JPH02242306A - Controller for multi-axis numerical controlled machine tool - Google Patents

Controller for multi-axis numerical controlled machine tool

Info

Publication number
JPH02242306A
JPH02242306A JP6277889A JP6277889A JPH02242306A JP H02242306 A JPH02242306 A JP H02242306A JP 6277889 A JP6277889 A JP 6277889A JP 6277889 A JP6277889 A JP 6277889A JP H02242306 A JPH02242306 A JP H02242306A
Authority
JP
Japan
Prior art keywords
cutter
axis
machine tool
interference
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6277889A
Other languages
Japanese (ja)
Inventor
Hajime Tai
田井 初
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6277889A priority Critical patent/JPH02242306A/en
Publication of JPH02242306A publication Critical patent/JPH02242306A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To automatically avoid the interference of an object to be worked and a cutter by operating the interval quantity of the cutter and the object to be worked from data of a shape of the object to be worked, a shape of the cutter and a cutting position of the object to be worked. CONSTITUTION:A cutter offset point Pi being a center point of a cutter 11 for cutting a blade face 9 and a cutter vector are derived in advance from a host computer, and these point and vector and blade face design data are inputted to an NC device through a storage medium. In the NC device, a comparing operation with a mesh-like data group for expressing a blade face shape is executed at every one point of the inputted cutter offset point Pi and cutter vector Vi, and whether an interference exists or not is discriminated. In the case when the interference exists, the cutter vector Vi is rotated by a designated angle DELTAtheta in the direction separated from the interference face, and by repeating it until the interference comes not to exist, a new cutter vector Vi is derived.

Description

【発明の詳細な説明】 (発明の目的〕 (産業上の利用分野) 本発明は数値M11<NC)I作機械制御装置に係り、
特に水車ランチ等の3次元の自由曲面を加工するための
多軸数値制御工作機械制tlll装置に関する。
[Detailed description of the invention] (Object of the invention) (Industrial application field) The present invention relates to a numerical value M11<NC)I machine tool control device,
In particular, the present invention relates to a multi-axis numerically controlled machine tool system for machining three-dimensional free-form surfaces such as water turbine launches.

(従来の技術) 従来、水車ランナ翼面のような3次元の自由曲面を有す
る対象物の切削加工は、倣い加工による方法や4軸ない
し5軸以上の多軸NC工作機械を用いた特殊な方法によ
り行なわれている。
(Prior art) Conventionally, cutting of objects with three-dimensional free-form surfaces such as the blade surfaces of water turbine runners has been carried out using profiling methods or special machining methods using multi-axis NC machine tools with four or five axes or more. It is done by method.

倣い加工においては、被加工物の形状により限界があり
、狭隘な翼間を避けて切削することは困難である。多軸
NC工作機械においては、水車ランチのような狭隘なN
面間にカッタを挿入させる必要がある上、隣接翼面にカ
ッタが干渉しないように絶えず注意を要する。実際には
、モデルブロック等を用いて切削実験を行ない、カッタ
と翼面との間に干渉が生じるか否かをチエツクしている
Copy machining has limitations depending on the shape of the workpiece, and it is difficult to cut while avoiding narrow spaces between blades. In multi-axis NC machine tools, narrow N
In addition to the need to insert the cutter between the surfaces, constant care must be taken to ensure that the cutter does not interfere with adjacent blade surfaces. In practice, cutting experiments are conducted using model blocks and the like to check whether interference occurs between the cutter and the blade surface.

切削中において隣接翼面とカッタとの干渉が発見された
場合には、再度NC工作機械の各軸の動作軌跡を求める
If interference between the adjacent blade surface and the cutter is discovered during cutting, the motion trajectory of each axis of the NC machine tool is determined again.

