JPH02241973A - Electromagnetic fuel injection valve - Google Patents

Electromagnetic fuel injection valve

Info

Publication number
JPH02241973A
JPH02241973A JP6098489A JP6098489A JPH02241973A JP H02241973 A JPH02241973 A JP H02241973A JP 6098489 A JP6098489 A JP 6098489A JP 6098489 A JP6098489 A JP 6098489A JP H02241973 A JPH02241973 A JP H02241973A
Authority
JP
Japan
Prior art keywords
fuel
groove
valve
wall surface
axial center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6098489A
Other languages
Japanese (ja)
Inventor
Yoshio Okamoto
良雄 岡本
Haruo Watanabe
春夫 渡辺
Toru Ishikawa
亨 石川
Tokuo Kosuge
小菅 徳男
Shigeya Sakai
境 滋弥
Eiji Hamashima
英治 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP6098489A priority Critical patent/JPH02241973A/en
Publication of JPH02241973A publication Critical patent/JPH02241973A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To provide stable fuel injection characteristics by positioning the edge on the valve axial center side of a turning groove, on the axial center side closer than the central position between the axial center and the inner wall surface of a fuel turning element, and keeping the distance between one valve axial side edge of the turning groove and the valve axial center and that between the other edge of the groove and the inner wall surface at a given relationship. CONSTITUTION:An edge 13a on the valve axial center side of a diametrical groove 13 provided in a fuel turning element 7 is positioned on the axial center side closer than the central position between the axial center and the inner wall surface 7a of the fuel turning element 7, and the positions of respective groove edge positions are constructed so that the distance l1 between one valve axial side edge 13a of the diametrical groove 13 and the valve axial center and the distance l2 between the other edge 13b of the diametrical groove 13 and the inner wall surface 7a may become l1 > l2. Moreover, the central position is the center between the valve axial center and the inner wall surface 7a of the fuel turning element 7, which is 1/2 time as large as the corresponding diameter (d) of the inner wall surface 7a. Furthermore, the width W of the groove is 1/2d - l1 - l2, and the fuel passing through the diametrical groove 13 is led to the first fuel turning chamber 14 and is jetted from a fuel jetting hole 5 through the second fuel turning chamber 15.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関用電磁式燃料噴射弁に係り、特に、
弁座の上流側で燃料を旋回させる方式のものにおいて、
噴射させる微粒化燃料の流量精度を高く維持しつつ、小
さい噴射角でもって噴射可能な該旋回素子荷造に関する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electromagnetic fuel injection valve for an internal combustion engine, and in particular,
In the type that swirls the fuel on the upstream side of the valve seat,
The present invention relates to the packaging of the swirling element, which allows the atomized fuel to be injected at a small injection angle while maintaining high flow rate accuracy.

〔従来の技術〕[Conventional technology]

弁座の上流側で燃料を旋回させる方式の電磁式燃料噴射
弁の例に、特開昭55−104564号、特開昭56−
75955号がある。前者−4===には、複数個の入
口オリフィスと1つの出口オリフィスを有し、入口オリ
フィスは旋回室に対して最大直径の間隔をおいて配置さ
れる。また、後者Uは、接線方向から燃料を導入する複
数個のスワール通路が設けられるというものである。こ
れらMは、強いスワールを付加するものであり噴射角は
大きい。
Examples of electromagnetic fuel injection valves that swirl fuel on the upstream side of the valve seat include JP-A-55-104564 and JP-A-56-
There is No. 75955. The former -4=== has a plurality of inlet orifices and one outlet orifice, the inlet orifices being spaced apart from the swirling chamber by the maximum diameter. Moreover, the latter U is provided with a plurality of swirl passages that introduce fuel from the tangential direction. These M add a strong swirl and have a large injection angle.

従って、燃料噴射システムへの適用は、シングルポイン
トシステムに対して好ましい、ここに、シングルポイン
トシステムは、1対1の対応が生ずるマルチポイントシ
ステムと違って、単一噴射点において、ひとつのエンジ
ンの複数のシリンダに燃料を送り込むひとつの燃料噴射
弁を有するものである。該噴射点は吸気マニホールド集
合部の内部、または、吸気マニホールドに通ずる空気流
maw装置(スロットルバルブ)の上方かあるいは下方
となる。燃料は、吸気マニホールド集合管内の比較的広
い空間に噴射されることから、広がりは大きくて良い。
Therefore, application to fuel injection systems is preferred over single-point systems, where a single-point system is one where a single injection point, unlike a multi-point system, where a one-to-one correspondence occurs. It has one fuel injection valve that sends fuel to multiple cylinders. The injection point is inside the intake manifold assembly, or above or below the airflow MAW device (throttle valve) leading to the intake manifold. Since the fuel is injected into a relatively wide space within the intake manifold collecting pipe, a large spread is sufficient.

