックスの補強効果が出ないという問題点が
ある。(The problem to be solved by the prior art/invention!!M) Since alkali-resistant glass fibers are difficult to be eroded by alkaline solutions, they cannot be easily eroded by inorganic matrices that contain or generate alkaline components [especially cement, cement mortar, calcium silicate, etc.]
It is used as a reinforcing material. The alkali resistance of alkali-resistant glass fibers is mostly determined by the content of the component ZrO in the glass composition, but it is also influenced by the type and amount of organic polymer (hereinafter also referred to as a sizing agent) applied to the fiber surface. Therefore, the type and amount of sizing agent applied are important factors in improving the alkali resistance of alkali-resistant glass fibers. When determining the sizing agent composition,
The polymer raw material used must not only have alkali resistance, but also satisfy spinnability, processing workability, and workability when producing a reinforcing body using the alkali-resistant glass fiber. The degree of cohesiveness required of alkali-resistant glass fibers differs depending on the forming method. For example, the papermaking method produces a soft type that is easy to defibrate in water, the brimix method produces a highly focused hard type that is difficult to defibrate during mixing, and the extrusion molding method, which is kneaded under stricter conditions than the brimix method, produces an ultra-highly focused type. Alkali-resistant glass fiber is required. Conventional hard-type chimachi whelk has insufficient cohesiveness, so if the mixing time is prolonged in the brimix method, it will defibrate into a ball shape, and if used in the extrusion molding method, it will cause problems with the extruder. The problem is that the screws are damaged by the shearing force of the screws and are broken into pieces, so that the reinforcing effect of the inorganic matrix is not achieved.
一般にセメント二次製品を製造する場合には、脱型時間
を短縮して型枠の回転を早くするため、あるいは早期出
荷のためセメントの硬化促進が高温の蒸気中で行われる
。珪酸カルシウム製品を製造する場合にも、水熱反応で
トバモライト結晶あるいはゾノトライト結晶を生成させ
るためオートクレーブ処理が行われる。トバモライト系
゛の珪酸カルシウム板を製造する場合には、調合された
原料に耐アルカリガラス繊維を加え95°Cにて約2時
間加熱してゲル化反応を行い、更に180°Cでオート
クレーブ処理が行われるので熱アルカリに不溶の集束剤
でなければならない。Generally, when producing secondary cement products, hardening of cement is accelerated in high-temperature steam in order to shorten demolding time and speed up mold rotation, or for early shipment. When producing calcium silicate products, autoclaving is also performed to generate tobermorite crystals or xonotrite crystals through a hydrothermal reaction. When manufacturing tobermorite-based calcium silicate plates, alkali-resistant glass fibers are added to the prepared raw materials and heated at 95°C for about 2 hours to perform a gelation reaction, followed by autoclaving at 180°C. Since it is carried out, the sizing agent must be insoluble in hot alkali.
ところが、従来の耐アルカリガラス繊維はオートクレー
ブ処理等の熱処理により強度が低下する。However, the strength of conventional alkali-resistant glass fibers decreases due to heat treatment such as autoclave treatment.
そこでオートクレーブ処理を低温で行うことが検討され
ているが、オートクレーブ温度を低くすると、珪酸カル
シウム結晶成長が不十分なため、マトリックスの強度が
低下するという問題がある。Therefore, it has been considered to carry out the autoclave treatment at a low temperature, but if the autoclave temperature is lowered, there is a problem that the strength of the matrix decreases due to insufficient calcium silicate crystal growth.
一方、最近アスベスト規制が厳しくなるにつれて、従来
耐アルカリガラス繊維の使用が困難であると見なされて
いた用途にも耐アルカリガラス繊維の再検討が行われ、
耐アルカリガラス繊維の性能改善の要望が強くなってき
ている。On the other hand, as asbestos regulations have recently become stricter, alkali-resistant glass fibers are being reconsidered for applications where it was previously considered difficult to use them.
There is a growing demand for improved performance of alkali-resistant glass fibers.
本発明の目的は耐アルカリガラス繊維にて補強されたセ
メント製品、珪カル製品等の無機マトリックス成形時の
作業性を改善すると供に、優れた機械的特性、耐アルカ
リ特性および耐オートクレーブ性を有した耐アルカリガ
ラス繊維を提供することにある。The purpose of the present invention is to improve workability when molding inorganic matrices such as cement products and silica products reinforced with alkali-resistant glass fibers, and to have excellent mechanical properties, alkali-resistant properties, and autoclave-resistant properties. The purpose of this invention is to provide alkali-resistant glass fibers that are resistant to alkali.
本発明の他の目的は、当該耐アルカリガラス繊維の製造
方法を提供することである。Another object of the present invention is to provide a method for producing the alkali-resistant glass fiber.
本発明のさらに他の目的は、当該耐アルカリガラス繊維
にて補強された無機マトリックスを提供することである
。Yet another object of the present invention is to provide an inorganic matrix reinforced with the alkali-resistant glass fibers.