(発明が解決しようとする課題) 多軸NC工作機械により水車ランナ苦面のような自由曲
面を切削加工する場合には、上述したようにモデルブロ
ック等で切削実験を行ない、干渉が生じないことを確認
した上で実際の加工を行なっている。そのため、NC工
作機械の実稼動時間が短くなり、作業効率上好ましくな
い。
(Problem to be Solved by the Invention) When cutting a free-form surface such as the rough surface of a water turbine runner using a multi-axis NC machine tool, it is necessary to conduct cutting experiments using a model block, etc., as described above, to ensure that no interference occurs. After confirming the above, actual processing is carried out. Therefore, the actual operating time of the NC machine tool is shortened, which is unfavorable in terms of work efficiency.

また、被加工物とカッタとの間の干渉を発見する場合、
3軸制御においては数値または作図により比較的容易に
干渉を発見することができる。しかし、水車ランチ四面
のような複雑な形状を有する被加工物を加工する場合に
は、多軸制御により加工を行なう必要がある。多相制御
においては、各軸の動作軌跡から干渉をチエツクするこ
とは困難であり、さらに干渉が生じた場合、数度に員っ
て各軸の動作軌跡を再計算する必要が生じる。したがっ
て、多軸NC工作機械において、予め干渉を適確に把握
することは困難であった。
Also, when detecting interference between the workpiece and cutter,
In three-axis control, interference can be detected relatively easily using numerical values or drawings. However, when machining a workpiece with a complicated shape, such as a four-sided water turbine launch, it is necessary to perform the machining using multi-axis control. In polyphase control, it is difficult to check for interference from the motion trajectory of each axis, and if interference occurs, it becomes necessary to recalculate the motion trajectory of each axis several times. Therefore, in multi-axis NC machine tools, it has been difficult to accurately grasp interference in advance.

本発明は上記の事情を考慮してなされたもので、被加工
物とカッタとの間の間隔υを演算し、被加工物とカッタ
との間の干渉を自動的に回避することができ、数値制御
プログラミングの作業効率および改(直制御工作機械の
稼動効率を大幅に向上さけることができる多軸数値制御
工作機械制御装置を促供することを目的とする。
The present invention has been made in consideration of the above circumstances, and can automatically avoid interference between the workpiece and the cutter by calculating the distance υ between the workpiece and the cutter. The purpose of this paper is to improve the work efficiency and reform of numerical control programming (to promote a multi-axis numerical control machine tool control device that can greatly improve the operating efficiency of direct control machine tools).

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、被加工物の外形形状、カッタ形状、被加工物
の切削位置を示すカッタオフ廿ツi・点およびカッタ軸
方向をデータとして入すjする入力部と、それらのデー
タを記憶する記憶部と、記憶したデータから被加工物お
よびカッタ間の間隔間を演算し、カッタが被加工物と干
渉する場合にその干渉を回避するためのカッタオフセッ
ト点およびカッタ軸方向を求め、数値制御工作機械の各
軸の動作量に変換する演算部と、演算により求めた各軸
の動作量を数値υ(御工作機械へ出力するとともに各軸
の動作位置を検出する制御部とを備えたものである。
(Means for Solving the Problems) The present invention provides an input section into which the external shape of the workpiece, the shape of the cutter, the cutter-off point indicating the cutting position of the workpiece, and the direction of the cutter axis are entered as data. , a storage section that stores those data, and a cutter offset point and a cutter offset point that calculates the distance between the workpiece and the cutter from the stored data, and avoids interference when the cutter interferes with the workpiece. A calculation unit that calculates the cutter axis direction and converts it into the movement amount of each axis of the numerically controlled machine tool, and outputs the movement amount of each axis calculated by the calculation to the machine tool and detects the movement position of each axis. The controller is equipped with a control unit that controls the

(作用) 入力部から被加工物の外形形状、カッタ形状、被加工物
の切削位置を示すカッタオフセット点およびカッタ軸方
向をデータとして入力部から入力し、記憶部に記憶づる
(Operation) The external shape of the workpiece, the cutter shape, the cutter offset point indicating the cutting position of the workpiece, and the cutter axis direction are inputted as data from the input part and stored in the storage part.