燃料吸気は、吸引空気に準じて各シリンダに分配吸気さ
れる。一方、マルチポイントシステムは、エンジンの各
シリンダに準する吸気マニホールドの分岐管部に燃流噴
射弁が配置されていて、微粒化した燃料を関連吸気弁近
くの分岐管内へ噴射する。燃料は、分岐管内の狭い空間
に噴射させることから、広がりが制限され小さくなけれ
ばならない。
Fuel intake air is distributed to each cylinder in accordance with intake air. On the other hand, in a multi-point system, a fuel injection valve is arranged in a branch pipe of an intake manifold corresponding to each cylinder of the engine, and atomized fuel is injected into the branch pipe near the related intake valve. Since the fuel is injected into a narrow space within the branch pipe, its spread must be limited and small.

吸気マニホールドの内壁面への燃料付着によって、シリ
ンダへの燃料輸送遅れが生じ、機関の過渡特性、アイド
ル安定性などを悪化させるので好ましくない。
Adhesion of fuel to the inner wall surface of the intake manifold causes a delay in fuel transportation to the cylinders, which is undesirable because it deteriorates the engine's transient characteristics, idle stability, and the like.

本発明の目的は安定した燃料噴霧特性を有し。The object of the present invention is to have stable fuel spray characteristics.

マルチポイントシステムに適合した電磁式燃料噴射弁を
提供することにある。
An object of the present invention is to provide an electromagnetic fuel injection valve that is compatible with a multi-point system.

〔課題を解決するための手段〕 上記目的を達成するための本発明の電磁式燃料噴射弁は
、燃料旋回素子に設ける旋回溝の弁軸心側の端面が、該
軸心と前記燃料旋回素子の内壁面との中心位置より軸心
側にあって、かつ前記旋回溝の弁軸心側端面と弁軸心間
の距離Qlと、該溝の他方端面と前記内壁面間の距離Q
2がQl>Qzとなるように各々溝端面位置を構成して
いる。
[Means for Solving the Problems] In order to achieve the above object, the electromagnetic fuel injection valve of the present invention has an end face on the valve axis side of a swirl groove provided in a fuel swirling element, which is in contact with the axis and the fuel swirling element. a distance Ql between the valve axis side end face of the pivot groove and the valve axis, and a distance Ql between the other end face of the groove and the inner wall face;
The positions of the groove end faces are configured such that Ql>Qz.

〔作用〕[Effect]

かかる旋回溝を経た燃料は、対面する環状通路、すなわ
ち、第1の燃料旋回室に流れ込むが、該燃料は渦動など
の不安定な流れを生ずるどとなく、ボール弁下部の第2
の燃料旋回室を経て下流の燃料噴射孔に至たる。この際
、核間を通過する燃料流速は比較的緩やかであり、旋回
力としては弱い。
The fuel that has passed through the swirl groove flows into the opposing annular passage, that is, the first fuel swirl chamber, but the fuel flows into the second fuel swirl chamber at the bottom of the ball valve without causing unstable flow such as swirling.
The fuel flows through the fuel swirling chamber to the downstream fuel injection hole. At this time, the fuel flow rate passing between the cores is relatively slow, and the swirling force is weak.