前記目的を達成するために本発明者らは種々検討を重ね
て来たところ、熱可塑性樹脂を懸濁重合法で耐アルカリ
ガラス繊維に塗布して超高集束チョツプドストランドを
製造すると、高温での耐アルカリ特性が改善され、しか
もかくして得られたガラス繊維にてセメント、セメント
モルタル、珪酸カルシウム等の無機マトリックスを補強
したところ当該補強体の性能が著しく向上することを見
出した。In order to achieve the above object, the present inventors have conducted various studies and have found that when ultra-highly focused chopped strands are manufactured by applying a thermoplastic resin to alkali-resistant glass fibers using a suspension polymerization method, It has been found that the alkali resistance properties of the reinforcing body are improved, and when an inorganic matrix such as cement, cement mortar, calcium silicate, etc. is reinforced with the glass fiber thus obtained, the performance of the reinforced body is significantly improved.
より詳細には、本発明者らは次の如き新知見を得たので
ある。More specifically, the present inventors have obtained the following new findings.
従来、紡糸工程でガラスファイバーに塗布される集束剤
の量は、最高で約3%(重量)、膜厚換算で約0.2μ
であった。しかして、膜厚が薄いため、耐アルカリガラ
ス繊維がセメント製品、珪酸カルシウム製品等の成形時
に損傷を受けたり、高温養生時にアルカリに浸食されて
十分な補強硬化を発揮することができなかった。集束剤
を多量にファイバーに塗布する方法としは、紡糸された
糸を乾燥後、再度濃度の濃い集束剤を塗布する二段コー
ティング法がある。しかし二段コーティング法では、集
束剤がストランドの周囲のみに塗布されストランド内部
まで浸透することがなかった。Conventionally, the amount of sizing agent applied to glass fiber during the spinning process is at most about 3% (by weight), which is about 0.2μ in terms of film thickness.
Met. However, due to the thin film thickness, the alkali-resistant glass fibers were damaged during molding of cement products, calcium silicate products, etc., or were eroded by alkali during high-temperature curing, making it impossible to exhibit sufficient reinforcement and hardening. As a method for applying a large amount of sizing agent to the fibers, there is a two-stage coating method in which the spun yarn is dried and then a highly concentrated sizing agent is applied again. However, in the two-stage coating method, the sizing agent was applied only around the strand and did not penetrate into the strand.
これに対して、懸濁重合法で製造されたチョツプドスト
ランドは、5〜40重量%の範囲で所定量の有機高分子
がストランドの内部のフィラメントに均一に、かつ厚く
塗布される。そのため、補強体中に配合された、当該耐
アルカリガラス繊維表面にキズがつき難く、高温養生時
にも無機マトリックス中のアルカリにより耐アルカリガ
ラス繊維が浸食され難い。On the other hand, in chopped strands produced by suspension polymerization, a predetermined amount of organic polymer in the range of 5 to 40% by weight is uniformly and thickly applied to the filaments inside the strand. Therefore, the surface of the alkali-resistant glass fibers blended into the reinforcing body is less likely to be scratched, and the alkali-resistant glass fibers are less likely to be eroded by the alkali in the inorganic matrix even during high temperature curing.
本発明者らは懸濁重合法で熱可塑性樹脂を耐アルカリガ
ラス繊維のチョツプドストランドに塗布したところ、1
0〜800本の任意の集束本数で超高集束の耐アルカリ
ガラス繊維チタンブトストランドができることを見出し
た。本発明者の実験によると図1に示した実験結果から
明らかなように、ストランドのフィラメント集束本数を
少くすると補強体の曲げ強度が大きくなることが分った
が、従来の紡糸技術では量産の点から約50本が限度で
あった0本発明者は懸濁重合法で作った集束本数50〜
800本の耐アルカリガラス繊維チョツプドストランド
をセメントモルタルおよび珪酸カルシウムのマトリック
スと混合して補強体を製造したところ、混合作業性、耐
アルカリ特性および耐オートクレーブ特性が著しく向上
することを見出した。即ち、チョツプドストランドが超
高集束であるため、マトリックスと一緒に強く撹拌混合
してもストランドが解繊せず、ファイバーが折損するこ
ともなかった。また、耐アルカリガラス繊維の表面に多
量の耐熱、耐アルカリ性の樹脂が塗布されているため補
強体が高温で養生されても強度低下が非常に小さかった
。The present inventors applied a thermoplastic resin to chopped strands of alkali-resistant glass fiber using a suspension polymerization method, and found that
It has been found that ultra-highly bundled alkali-resistant glass fiber titanium butotstrands can be produced with any number of bundled fibers from 0 to 800. According to the experiments conducted by the present inventor, as is clear from the experimental results shown in Figure 1, it was found that the bending strength of the reinforcing body increases when the number of bundled filaments in the strand is reduced. However, with conventional spinning technology, mass production is difficult. From the point, the limit was about 50 pieces.The present inventors made a bundle of 50 to 50 pieces using the suspension polymerization method.
When a reinforcing body was manufactured by mixing 800 chopped alkali-resistant glass fiber strands with cement mortar and a matrix of calcium silicate, it was found that mixing workability, alkali resistance properties, and autoclave resistance properties were significantly improved. That is, since the chopped strands have ultra-high focus, even when vigorously stirred and mixed together with the matrix, the strands did not unravel and the fibers did not break. Furthermore, since a large amount of heat-resistant and alkali-resistant resin was coated on the surface of the alkali-resistant glass fibers, even when the reinforcing body was cured at high temperatures, the decrease in strength was very small.