記憶したデータから演算部が被加工物およびカッタ間の
間隔間を演算し、カッタが被加工物と干渉する場合にそ
の干渉を回避するためのカッタオフセット点およびカッ
タ軸方向を求め、数値制御工作機械の各軸の動作ωに変
換する。
The calculation unit calculates the distance between the workpiece and the cutter from the stored data, calculates the cutter offset point and cutter axis direction to avoid interference when the cutter interferes with the workpiece, and performs numerical control machining. Convert to motion ω of each axis of the machine.

演算により求めた各軸の動作量を制御部が数値制御工作
機械へ出力して動作さぼるとともに、各軸の動作位置を
検出する。
The control unit outputs the operation amount of each axis determined by the calculation to the numerically controlled machine tool to slow down the operation, and detects the operation position of each axis.

(実施例) 本発明に係る多軸数値制陣工作機械制御装δの一実施例
について添付図面を参照して説明する。
(Embodiment) An embodiment of the multi-axis numerical control machine tool control system δ according to the present invention will be described with reference to the accompanying drawings.

多軸NG工作機械制御装置1には、フロッピーディスク
等の記憶媒体2から被加工物の外形形状、カッタ形状、
被加工物の切削位置を示すカッタオフセット点およびカ
ッタ軸方向(カッタベクトル)を入力する入力部3と、
入力したそれらのデータを記憶する記憶部4と、入力し
た被加工物の形状やカッタオフセット点等を視覚表現す
るグラフィック表示装置5と、記憶部4に記憶したデー
タから被加工物およびカッタP1の間隔mを演算し、こ
の演算結果によりカッタが被加工物と干渉する場合にそ
の干渉を回避するためのカッタオフセット点おにびカッ
タベクトルを求め、これらのデータから各軸の動作量を
求める演算部6と、NC工作機械7へ各軸の動作量を出
力するとともに各軸の動作位置を検出する制御部8とが
備えられる。
The multi-axis NG machine tool control device 1 receives data such as the external shape of the workpiece, cutter shape, etc. from a storage medium 2 such as a floppy disk.
an input unit 3 for inputting a cutter offset point and a cutter axis direction (cutter vector) indicating the cutting position of the workpiece;
A storage unit 4 stores the input data, a graphic display device 5 visually expresses the input workpiece shape, cutter offset point, etc., and displays the workpiece and cutter P1 from the data stored in the storage unit 4. Calculate the interval m, use the results of this calculation to determine the cutter offset point and cutter vector to avoid interference if the cutter interferes with the workpiece, and calculate the amount of movement of each axis from these data. section 6, and a control section 8 that outputs the operating amount of each axis to the NC machine tool 7 and detects the operating position of each axis.

NC工作機械7は、直交座標軸(x、y、z)、回転軸
(テーブル、カッタヘッド)を有し、制御部8から制御
信号を入力して各軸を動作させ、カッタを操作して被加
工物の加工を行なうようになっている。
The NC machine tool 7 has orthogonal coordinate axes (x, y, z) and rotation axes (table, cutter head), inputs control signals from the control unit 8 to operate each axis, and operates the cutter to cut the workpiece. It is designed to process workpieces.

なお、記憶部4は、被加工物の外形形状を記憶する第1
記憶部4aと、カッタ形状を記憶する第2記憶部4bと
、カッタオフセット点およびカツタベクトルを記憶する
第3記憶部4Cどからなっている。
Note that the storage unit 4 includes a first storage unit that stores the external shape of the workpiece.
It consists of a storage section 4a, a second storage section 4b that stores cutter shapes, and a third storage section 4C that stores cutter offset points and cutter vectors.