したがって、燃料噴射孔より噴出する微粒化燃料の広が
り角は小さく、内燃機関の吸気マニホールド内壁への燃
料付着を抑制されて機関の運転効率が高められる。また
、前記旋回溝を流れる燃料の通過損失は極めて小さく、
供給される加圧燃料を効率良く旋回のエネルギーに変換
することができる。燃料噴射弁として最も有利な噴射構
造を得ることができる。
Therefore, the spread angle of the atomized fuel injected from the fuel injection hole is small, and adhesion of fuel to the inner wall of the intake manifold of the internal combustion engine is suppressed, thereby increasing the operating efficiency of the engine. Moreover, the passage loss of the fuel flowing through the swirl groove is extremely small.
The supplied pressurized fuel can be efficiently converted into turning energy. The most advantageous injection structure can be obtained as a fuel injection valve.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第7図により説
明する。第1図を用いて、本発明に係る電磁式燃料噴射
弁(以下、′噴射弁′という、)1の構造・動作につい
て説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 7. The structure and operation of an electromagnetic fuel injection valve (hereinafter referred to as ``injection valve'') 1 according to the present invention will be explained using FIG. 1.

第1図において、2は、噴射弁1の主要作動部品を収容
するほぼ筒状のハウジングで、このハウジング2の下部
に次に説明するノズル装[3を機械的に固着保持してい
る。
In FIG. 1, reference numeral 2 denotes a substantially cylindrical housing that houses the main operating parts of the injection valve 1, and a nozzle assembly [3, which will be described next, is mechanically fixedly held in the lower part of the housing 2.

このノズル装置3の下部内面に弁座4が形成され、その
下部軸心に燃料噴射孔5が穿設されている。また、この
弁座4に近接して設けた急拡大孔6内に筒状の燃料旋回
素子7が機械的に固着されている。9はバルブ装置8の
主要部をなす弁部材に係るロッドで、このロッド9の下
方先端部にはボール10が、他方終端部には磁性材料よ
り成るカップ型のプランジャ11が各々固着されている
A valve seat 4 is formed on the inner surface of the lower part of this nozzle device 3, and a fuel injection hole 5 is bored in the lower axis thereof. Further, a cylindrical fuel swirling element 7 is mechanically fixed in a rapidly expanding hole 6 provided close to the valve seat 4. Reference numeral 9 denotes a rod related to a valve member that constitutes the main part of the valve device 8. A ball 10 is fixed to the lower tip of the rod 9, and a cup-shaped plunger 11 made of a magnetic material is fixed to the other end. .

ボール10は、前記燃料旋回素子7の内壁面7a内を軸
方向に摺動する。このボール10が弁座4に着座してい
る場合に燃料噴射孔5を閉じているが、弁座4から離れ
ると燃料噴射孔5を開く。この燃料噴射孔5に至たる燃
料は、燃料旋回素子7に設けた溝12.13より流入す
るが、これらの溝は、燃料の通過を許す十分な空隙を有
する軸方向溝12と燃料の流れ損失の小さい径方向@1
3とより構成されており、この径方向溝13出口部の第
1の燃料旋回室14へ流入する。15は、ボール10下
部と円錐状の弁座4間に形成される第2の燃料旋回室で
、第1の燃料旋回室14より流入する燃料の旋回流れを
助長する。16は、前記ハウジング2の支承面2aと、
前記ノズル装置3の支承面3a間に挿入される馬蹄形の
スペーサ部材で、このスペーサ部材16は、前記バルブ
装置8の突起面8aとの隙間を規制して、該バルブ装置
8の上方への移動、すなわち、リフト景を確保する。
The ball 10 slides within the inner wall surface 7a of the fuel swirling element 7 in the axial direction. When this ball 10 is seated on the valve seat 4, the fuel injection hole 5 is closed, but when it leaves the valve seat 4, the fuel injection hole 5 is opened. The fuel that reaches the fuel injection hole 5 flows through grooves 12 and 13 provided in the fuel swirl element 7, but these grooves are connected to an axial groove 12 having a sufficient gap to allow the passage of the fuel. Radial direction with small loss @1
3, and the fuel flows into the first swirling chamber 14 at the outlet of this radial groove 13. A second fuel swirling chamber 15 is formed between the lower part of the ball 10 and the conical valve seat 4, and promotes the swirling flow of the fuel flowing from the first fuel swirling chamber 14. 16 is a support surface 2a of the housing 2;
A horseshoe-shaped spacer member inserted between the support surfaces 3a of the nozzle device 3, this spacer member 16 regulates the gap with the protruding surface 8a of the valve device 8, and prevents the upward movement of the valve device 8. , that is, to secure the lift view.

ハウジング2内には、その中心部に位置して管状の鉄心
17が設けられており、この鉄心17は。
A tubular iron core 17 is provided in the housing 2 at its center.