CRBを解決するための手段〕
本発明は上記の新知見に基づいて完成されたものであり
、次の(1)〜(3)の要旨を有するものである。Means for Solving CRB] The present invention has been completed based on the above new findings, and has the following gist (1) to (3).
(1)酸化ジルコニウムを含有した耐アルカリガラス繊
維チタンブトストランドを懸濁重合法によって熱可塑性
樹脂で被覆してなることを特徴とする耐アルカリガラス
繊維。(1) Alkali-resistant glass fiber containing zirconium oxide An alkali-resistant glass fiber characterized in that it is made by coating titanium butotstrands with a thermoplastic resin using a suspension polymerization method.
(2)酸化ジルコニウムを含有した耐アルカリガラス繊
維チョツプドストランドを懸濁重合法によって熱可塑性
樹脂で被覆することを特徴とする耐アルカリガラス繊維
の製造方法。(2) A method for producing alkali-resistant glass fibers, which comprises coating chopped strands of alkali-resistant glass fibers containing zirconium oxide with a thermoplastic resin by a suspension polymerization method.
(3)酸化ジルコニウムを含有した耐アルカリガラス繊
維チョツプドストランドを懸濁重合法によって熱可塑性
樹脂で被覆してなる耐アルカリガラス繊維にて補強され
てなることを特徴とする無機マトリックス。(3) An inorganic matrix comprising chopped strands of alkali-resistant glass fibers containing zirconium oxide and reinforced with alkali-resistant glass fibers formed by coating them with a thermoplastic resin using a suspension polymerization method.
本発明において、耐アルカリガラス繊維チョツプドスト
ランドは、本発明の目的を達成しえる限り特に制限され
るものではない。しかして、本発明による耐アルカリガ
ラス繊維は、アルカリ成分を含有または発生する無機マ
トリックスとしてのセメントモルタル等と混合して使用
するのであるから、素材としてのガラス繊維は耐アルカ
リ性を有することが必要であり、特に、アルカリ性溶解
度が4%以下であるZr0z含有耐アルカリガラス繊維
が好適な素材である。ここにアルカリ溶解度とは、繊維
径13±0.2μのガラス繊維2gを95°Cの10%
水酸化ナトリウム水溶液100g中に1時間浸漬した時
のガラス繊維の重量減少度合を百分率で示したものであ
る。In the present invention, the alkali-resistant chopped glass fiber strands are not particularly limited as long as the purpose of the present invention can be achieved. However, since the alkali-resistant glass fiber according to the present invention is used in combination with an inorganic matrix such as cement mortar that contains or generates an alkali component, the glass fiber as a material must have alkali resistance. In particular, Zr0z-containing alkali-resistant glass fiber having an alkaline solubility of 4% or less is a suitable material. Here, the alkali solubility means 2g of glass fiber with a fiber diameter of 13±0.2μ at 10% at 95°C.
This figure shows the degree of weight loss of glass fibers as a percentage when immersed in 100 g of sodium hydroxide aqueous solution for 1 hour.
本発明で使用しうる耐アルカリガラス繊維としては、少
なくともZrO!を5モル%以上含有することが一般的
であるが、通常耐アルカリ性はZr0z含量と共に増大
する傾向を示すので、本発明におけるガラス繊維は、Z
r0zを10モル%以上、好ましくは11モル%以上、
特に好ましくは11.5モル%以上含有するものである
。当該条件を満足するガラス繊維としては、たとえばモ
ル%でSin、:50〜76%、Zr0z :8〜1
6%、R,0:10〜25%、R’o:o 〜10%、
CaFx:0〜2%、BzOs:0〜7%、PtOs:
0〜5%、S n 02 : O〜7.5%、および
その他の金属酸化物:0〜10%よりなるガラス繊維で
ある。As the alkali-resistant glass fiber that can be used in the present invention, at least ZrO! The glass fiber in the present invention generally contains 5 mol% or more of
r0z is 10 mol% or more, preferably 11 mol% or more,
Particularly preferably, the content is 11.5 mol% or more. Examples of glass fibers that satisfy the above conditions include, in terms of mol%, Sin: 50 to 76%, Zr0z: 8 to 1
6%, R,0:10~25%, R'o:o~10%,
CaFx: 0-2%, BzOs: 0-7%, PtOs:
It is a glass fiber consisting of 0 to 5%, Sn02: O to 7.5%, and other metal oxides: 0 to 10%.
上記組成中Rはアルカリ金属を、R′はアルカリ土類金
属、ZnまたはMnを示し、その他の金属酸化物は、A
ItOs 、F ex Ox 、 T i Ox、C
eOx 、Lag o2 、Ndx Os 、Prh
O++等である(以下、特に言及しない限り各記号およ
び定義は同様のことを意味する)。In the above composition, R represents an alkali metal, R' represents an alkaline earth metal, Zn or Mn, and other metal oxides are A
ItOs, FexOx, TiOx, C
eOx, Lago2, NdxOs, Prh
O++, etc. (Hereinafter, each symbol and definition has the same meaning unless otherwise specified).
当該耐アルカリガラス繊維チョツプドストランドは、通
常直径24μ以下のものが50〜800本集束されたス
トランドであり、その長さは、通常3〜25Ilalで
ある。The alkali-resistant chopped glass fiber strand is usually a bundle of 50 to 800 pieces having a diameter of 24 μm or less, and its length is usually 3 to 25 Ilal.