次に、第2図に沿って、第3図〜第6図を参照しつつ多
軸NC工作機械制御装置1についてざらに詳しく説明す
る。
Next, the multi-axis NC machine tool control device 1 will be roughly described in detail along FIG. 2 and with reference to FIGS. 3 to 6.

NC工作機械7を用いて、例えば第3図に示ずような十
数枚の翼面9を有する模型フランシスランナ10の切削
加工を行なう場合、予め上位計算機により凶面9を切削
するカッタ11の中心点であるカッタオフセット点P1
およびカッタベクトルv1を求めておく。
When using the NC machine tool 7 to cut a model Francis runner 10 having ten or more blade surfaces 9 as shown in FIG. Cutter offset point P1 which is the center point
and cutter vector v1.

そして、上位計Fi機により求めておいた模型フランシ
スランナ10の翼面設計データQからのカッタオフセッ
ト点P1、カッタベクトルViaよび模型フランシスラ
ンナ10の翼面設計データQ(第4図、第5図)を記憶
媒体2に格納しておき、その記憶媒体2から多軸NC工
作機械制御装置1の入力部3がそれらのデータを入力し
、記憶部4に記憶する(ステップ1)。
Then, the cutter offset point P1, cutter vector Via, and the wing surface design data Q of the model Francis runner 10 (Figs. 4 and 5 ) are stored in the storage medium 2, and the input section 3 of the multi-axis NC machine tool control device 1 inputs these data from the storage medium 2, and stores them in the storage section 4 (step 1).

次に、入力したカッタオフセット点P1とカッタベクト
ル全点1点1iJに模型フランシスランナ翼面形状を表
現するメツシュ状データ群Qと比較演粋を行なう。その
処理手順は、フランシスランナN面9の表側もしくは褒
詞どちらかの面について1羽根分座標変換を後記(1)
式を用いて行なう。
Next, the input cutter offset point P1 and all the cutter vector points 1iJ are compared with the mesh-like data group Q expressing the shape of the model Francis runner blade surface. The processing procedure is to perform coordinate transformation for one blade on either the front side or compliment side of Francis runner N side 9 (1)
This is done using the formula.

そして、カッタオフセット点P1とカッタベクトルv1
間の干渉計算を行なう。例えば、カッタオフセラ1−点
Pi1カッタベクトルVi、翼面設計データQi、カッ
タ首径OR,カッタ傾斜角αとすれば、(2)弐〜(8
)式に示すように、カッタ11と模型フランシスランナ
翼面8との間隔量ΔDが求められる。このような演算処
理を上記カッタオフレット点Piから外形側の翼面全点
に対して行なう(ステップ2)。ここで求めた間隔量Δ
Dが予め指定しておいた余肉聞より大であれば干渉は生
じず、それより小であれば干渉が生じていると判断する
Then, cutter offset point P1 and cutter vector v1
Calculate the interference between For example, if cutter offset 1-point Pi1 cutter vector Vi, blade surface design data Qi, cutter neck diameter OR, and cutter inclination angle α are (2) 2 to (8
), the distance ΔD between the cutter 11 and the model Francis runner blade surface 8 is determined. Such arithmetic processing is performed for all points on the blade surface on the outer shape side from the cutoff fret point Pi (step 2). The interval amount Δ found here
If D is larger than a pre-designated margin, it is determined that no interference occurs, and if D is smaller than that, it is determined that interference is occurring.

〔以下余白〕[Margin below]