ハウジング2の上部に機械的に結合されている。It is mechanically coupled to the upper part of the housing 2.

この鉄心17内には、アジャストパイプ18が設けてあ
り、このアジャストパイプ18の下端には、ばね19が
当接している。ばね19の他方下端面は、バルブ装置8
のプランジャ11の凹部内面に当接している。すなわち
、ばね19の付勢力は、バルブ装置8のボール10を弁
座4に着座させる方向に働く。
An adjustment pipe 18 is provided within the iron core 17, and a spring 19 is in contact with the lower end of the adjustment pipe 18. The other lower end surface of the spring 19 is connected to the valve device 8
The plunger 11 is in contact with the inner surface of the recess. That is, the biasing force of the spring 19 acts in a direction to seat the ball 10 of the valve device 8 on the valve seat 4.

ハウジング2の内周と鉄心17の外周との間に形成され
ている環状空間内には、ボビン20に巻回された電磁コ
イル21が収容されている。電磁コイル21はバジング
2と一体に形成された合成樹脂製のコネクタ22内に取
り付けられた端子23に接続されている。この端子23
は、コンピュータなどの電子制御装置(図示せず)に接
続され、この電子制御装置からのパルス信号を受信する
ようになっている。
An electromagnetic coil 21 wound around a bobbin 20 is housed in an annular space formed between the inner periphery of the housing 2 and the outer periphery of the iron core 17 . The electromagnetic coil 21 is connected to a terminal 23 attached to a synthetic resin connector 22 formed integrally with the badge 2. This terminal 23
is connected to an electronic control device (not shown) such as a computer, and receives pulse signals from the electronic control device.

このような構成の噴射弁1の動作を次に説明する。所定
圧力に加圧された燃料は、電磁コイル21およびバルブ
装置8の周辺を経て燃料旋回素子7に至たる。しかる後
、燃料旋回素子7の軸方向溝12.径方向溝13から第
1の燃料旋回室14を経て弁座4に至たる。
The operation of the injection valve 1 having such a configuration will be explained next. The fuel pressurized to a predetermined pressure reaches the fuel swirl element 7 through the electromagnetic coil 21 and the vicinity of the valve device 8 . Thereafter, the axial groove 12 of the fuel swirl element 7 is removed. The fuel flows from the radial groove 13 to the valve seat 4 via the first fuel swirling chamber 14 .

そして1図示しない電子制御装置からパルス信号が電磁
コイル21に供給されていない場合、鉄心17が磁化さ
れず、ばね19の付勢力によってバルブ装置8は弁座4
に押し付けられて燃料噴射孔5を閉じている。
1. When a pulse signal is not supplied to the electromagnetic coil 21 from an electronic control device (not shown), the iron core 17 is not magnetized and the valve device 8 is moved to the valve seat 4 by the biasing force of the spring 19.
is pressed to close the fuel injection hole 5.

電子制御装置から電磁コイル21へパルス信号が印加さ
れると鉄心17が磁化され、これによって、プランジャ
11がばね19の付勢力に抗して鉄心17に吸引される
。このため、バルブ装fM、8が上方にリフトされ、弁
座5から離れるので燃料噴射孔5を開き、止められてい
た燃料を噴射させる。
When a pulse signal is applied from the electronic control device to the electromagnetic coil 21, the iron core 17 is magnetized, and the plunger 11 is thereby attracted to the iron core 17 against the biasing force of the spring 19. Therefore, the valve assembly fM, 8 is lifted upward and separated from the valve seat 5, thereby opening the fuel injection hole 5 and injecting the fuel that had been stopped.