本発明にて耐アルカリガラス繊維チョツプドストランド
を被覆するための熱可塑性樹脂は、耐アルカリガラス繊
維チョツプドストランドを懸濁重合によって集束しえる
ものであれば特に制限はないが、本発明の目的から耐ア
ルカリ特性のよいものが使用される。かかる熱可塑性樹
脂としては、具体的にはポリスチレン、ポリアクリロニ
トリル、ポリアクリル酸メチル、ポリ塩化ビニル、ポリ
酢酸ビニル等が例示される。The thermoplastic resin for coating the chopped alkali-resistant glass fiber strands in the present invention is not particularly limited as long as the chopped alkali-resistant glass fiber strands can be bundled by suspension polymerization. For this purpose, materials with good alkali resistance are used. Specific examples of such thermoplastic resins include polystyrene, polyacrylonitrile, polymethyl acrylate, polyvinyl chloride, polyvinyl acetate, and the like.
本発明において、耐アルカリガラス繊維にて補強される
対象である無機マトリックスは、炭素を含まない化合物
、または有機化合物以外の炭素化合物であれば特に制限
はないが、本発明の目的に照らして、アルカリ成分を含
有または発生するものであることが好適であり、かかる
ものの例としては、たとえばセメント、セメントモルタ
ル、珪酸カルシウム等が例示される
本発明の耐アルカリガラス繊維は、熱可塑性樹脂用の単
量体の1種または2種以上を、耐アルカリガラス繊維チ
ョップストランドとともに懸濁重合系に共存させること
によって、当該単量体を懸濁重合することによって得ら
れる。この際使用される耐アルカリガラス繊維チョップ
ストランドは市販のものをそのまま使用することもでき
るが、チ岬ツブストランドを、予め重合に使用する単量
体に浸漬して濡らして使用すると、得られる製品はチョ
ップストランドを構成するガラス繊維の単糸の各々で完
全に被覆されたものとなるので好ましい。In the present invention, the inorganic matrix to be reinforced with alkali-resistant glass fibers is not particularly limited as long as it is a carbon-free compound or a carbon compound other than an organic compound, but in light of the purpose of the present invention, It is preferable that the alkali-resistant glass fiber of the present invention contains or generates an alkali component, and examples of such materials include cement, cement mortar, calcium silicate, etc. It can be obtained by carrying out suspension polymerization of the monomers by coexisting one or more of the monomers with the alkali-resistant glass fiber chopped strands in a suspension polymerization system. The alkali-resistant glass fiber chopped strands used at this time can be used as they are on the market, but if the Chimisaki Tsubu strands are wetted by soaking them in advance in the monomer used for polymerization, the resulting product can be obtained. is preferable because it is completely covered with each of the glass fiber filaments constituting the chopped strand.
当該重合に際して、重合系に存在させる耐アルカリガラ
ス繊維チョップストランドは、単量体100重量部当た
り5〜800重量部の割合で使用でき、特に単量体と当
該ガラス繊維チョップストランドとの割合が100:5
0〜500の範囲が特に好適である。懸濁重合する際、
単量体に対する水性媒体の割合は、単量体100重量部
に対して、水性媒体100〜300重量部が好適である
。単量体100重量部当たり100重量部より少ない水
性媒体を使用すると重合が進行するに従って、生成混合
物全体が極めて粘稠となるので、生成混合物を攪拌する
のが困難となり、また熱伝導または温度調節が困難とな
り、従って均一な性質の樹脂を得ることが出来ない等の
傾向がある。During the polymerization, the alkali-resistant glass fiber chopped strands to be present in the polymerization system can be used at a ratio of 5 to 800 parts by weight per 100 parts by weight of the monomer, particularly when the ratio of the monomer to the glass fiber chopped strands is 100 parts by weight. :5
A range of 0 to 500 is particularly preferred. During suspension polymerization,
The ratio of the aqueous medium to the monomer is preferably 100 to 300 parts by weight per 100 parts by weight of the monomer. If less than 100 parts by weight of aqueous medium are used per 100 parts by weight of monomer, as the polymerization progresses, the overall product mixture will become very viscous, making it difficult to stir the product mixture and making it difficult to conduct heat or control the temperature. This tends to make it difficult to obtain a resin with uniform properties.
水性媒体が3000重量部以上であると、必然的に仕込
み単量体の量が制限され、生産性が低下するので不経済
である。If the amount of the aqueous medium is 3000 parts by weight or more, the amount of monomer charged is inevitably limited and productivity is reduced, which is uneconomical.
重合は懸濁重合法によるが、この際使用しうる懸濁安定
剤としては、単量体を懸濁重合法によって重合するとき
に使用されるものがよく、たとえばポリ酢酸ビニルの各
種けん化¥!yJ(ポリビニルアルコール)スチレン−
マレイン酸共重合体、ホIJメタクリル酸ソーダ、エチ
ルへキシルアクリレートとアクリル酸との共重合体等の
水溶性高分子化合物があげられ、これらは単独でも、二
種以上とを組み合わせて使用することもできる。また、
これら懸濁剤とある種の界面活性剤とを併用して用いる
こともできる。更に炭酸カルシウム等の無機系化合物を
使用することもできる。Polymerization is carried out by the suspension polymerization method, and the suspension stabilizers that can be used at this time are those used when monomers are polymerized by the suspension polymerization method, such as various types of saponification of polyvinyl acetate! yJ (polyvinyl alcohol) styrene-
Examples include water-soluble polymer compounds such as maleic acid copolymer, HoIJ sodium methacrylate, and copolymer of ethylhexyl acrylate and acrylic acid, and these may be used alone or in combination of two or more types. You can also do it. Also,
These suspending agents and certain surfactants can also be used in combination. Furthermore, inorganic compounds such as calcium carbonate can also be used.