■ i  (i、  j、  k) ■ i’  (i’  、  ”  、  k’  )
=  i  傘 cos(Δ θ )  −j  * 
 5in(Δ θ )j’  =  is  5in(
Δ θ )  +  j  *  cos(Δ θ )
ここで、へ〇=360/羽根枚数 AL=IQi−Pit      ・・・・・・(2)
VP−(Qi−Pi)/IQi−Pi cos(θ D)  −V  is  vp     
     −(4)AV=AL−cos(θp)   
    ++++  (5)AD=!=7の   ・・
・・・・(6)DD=DR+  (AV−CR)−ta
n(cr>・・・・・・ (7) ΔD=AD−DD           ・・・・・・
 (8)干渉が生じた場合には、カッタオフセット点P
に対して干渉位置が4の表面か表面か演ci結果により
分るため、第6図(A)、(B)に示すように、干渉し
た面から離れる方向に指定角度Δθだけカッタベクトル
v1を(1)式により回転変換して回避する(ステップ
3)。回転変換により求められた新しいカツタベクi・
ルV Hr により、再度翼面9とカッタ10間の干渉
チエツク演算を行ない、その演算を干渉がなくなるまで
繰り返す。
■ i (i, j, k) ■ i'(i', ”, k')
= i umbrella cos(Δ θ ) −j *
5in(Δθ)j' = is 5in(
Δ θ ) + j * cos(Δ θ )
Here, 〇=360/Number of blades AL=IQi-Pit...(2)
VP-(Qi-Pi)/IQi-Pi cos(θD) -V is vp
-(4)AV=AL-cos(θp)
++++ (5)AD=! = 7...
...(6) DD=DR+ (AV-CR)-ta
n(cr>・・・・・・(7) ΔD=AD−DD ・・・・・・
(8) If interference occurs, cutter offset point P
Since it is known from the computational ci results whether the interference position is on the surface 4 or the surface, the cutter vector v1 is moved away from the interfered surface by a specified angle Δθ, as shown in FIGS. 6(A) and (B). This is avoided by performing rotation conversion using equation (1) (step 3). The new Katsutabek i obtained by rotation transformation
The interference check calculation between the blade surface 9 and the cutter 10 is performed again using the rule V Hr, and the calculation is repeated until there is no interference.

以上の処理をカッタベクトル全点に対して行ない、干渉
のないカッタベクトルvi′を求め、干渉を自動的に回
避する。
The above processing is performed for all the cutter vector points to obtain a cutter vector vi' without interference, and interference is automatically avoided.

干渉がなくなったならば、NC用ポストプロセッサによ
りNC工作機械の各軸(tI交座標軸X。
Once the interference is eliminated, the NC post-processor adjusts each axis of the NC machine tool (tI orthogonal coordinate axis X.

y、z、テーブル回転軸、カッタヘッド軸)の動作分へ
の変換演算処理を行なう(ステップ4)。
y, z, table rotation axis, cutter head axis) into operation components (step 4).

その後、NC工作機械7により模型フランシスランナ1
0の切削加工を行なう(ステップ5)。
After that, the model Francis runner 1 was created using the NC machine tool 7.
0 cutting is performed (step 5).

なお、NC工作機械の動作帛とカッタオフセット点Pi
、カッタベタ1〜ルViの変換は、NC工作機械の構成
により異なるので、対象となるNC工作機械の構成に対
応したNC用ポストプロセッサを用いる。
In addition, the operation system of the NC machine tool and the cutter offset point Pi
, Cutter Plane 1 to Vi differs depending on the configuration of the NC machine tool, so an NC post-processor corresponding to the configuration of the target NC machine tool is used.

このように上記実施例によれば、加工対象物に対して切
削全領域に亘ってカッタの干渉回避を自動的に行なうこ
とができるため、煩Mな干渉チエツク作業を省略するこ
とができ、NCプログラム作業が容易になる。
In this way, according to the above embodiment, it is possible to automatically avoid interference with the cutter over the entire cutting area of the workpiece, so that the troublesome interference check work can be omitted, and the NC Programming becomes easier.

また、干渉が生じないことを確認することができるため
、モデルブロック等による切削実験を行なう必要がなく
、NC工作機械の実稼動率が向上する。さらに、カッタ
と被加工物間の干渉による被711工物の損傷やカッタ
の破損を防止することができる。
Furthermore, since it can be confirmed that no interference occurs, there is no need to conduct cutting experiments using model blocks, etc., and the actual operating rate of the NC machine tool is improved. Furthermore, damage to the workpiece 711 and breakage of the cutter due to interference between the cutter and the workpiece can be prevented.