ここに、噴射弁1の燃料微粒化について簡潔に説明する
。ノズル装置3の急拡大孔6内に設けた燃料旋回素子7
の軸方向溝12.径方向溝13を通過する加圧燃料は、
損失がごく僅かであるので、十分な噴射圧をもって第1
の燃料旋回室14に至たる、ここで噴射圧を維持された
燃料が旋回燃料に効率良く置換され、第2の燃料旋回室
15に至たる。第2の燃料旋回室15では、さらに旋回
が助長される。ここに、第1の燃料旋回室14並びに第
2の燃料旋回室15内の燃料流れは、渦動などの不安定
な流れが生じ得す、効率良く旋回流れが生ずるのである
。従って、十分な噴射圧、旋回力で噴射されるので優れ
た微粒化燃料を得ることができる。
Here, fuel atomization of the injection valve 1 will be briefly explained. Fuel swirling element 7 provided in rapidly expanding hole 6 of nozzle device 3
axial groove 12. The pressurized fuel passing through the radial groove 13 is
Since the loss is negligible, the first injection can be performed with sufficient injection pressure.
The fuel whose injection pressure is maintained here is efficiently replaced by swirling fuel, and reaches the second fuel swirling chamber 15. In the second fuel swirling chamber 15, swirling is further promoted. Here, in the fuel flow in the first fuel swirling chamber 14 and the second fuel swirling chamber 15, an unstable flow such as a vortex may occur, but a swirling flow is efficiently generated. Therefore, excellent atomized fuel can be obtained since it is injected with sufficient injection pressure and swirling force.

次に、第2図ないし第7図を用いて本発明の主たる目的
である燃料旋回素子7の径方向溝13の構成について説
明する。
Next, the configuration of the radial groove 13 of the fuel swirling element 7, which is the main object of the present invention, will be explained using FIGS. 2 to 7.

第2図は、ノズル装置3並びにバルブ装!it8の主要
部分の拡大断面図である。燃料は、図の矢印方向より流
入し、燃料旋回素子7の軸方向溝12から1本発明に係
る径方向$13を経て対面する第1の燃料旋回室14.
下流の第2の燃料旋回室15、そして燃料噴射孔5に流
れる。図中に記したdは、燃料旋回素子7の内壁面7a
の直径を表わしている。
Figure 2 shows the nozzle device 3 and valve equipment! It is an enlarged sectional view of the main part of it8. Fuel flows in from the direction of the arrow in the figure, from the axial groove 12 of the fuel swirling element 7 to the first fuel swirling chamber 14 facing each other via the radial direction 13 according to the present invention.
The fuel flows to the downstream second fuel swirl chamber 15 and then to the fuel injection holes 5. d written in the figure is the inner wall surface 7a of the fuel swirling element 7.
represents the diameter of

第3図は、第2図のAA断面図である0本発明の径方向
溝13の弁軸心側の端面13a (Ilt部分)、該溝
の他方端面13b(I2z部分)、そして中心位置が示
される。該中心位置は、弁軸心と燃料旋回素子7の内壁
面78間のいわゆる中心であって、内壁面7aの相当直
径dの1/2である。
FIG. 3 is a cross-sectional view taken along line AA in FIG. 2, showing the end surface 13a (Ilt portion) of the radial groove 13 of the present invention on the valve axis side, the other end surface 13b (I2z portion) of the groove, and the center position of the radial groove 13 of the present invention. shown. The center position is the so-called center between the valve shaft center and the inner wall surface 78 of the fuel swirling element 7, and is 1/2 of the equivalent diameter d of the inner wall surface 7a.

また、溝の幅Wは1/2d  Qx  Qxで示される
Further, the width W of the groove is expressed as 1/2d Qx Qx.

径方向溝13を経た燃料は対面する第1の燃料旋回室1
4に導かれ、第2図に示す第2の燃料旋回室15を経て
燃料噴射孔5より噴射される。なお。
The fuel that has passed through the radial groove 13 enters the facing first fuel swirling chamber 1.
4, and is injected from the fuel injection hole 5 through the second fuel swirling chamber 15 shown in FIG. In addition.

径方向溝13の断面積A、と、燃料噴射孔5の断面積A
oとの比A、/Aoは7以上となるように設計されてお
り、核間13に於ける流れ損失はごく僅かである。
Cross-sectional area A of the radial groove 13 and cross-sectional area A of the fuel injection hole 5
The ratio A, /Ao to o is designed to be 7 or more, and the flow loss in the internuclear space 13 is very small.