懸濁重合反応には、通常の懸濁重合に用いられる縦型反
応機を用いることができる。For the suspension polymerization reaction, a vertical reactor commonly used for suspension polymerization can be used.
なお、前記単量体を重合する際に、重合開始剤を使用す
るのが好ましいが、かかる重合開始剤としては、通常用
いられているラジカル発生重合開始剤が好ましく、その
使用量は、重合開始剤の性質および重合温度により変わ
るが、単量体100重量部に対して0.005〜3.0
重量部の割合で使用することができる。In addition, it is preferable to use a polymerization initiator when polymerizing the monomers, and as such a polymerization initiator, a commonly used radical-generating polymerization initiator is preferable, and the amount used is determined according to the amount required to initiate the polymerization. Although it varies depending on the properties of the agent and the polymerization temperature, it is 0.005 to 3.0 per 100 parts by weight of monomer.
It can be used in parts by weight.
本発明の耐アルカリガラス繊維による無機マトリックス
の補強は自体既知の手段によっておこなえばよい。Reinforcement of the inorganic matrix with the alkali-resistant glass fibers of the present invention may be carried out by means known per se.
以下に実施例、実験例をもって本発明をより具体的に説
明するが、本発明はこれらによって限定されるものでは
ない。The present invention will be explained in more detail below with reference to Examples and Experimental Examples, but the present invention is not limited thereto.
実施例1〜8
耐アルカリガラス繊維チョツプドストランドを下記の重
合反応物組成で配合して3Eのオートクレーブに仕込み
、撹拌しながら恒温水槽中で80°Cまで昇温しで、約
5時間重合反応を行った。反応終了後、オートクレーブ
中の内容物を金網上に取り出し、水と反応物を分離し水
洗後、電気炉で乾燥した。これによって、各々表1〜3
の実施例1〜8に記載の耐アルカリガラス繊維を製造し
た。Examples 1 to 8 Alkali-resistant glass fiber chopped strands were blended with the following polymerization reactant composition, charged into a 3E autoclave, heated to 80°C in a constant temperature water bath with stirring, and polymerized for about 5 hours. The reaction was carried out. After the reaction was completed, the contents in the autoclave were taken out onto a wire mesh, water and the reactant were separated, washed with water, and then dried in an electric furnace. By this, Tables 1 to 3 respectively
The alkali-resistant glass fibers described in Examples 1 to 8 were manufactured.
重合反応物組成
耐アルカリガラス繊維: 150gr
スチレ7 70gr
アクリアクリレートリル: 30grベンゾイルパー
オキシド: Igr
水 : 1300gr懸濁剤
・ 0.7 g r実施例9・試験例1(
ブリミックス成形法)砂:普通ポルトランドセメント(
S:C)−1: 1、水:普通ポルトランドセメント(
W:C) ==o、4: 1、減水剤:普通ポルトラン
ドセメント=0.01:1、上記配合のモルタル組成に
表1の実施例1〜4の耐アルカリガラス繊維および従来
品(日本電気硝子社製AC306H−3502)を各々
2.0%(重量)加え、オムニミキサーで30秒間混合
後、木型枠(510X320X10mm)に流し込んで
平板を成形した。これを20°Cの恒温室で3日間養生
後、脱型して250X50XIOm+aの供試体を作り
、曲げ強度を調べた。また、集束性、耐オートクレーブ
特性も併せて測定した。それらの結果は表1に示す通り
である。Polymerization reaction product composition Alkali-resistant glass fiber: 150gr Styre 7 70gr Acrylate acrylate: 30gr Benzoyl peroxide: Igr Water: 1300gr Suspending agent
・ 0.7 g rExample 9・Test Example 1 (
Brimix molding method) Sand: Ordinary Portland cement (
S:C)-1: 1, Water: Ordinary Portland cement (
W:C) ==o, 4:1, water reducing agent: ordinary portland cement=0.01:1, mortar composition of the above composition, alkali-resistant glass fibers of Examples 1 to 4 in Table 1 and conventional product (NEC AC306H-3502 (manufactured by Glass Co., Ltd.) was added in an amount of 2.0% (by weight), mixed for 30 seconds using an omni mixer, and then poured into a wooden form (510 x 320 x 10 mm) to form a flat plate. After curing this in a constant temperature room at 20°C for 3 days, it was demolded to make a specimen of 250×50×IOm+a, and its bending strength was examined. In addition, convergence and autoclave resistance were also measured. The results are shown in Table 1.