〔発明の効果〕〔Effect of the invention〕

本発明は、被加工物の外形形状、カッタ形状、被加工物
の切削位置を示すカッタオフセラi・点およびカッタ軸
方向をデータとして入力する入力部と、それらのデータ
を記憶する記憶部と、記憶したデータから被加工物およ
びカッタ間の間隔mを演算し、カッタが被加工物と干渉
する場合にその干渉を回避するためのカッタオフセット
点およびカッタ軸方向を求め、数値制御工作機械の各軸
の動作ωに変換する演算部と、演算により求めた各軸の
動作量を数値制御工作機械へ出力するとともに各軸の動
作位置を検出する制御部とを漏えたから、カッタの干渉
を自動的に回避することができ、数値1IilIIII
プログラミングの作業効率および数値制御工作機械の稼
動効率を大幅に向上させることができる。
The present invention includes an input section for inputting data including the outer shape of a workpiece, a cutter shape, a cutter offset point i/point indicating a cutting position of the workpiece, and a cutter axis direction, a storage section for storing these data, and a storage section for storing the data. From this data, calculate the distance m between the workpiece and the cutter, find the cutter offset point and cutter axis direction to avoid interference when the cutter interferes with the workpiece, and calculate the cutter offset point and cutter axis direction for each axis of the numerically controlled machine tool. Since the calculation part that converts the motion into the motion ω of can be avoided, the number 1IilIII
The programming work efficiency and the operating efficiency of numerically controlled machine tools can be greatly improved.

【図面の簡単な説明】 第1図は本発明に係る多軸数値制御工作機械制御装置の
一実施例を示ずブロック構成図、第2図は上記実施例を
説明するだめのフロー) !−−ト、第3図は上記実施
例における模型フランシスランナみよびカッタを示す構
成図、第4図は上記実施例における模型フランシスラン
ナ翼面上のメツシュ状の設計データを示す図、第5図(
A)、(L3)(C)、第6図(A)、(B)は上記実
施例におけるカッタベクトルと模型フランシスランナW
面との干渉値演算および干渉回避演算を説明するための
図である。 1・・・多軸数値制御工作機械制御装置、2・・・記憶
媒体、3・・・入力部、4・・・記憶部、5・・・グラ
フィック表示装置、6・・・演算部、7・・・数値制御
工作機械、8・・・制御部。
[Brief Description of the Drawings] Fig. 1 is a block diagram showing an embodiment of a multi-axis numerically controlled machine tool control device according to the present invention, and Fig. 2 is a flowchart for explaining the above embodiment)! - Fig. 3 is a configuration diagram showing the model Francis runner guide and cutter in the above embodiment, Fig. 4 is a diagram showing mesh-like design data on the model Francis runner wing surface in the above embodiment, Fig. 5 (
A), (L3) (C), Figures 6 (A) and (B) show the cutter vector and model Francis runner W in the above embodiment.
FIG. 6 is a diagram for explaining interference value calculation and interference avoidance calculation with a surface. DESCRIPTION OF SYMBOLS 1... Multi-axis numerical control machine tool control device, 2... Storage medium, 3... Input section, 4... Storage section, 5... Graphic display device, 6... Arithmetic section, 7 ... Numerical control machine tool, 8... Control section.