第4図は、i#13の幅Wと流量バラツキについて示す
。第2図における核間13の弁軸心側の端面13aを中
心位置より細心側の所望の位置、例えば同図に示したO
Lの位置に固定して、溝13の幅Wを変えたときの結果
の例である。すなわち、溝13の他方端面13bの位置
が変わる。第4図にあって、流量のバラツキは、溝幅W
を次第に大きくすることによって、バラツキ大→遷移域
→バラツキ小と変化する。バラツキが大きい領域では、
該u13に対面する第1の燃料旋回室14内に第5図に
示すような渦動が生じている。かかる渦動は、溝13の
他方端面13bを弁軸心より遠ざけることによって次第
に小さくなり流れは安定化する。なお、流量バラツキは
、第5図中に示す流量の時間変化曲線に示す変動幅ΔQ
、平均流量Qをれ机 第4図に戻って、静的流坩のバラツキの許容値(6%以
内の変化なら認められている)は、遷移域においても存
在するが、バラツキの小さい安定域を用いるのが生産上
好ましい。本発明で述べる範囲は、この安定域に準する
ものであり、核間を通過する燃料はその流れも緩やかで
あり旋回の強さも弱い。したがって、燃料噴射孔より噴
出する微粒化燃料の広がり角は小さくなる。マルチポイ
ントシステムにおいては、吸気マニホールド内壁への燃
料付着もなく、機関の運転効率を極めて高くすることが
できる。
FIG. 4 shows the width W and flow rate variation of i#13. The end surface 13a of the internuclear space 13 on the valve axis side in FIG.
This is an example of the result when the width W of the groove 13 is changed while fixing it at the position L. That is, the position of the other end surface 13b of the groove 13 changes. In Figure 4, the variation in flow rate is the groove width W
By gradually increasing , the variation changes from large variation → transition region → small variation. In areas with large variations,
A vortex as shown in FIG. 5 is generated in the first fuel swirling chamber 14 facing the u13. This vortex is gradually reduced by moving the other end surface 13b of the groove 13 away from the valve axis, and the flow is stabilized. Note that the flow rate variation is the fluctuation range ΔQ shown in the flow rate time change curve shown in Figure 5.
, the average flow rate Q. Returning to Figure 4, the permissible value for variation in static flow crucible (changes within 6% are allowed) exists even in the transition region, but it is a stable region with small variation. It is preferable to use from the viewpoint of production. The range described in the present invention corresponds to this stability region, and the flow of fuel passing between the cores is slow and the strength of swirl is weak. Therefore, the spread angle of the atomized fuel injected from the fuel injection hole becomes small. In the multi-point system, there is no fuel adhesion to the inner wall of the intake manifold, and the operating efficiency of the engine can be extremely high.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明によれば、噴射角の/J1さ
い安定した噴霧燃料が得られ、噴射f1M度が高く維持
できると共に、内燃機関の吸気マニホールド内壁への燃
料付着が抑制でき、機関の運転効率を高くすることがで
きる。
As explained above, according to the present invention, stable atomized fuel can be obtained at the injection angle of /J1, the injection f1M degree can be maintained at a high level, and fuel adhesion to the inner wall of the intake manifold of an internal combustion engine can be suppressed. The operating efficiency of the system can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に準する電磁式燃料噴射弁を説明する縦
断面図、第2図はノズル装置lt並びにバルブ装置の主
要拡大断面図、第3図は第2図のAA断面図で本発明の
溝端面位置を説明する為の断面図、第4図は本発明に係
る溝の幅と性能の関係を示す図、第5図は旋回室に生ず
る渦動を示す図である。 1・・・電磁式燃料噴射弁、4・・・弁座、5・・・燃
料噴射孔、7・・・燃料旋回素子、7a・・・内壁面、
12・・・軸方向溝、13・・・径方向溝、13a・・
・溝の軸心側端面、13b・・・溝の他方端面、14・
・・第1の燃料旋ら 一5/ f j 図 燃Fl−償村 冨 Z 図 寡 図 第 国 溝唱W
FIG. 1 is a longitudinal sectional view illustrating an electromagnetic fuel injection valve according to the present invention, FIG. 2 is an enlarged main sectional view of the nozzle device lt and the valve device, and FIG. FIG. 4 is a cross-sectional view for explaining the position of the groove end surface of the invention, FIG. 4 is a diagram showing the relationship between the groove width and performance according to the invention, and FIG. 5 is a diagram showing the vortex generated in the swirling chamber. DESCRIPTION OF SYMBOLS 1... Electromagnetic fuel injection valve, 4... Valve seat, 5... Fuel injection hole, 7... Fuel swirl element, 7a... Inner wall surface,
12... Axial groove, 13... Radial groove, 13a...
・Axis-side end surface of the groove, 13b...Other end surface of the groove, 14.
・・First fuel swirl 5/ f j Zumozu Fl-Taimura Tomi Z Zuozu 1st National Treasure Song W