なお、曲げ強度は20°C水中での、28日強度を調べ
た。また、集束性としてはモルタル中で60秒撹拌後の
ストランドの解繊度を調べた。耐オートクレーブ特性は
180″CのCa (OH)*飽和溶液中で10時間処
理後のストランドの状態を調べた。The bending strength was determined by measuring the strength in water at 20°C for 28 days. In addition, as for convergence, the degree of defibration of the strands after stirring in mortar for 60 seconds was examined. Autoclave resistance was determined by examining the state of the strands after being treated in a Ca(OH)* saturated solution at 180''C for 10 hours.
表1に示すように実施例1〜4の耐アルカリガラス繊維
はいずれも従来品に比較して、熱可塑性樹脂の付着率が
裔く、集束性、耐オートクレーブ性に優れていることが
わかる。なお、実施例3の製品は曲げ強度が小さいが、
これはストランドのガラス繊維本数が他の実施例より非
常に多く、マトリックスとガラス繊維との接着面積が小
さくなったためである。実施例3の製品が特に耐オート
クレーブ性に優れているのは熱可塑性樹脂の付着率が大
きいためであると考えられる。As shown in Table 1, it can be seen that the alkali-resistant glass fibers of Examples 1 to 4 all have a higher adhesion rate of thermoplastic resin, better cohesiveness, and better autoclave resistance than conventional products. Although the product of Example 3 has low bending strength,
This is because the number of glass fibers in the strand was much larger than in the other examples, and the bonding area between the matrix and the glass fibers was small. It is thought that the reason why the product of Example 3 has particularly excellent autoclave resistance is that the adhesion rate of the thermoplastic resin is high.
実施例10・試験例2(押出成形法)
S/C−1
W/C−0,8
バルブ/ (SiC) =0.042
耐アルカリガラス繊維/ (SiC) =0.03上記
の配合で実施例1〜4の耐アルカリガラス繊維および従
来品(日本電気硝子社製AC306H−350Z)を使
用してモルタルを作り、押出機(三上工業(■)HT−
250)で1800X210X16mmの平板を成形し
た。成形品を2日間自然養生後、160°Cで6時間オ
ートクレーブ養生を行った。成形品から50X210X
16mmの大きさの曲げ強度測定用供試体を作成し、曲
げ強度を測定した。また、押出時の流動性、耐アルカリ
ガラス繊維の分散性、解繊性、繊維長も併せて測定した
。それらの結果は表2に示す通りである。Example 10/Test Example 2 (Extrusion molding method) S/C-1 W/C-0,8 Bulb/(SiC) =0.042 Alkali-resistant glass fiber/(SiC) =0.03 Conducted with the above formulation Mortar was made using the alkali-resistant glass fibers of Examples 1 to 4 and the conventional product (AC306H-350Z manufactured by Nippon Electric Glass Co., Ltd.), and an extruder (Mikami Kogyo (■) HT-
250) to form a flat plate of 1800 x 210 x 16 mm. After the molded product was naturally cured for 2 days, it was autoclaved at 160°C for 6 hours. 50X210X from molded product
A specimen for bending strength measurement with a size of 16 mm was prepared, and the bending strength was measured. In addition, fluidity during extrusion, dispersibility of alkali-resistant glass fibers, fibrillation properties, and fiber length were also measured. The results are shown in Table 2.
その際、流動性は押出機のダイス圧を読み取ることによ
って測定し、分散性は押出直後の未硬化成形品を破断し
、その断面のファイバーの分散状態を観察することによ
って測定し、解繊性はミキサーおよびニーダで混合した
後のファイバーの集束状態を観察することによって測定
し、繊維長は成形品から約11角のサンプルを切り取り
塩酸(36%)中でマトリックスを溶解して残ったファ
イバーの長さを顕微鏡により測定した。At that time, fluidity was measured by reading the die pressure of the extruder, dispersibility was measured by breaking the uncured molded product immediately after extrusion, and observing the dispersion state of fibers in the cross section, and fibrillation. The fiber length is measured by observing the bundled state of the fibers after mixing in a mixer and kneader, and the fiber length is determined by cutting out an approximately 11-square sample from the molded product, dissolving the matrix in hydrochloric acid (36%), and measuring the remaining fiber length. The length was measured using a microscope.
表2に示すように実施例1〜4の製品は流動性、分散性
に優れているので作業性に優れている。また、成形中に
繊維が折れ難いので曲げ強度が大きい。但し、実施例3
についてはブリミックス法のデータと同様に曲げ強度が
小さくなっている。これは、付着が大きいためにストラ
ンドが押出機中で解繊せず、マトリックスとの接着面積
が他の実施例に比較して小さくなったためと考えられる
。As shown in Table 2, the products of Examples 1 to 4 have excellent fluidity and dispersibility, and therefore are excellent in workability. In addition, the fibers are difficult to break during molding, so the bending strength is high. However, Example 3
The bending strength is small, similar to the data for the Brimix method. This is considered to be because the strands were not defibrated in the extruder due to large adhesion, and the adhesion area with the matrix was smaller than in other examples.