Claims (1)

【特許請求の範囲】[Claims] 被加工物の外形形状、カッタ形状、被加工物の切削位置
を示すカッタオフセット点およびカッタ軸方向をデータ
として入力する入力部と、それらのデータを記憶する記
憶部と、記憶したデータから被加工物およびカッタ間の
間隔量を演算し、カッタが被加工物と干渉する場合にそ
の干渉を回避するためのカッタオフセット点およびカッ
タ軸方向を求め、数値制御工作機械の各軸の動作量に変
換する演算部と、演算により求めた各軸の動作量を数値
制御工作機械へ出力するとともに各軸の動作位置を検出
する制御部とを備えたことを特徴とする多軸数値制御工
作機械制御装置。
An input section for inputting the external shape of the workpiece, cutter shape, cutter offset point indicating the cutting position of the workpiece, and cutter axis direction as data, a storage section for storing these data, and a storage section for inputting the workpiece from the stored data. Calculate the distance between the object and the cutter, find the cutter offset point and cutter axis direction to avoid interference when the cutter interferes with the workpiece, and convert it into the amount of movement of each axis of the numerically controlled machine tool. A multi-axis numerical control machine tool control device, comprising: a calculation unit that outputs the operation amount of each axis determined by the calculation to the numerical control machine tool, and a control unit that detects the operation position of each axis. .
JP6277889A 1989-03-15 1989-03-15 Controller for multi-axis numerical controlled machine tool Pending JPH02242306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6277889A JPH02242306A (en) 1989-03-15 1989-03-15 Controller for multi-axis numerical controlled machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6277889A JPH02242306A (en) 1989-03-15 1989-03-15 Controller for multi-axis numerical controlled machine tool

Publications (1)

Publication Number Publication Date
JPH02242306A true JPH02242306A (en) 1990-09-26

Family

ID=13210166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6277889A Pending JPH02242306A (en) 1989-03-15 1989-03-15 Controller for multi-axis numerical controlled machine tool

Country Status (1)

Country Link
JP (1) JPH02242306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100404886B1 (en) * 2001-05-28 2003-11-07 두산중공업 주식회사 Method Of Generation For Section Of Steam Turbin Blade

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100404886B1 (en) * 2001-05-28 2003-11-07 두산중공업 주식회사 Method Of Generation For Section Of Steam Turbin Blade

Similar Documents

Publication Publication Date Title
Choi et al. Cutter-location data optimization in 5-axis surface machining
Lin Real-time surface interpolator for 3-D parametric surface machining on 3-axis machine tools
JP5163814B2 (en) Automatic programming apparatus and method
Li et al. Generating tool-path with smooth posture change for five-axis sculptured surface machining based on cutter’s accessibility map
JPWO2011004584A1 (en) Automatic programming apparatus and method
JP4796936B2 (en) Processing control device
JPS61156309A (en) Numerically controlled device containing speed difference smoothing function
Wang et al. Five-axis NC machining of sculptured surfaces
JP2011183528A (en) Automatic programming device and operation program thereof
JP4431880B2 (en) NC post processor for multi-axis numerical controller
CN113894805B (en) Cooperative welding method, device, terminal and storage medium
CN107942942B (en) Inclined coordinate system establishing method applied to intersected inclined planes of machine tool equipment
Qu et al. Profile error-oriented optimization of the feed direction and posture of the end-effector in robotic free-form milling
Li et al. Cutter partition-based tool orientation optimization for gouge avoidance in five-axis machining
JPH02242306A (en) Controller for multi-axis numerical controlled machine tool
US9411331B2 (en) Automatic programming device and method
KR20070068797A (en) Automation processing method for propeller
JPH1128641A (en) Plate machining device
JP2005144620A (en) Shape processing method by numerical control processing machine, numerical control device, machine tool, nc program making device and nc program making program
Cho et al. Generation of collision-free cutter location data in five-axis milling using the potential energy method
Yu et al. Shape optimization of generic rotary tool for five-axis flank milling
Sato et al. Tool path generation for chamfering drill holes of a pipe with constant width
JPH06119031A (en) Nc data generating method for working of cut remaining part
Nemer et al. Off-line nominal path generation of 6-DoF robotic manipulator for edge finishing and inspection processes
Shi et al. Contouring error vector and cross-coupled control of multi-axis servo system