Claims (1)

【特許請求の範囲】[Claims]  1.弁座の上流側に配設され、供給された燃料に旋回
力を与える燃料旋回素子を備えた電磁式燃料噴射弁にお
いて、前記燃料旋回素子に設ける旋回溝の弁軸心側の端
面が、該弁軸心と前記燃料旋回素子の内壁面との中心位
置より前記弁軸心側にあつて、かつ前記旋回溝の弁軸心
側端面と弁軸心間の距離l_1と、該溝の他方端面と前
記内壁面間の距離l_2がl_1>l_2となる関係に
あることを特徴とする電磁式燃料噴射弁。
1. In an electromagnetic fuel injection valve equipped with a fuel swirling element disposed upstream of a valve seat and applying swirling force to supplied fuel, an end surface of a swirling groove provided in the fuel swirling element on the valve axis side Distance l_1 between the valve axis side end surface of the swirl groove and the valve axis, which is on the valve axis side from the center position between the valve axis center and the inner wall surface of the fuel swirling element, and the other end surface of the groove. An electromagnetic fuel injection valve characterized in that a distance l_2 between the inner wall surface and the inner wall surface is such that l_1>l_2.
JP6098489A 1989-03-15 1989-03-15 Electromagnetic fuel injection valve Pending JPH02241973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6098489A JPH02241973A (en) 1989-03-15 1989-03-15 Electromagnetic fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6098489A JPH02241973A (en) 1989-03-15 1989-03-15 Electromagnetic fuel injection valve

Publications (1)

Publication Number Publication Date
JPH02241973A true JPH02241973A (en) 1990-09-26

Family

ID=13158207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6098489A Pending JPH02241973A (en) 1989-03-15 1989-03-15 Electromagnetic fuel injection valve

Country Status (1)

Country Link
JP (1) JPH02241973A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271563A (en) * 1992-12-18 1993-12-21 Chrysler Corporation Fuel injector with a narrow annular space fuel chamber
US5875972A (en) * 1997-02-06 1999-03-02 Siemens Automotive Corporation Swirl generator in a fuel injector
US6311901B1 (en) * 1999-04-27 2001-11-06 Siemens Automotive Corporation Fuel injector with a transition region

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271563A (en) * 1992-12-18 1993-12-21 Chrysler Corporation Fuel injector with a narrow annular space fuel chamber
US5875972A (en) * 1997-02-06 1999-03-02 Siemens Automotive Corporation Swirl generator in a fuel injector
US6039272A (en) * 1997-02-06 2000-03-21 Siemens Automotive Corporation Swirl generator in a fuel injector
US6311901B1 (en) * 1999-04-27 2001-11-06 Siemens Automotive Corporation Fuel injector with a transition region

Similar Documents

Publication Publication Date Title
US5884850A (en) Fuel injection valve
US7344090B2 (en) Asymmetric fluidic flow controller orifice disc for fuel injector
US6854670B2 (en) Fuel injection valve
KR100493602B1 (en) Fuel injection valve
US6382533B1 (en) Fuel injection valve
EP1469194B1 (en) Fuel injection valve
US5871157A (en) Fuel injection valve
KR930004967B1 (en) Electronic fuel injector
JPS6154948B2 (en)
CA1132417A (en) Electromagnetic fuel injector
US6769625B2 (en) Spray pattern control with non-angled orifices in fuel injection metering disc
EP1042604A1 (en) Flat needle for pressurized swirl fuel injector
CA1297745C (en) Electromagnet, valve assembly and fuel metering apparatus
US5314122A (en) Fuel injection valve
JPH08232812A (en) Fluid injection nozzle
JPH02241973A (en) Electromagnetic fuel injection valve
JPH05209572A (en) Electromagnetically actuating injection valve
US6966504B2 (en) Fuel injector
JP2753312B2 (en) Fuel injection valve
JPH02241969A (en) Electromagnetic type fuel injection valve
JPS61272460A (en) Electromagnetic type fuel injection valve
CZ20003352A3 (en) Fuel injection valve
JPS62131969A (en) Fuel injection valve
JP3445805B2 (en) Fuel injection valve
JP2000320431A (en) Fuel injection device