実施例11・試験例3(珪酸カルシウム板)セメント2
60部、SiO□ ;40部、ベントナイト:10部、
水110部の配合で調合した原料に実施例5〜8の耐ア
ルカリガラス繊維および従来品(日本電気硝子社製AC
306H−3502)を10重量%添加し、95°Cで
2時間加熱し、ゲル化反応を行い、生成したスラリーを
型枠に鋳込み室温にて2日間放置後、オートクレーブに
て180℃/12時間の処理を行い、珪酸カルシウム板
を作成した。かくして作成した珪酸カルシウム板の曲げ
強度、集束率(下記の方法にて測定した)を調べ、その
結果を表3に示した。Example 11/Test Example 3 (calcium silicate plate) Cement 2
60 parts, SiO□; 40 parts, bentonite: 10 parts,
The alkali-resistant glass fibers of Examples 5 to 8 and the conventional product (Nippon Electric Glass Co., Ltd. AC
306H-3502) was added, heated at 95°C for 2 hours to perform a gelation reaction, and the resulting slurry was cast into a mold and left at room temperature for 2 days, then autoclaved at 180°C for 12 hours. A calcium silicate plate was prepared by the above treatment. The bending strength and convergence rate (measured by the method described below) of the calcium silicate plate thus prepared were examined, and the results are shown in Table 3.
表3から明らかなように実施例5〜8はいずれも熱アル
カリ溶液中で集束を維持していた。As is clear from Table 3, all of Examples 5 to 8 maintained focus in the hot alkaline solution.
1)集束率:11のビーカーに1χNaOH500cc
を入れ、95°C加温後同溶液中に耐アルカリガラス繊
維のチqツブを50木入れ、30分間加熱処理後、1分
間ラボミキサーにて攪拌した後に完全にストランドの膨
軟を保った割合。1) Focusing rate: 1χNaOH500cc in 11 beakers
After heating to 95°C, 50 strands of alkali-resistant glass fiber were placed in the same solution, heated for 30 minutes, and stirred for 1 minute using a lab mixer to keep the strands completely swollen and soft. ratio.
試験例5
従来の紡糸方法(日本電気硝子株式会社、Eファイバー
、カタログ)により、線維長6a+m、線維径13μ、
集束本数25本、50本、100本、150本、200
本、の各々のチョップストランドを作成し、試験例1と
同じ配合のモルタルに各h2.0%(重量)加え、試験
例Iと同し条件で試供体を作り、20 ’C水中での2
8日曲げ強度を測定して、集束本数と曲げ強度の関係を
調べた。その結果は図1に示した通りである。Test Example 5 Using a conventional spinning method (Nippon Electric Glass Co., Ltd., E fiber, catalog), fiber length 6a+m, fiber diameter 13μ,
Focusing number: 25, 50, 100, 150, 200
2.0% (weight) of each was added to mortar with the same composition as in Test Example 1, and a sample was prepared under the same conditions as Test Example I.
The 8-day bending strength was measured to examine the relationship between the number of bundles and the bending strength. The results are shown in FIG.
図1から集束本数が少なくなるにつれて、曲げ強度が大
きくなることがわかる。It can be seen from FIG. 1 that as the number of bundled wires decreases, the bending strength increases.
耐アルカリガラス繊維は石綿代替材料として開発され、
建築材料および工業材料として約15年の実績を持って
いるが、用途によっては長期耐久性不足や耐オートクレ
ーブ処理により強度低下の理由により使用されなかった
。Alkali-resistant glass fiber was developed as an asbestos alternative material.
Although it has been used as a building material and industrial material for about 15 years, it has not been used in some applications because of its lack of long-term durability or its strength due to autoclave-resistant treatment.
本発明により耐アルカリガラス繊維の耐オートクレーブ
性、耐アルカリ性および当該耐アルカリガラス繊維によ
って補強された無機マトリックスの製造時の作業性が著
しく改善されたことにより更に広範な用途展開が期待さ
れる。Since the present invention has significantly improved the autoclave resistance and alkali resistance of the alkali-resistant glass fibers and the workability during production of the inorganic matrix reinforced with the alkali-resistant glass fibers, it is expected that the invention will be used in a wider range of applications.
図1はストランドの集束本数と曲げ強度の関係を調べた
結果を示すグラフである。
図1
集束本数
手続ネ甫正書(自発)FIG. 1 is a graph showing the results of investigating the relationship between the number of bundled strands and bending strength. Figure 1 Convergence number procedure Nefu official document (spontaneous)
Claims (3)
維チョップドストランドを懸濁重合法によって熱可塑性
樹脂で被覆してなることを特徴とする耐アルカリガラス
繊維。(1) An alkali-resistant glass fiber characterized by being made by coating chopped strands of alkali-resistant glass fiber containing zirconium oxide with a thermoplastic resin using a suspension polymerization method.
維チョップドストランドを懸濁重合法によって熱可塑性
樹脂で被覆することを特徴とする耐アルカリガラス繊維
の製造方法。(2) A method for producing alkali-resistant glass fibers, which comprises coating chopped strands of alkali-resistant glass fibers containing zirconium oxide with a thermoplastic resin by a suspension polymerization method.
れてなることを特徴とする無機マトリックス。(3) An inorganic matrix reinforced with the alkali-resistant glass fiber according to claim 1.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1064391A JPH02243543A (en) | 1989-03-15 | 1989-03-15 | Glass fiber, production and use thereof |
ES9000760A ES2024093A6 (en) | 1989-03-15 | 1990-03-14 | Resin-covered alkali-resistant glass fibres |
FR9003327A FR2644449A1 (en) | 1989-03-15 | 1990-03-15 | |
GB9005850A GB2232988B (en) | 1989-03-15 | 1990-03-15 | "glass fibres, process for production thereof and use thereof" |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1064391A JPH02243543A (en) | 1989-03-15 | 1989-03-15 | Glass fiber, production and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02243543A true JPH02243543A (en) | 1990-09-27 |
Family
ID=13256972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1064391A Pending JPH02243543A (en) | 1989-03-15 | 1989-03-15 | Glass fiber, production and use thereof |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPH02243543A (en) |
ES (1) | ES2024093A6 (en) |
FR (1) | FR2644449A1 (en) |
GB (1) | GB2232988B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010189263A (en) * | 2009-02-13 | 2010-09-02 | Schott Ag | Barium-free radiopaque glass and the use thereof |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69100569T2 (en) * | 1990-02-20 | 1994-05-19 | Minnesota Mining & Mfg | Coated zirconium oxide fibers. |
DE19906240A1 (en) * | 1999-02-15 | 2000-08-17 | Schott Glas | Glass composition used, e.g., as container glass for chemically aggressive liquids contains a high amount of zirconium oxide |
DE19945517B4 (en) * | 1999-02-15 | 2005-03-17 | Schott Ag | High zirconium oxide containing glass and its uses |
ATE275102T1 (en) | 1999-02-15 | 2004-09-15 | Schott Glas | HIGH ZIRCONIUM OXIDE GLASS AND ITS USES |
DE102009008954B4 (en) | 2009-02-13 | 2010-12-23 | Schott Ag | X-ray opaque barium-free glass and its use |
DE102009008951B4 (en) | 2009-02-13 | 2011-01-20 | Schott Ag | X-ray opaque barium-free glass and its use |
DE102010007796B3 (en) | 2010-02-12 | 2011-04-14 | Schott Ag | X-ray opaque barium-free glass and its use |
CN103087244B (en) * | 2012-12-26 | 2015-06-24 | 海南必凯水性涂料有限公司 | Styrene copolymer emulsion for dip coating of glass fibers and preparation method and application of styrene copolymer emulsion |
FR3136761A1 (en) * | 2022-06-15 | 2023-12-22 | Compagnie Generale Des Etablissements Michelin | USE OF GLASS-RESIN COMPOSITE FIBERS FOR CONCRETE REINFORCEMENT |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6054248B2 (en) * | 1978-07-08 | 1985-11-29 | 日本板硝子株式会社 | Alkali-resistant glass composition |
JPS5638343A (en) * | 1979-09-06 | 1981-04-13 | Mitsubishi Monsanto Chem Co | Glass-fiber reinforced styrene resin composition |
-
1989
- 1989-03-15 JP JP1064391A patent/JPH02243543A/en active Pending
-
1990
- 1990-03-14 ES ES9000760A patent/ES2024093A6/en not_active Expired - Fee Related
- 1990-03-15 FR FR9003327A patent/FR2644449A1/fr active Pending
- 1990-03-15 GB GB9005850A patent/GB2232988B/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010189263A (en) * | 2009-02-13 | 2010-09-02 | Schott Ag | Barium-free radiopaque glass and the use thereof |
Also Published As
Publication number | Publication date |
---|---|
GB9005850D0 (en) | 1990-05-09 |
GB2232988A (en) | 1991-01-02 |
ES2024093A6 (en) | 1992-02-16 |
GB2232988B (en) | 1992-07-29 |
FR2644449A1 (en) | 1990-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK169699B1 (en) | Reinforcing fibres, and process for producing them | |
US4778529A (en) | Cementitious compositions comprising a water soluble polymer and a cross-linking agent therefor | |
Zhang et al. | Mechanical and thermal properties of denture PMMA reinforced with silanized aluminum borate whiskers | |
JPH02243543A (en) | Glass fiber, production and use thereof | |
JPH011704A (en) | Method for manufacturing hollow polymer particles | |
EP0235577A2 (en) | Acrylic fibres having improved dispersability in viscous organic or inorganic matrices | |
JPH0129215B2 (en) | ||
GB1602695A (en) | Sized glass fibre strands particularly for reinforced cementitious products | |
JPH0216258B2 (en) | ||
AU776793B2 (en) | Glass powder for glass ionomer cement | |
JP2007023454A (en) | Copolymer for fiber-sizing agent, fiber-sizing agent, fiber bundle, and fiber-reinforced resin | |
JP2000309666A (en) | Polyolefin-based molding, molding material therefor, and their production | |
JP2867087B2 (en) | Polypropylene fiber and fiber reinforced cement molding | |
JPH09278503A (en) | Sizing agent for cement-reinforcing fiber and cement-reinforcing fiber coated with the same | |
JPS6125667B2 (en) | ||
JPH06192912A (en) | Cement-reinforcing fiber | |
JP2005200263A (en) | Fiber for reinforcing cement and the like | |
JPS63162559A (en) | Manufacture of carbon fiber reinforced hydraulic composite material | |
JP3084139B2 (en) | Fiber reinforced hydraulic molding | |
JP6794661B2 (en) | Fiber material for reinforcing cement-based structures | |
JP3365811B2 (en) | Method for producing hydraulic molded product | |
KR20050067115A (en) | Polymer concrete binder and mortar using complex waste plastic | |
JP2002060250A (en) | Glass strand | |
KR930009346B1 (en) | Process for producing molded articles | |
JP5295749B2 (en) | Acrylic resin cured body |