JPH0224184B2 - - Google Patents

Info

Publication number
JPH0224184B2
JPH0224184B2 JP13191886A JP13191886A JPH0224184B2 JP H0224184 B2 JPH0224184 B2 JP H0224184B2 JP 13191886 A JP13191886 A JP 13191886A JP 13191886 A JP13191886 A JP 13191886A JP H0224184 B2 JPH0224184 B2 JP H0224184B2
Authority
JP
Japan
Prior art keywords
hot water
molten metal
storage chamber
water storage
pouring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13191886A
Other languages
Japanese (ja)
Other versions
JPS62289363A (en
Inventor
Michiharu Ozawa
Kyoshi Shibuya
Fumio Kogiku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13191886A priority Critical patent/JPS62289363A/en
Priority to EP19870108317 priority patent/EP0252318B1/en
Priority to DE8787108317T priority patent/DE3763016D1/en
Publication of JPS62289363A publication Critical patent/JPS62289363A/en
Publication of JPH0224184B2 publication Critical patent/JPH0224184B2/ja
Priority to US08/026,260 priority patent/US5271539A/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • B22D39/06Equipment for supplying molten metal in rations having means for controlling the amount of molten metal by controlling the pressure above the molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 溶融金属を保持して適時の注入に供する注湯
炉、なかでも加圧式注湯炉の改良に関連して以下
に述べる。 (従来の技術) 鋳物の鋳造とくに逐次に連続的な鋳造を行う鋳
造ラインなどでかつてのとりべを使用する手動注
湯にとつて代わつて用いられ始めた溶融金属の注
湯炉には注湯方式として加圧式、傾動式、電磁ポ
ンプ式などがあり、そのうち注湯精度、電力消費
の面から加圧式が有利であつてこの点富士時報:
52(’79)、619;三菱電機技報53(’79)、652;
三菱電機技報52(’78)、450などで開示されてい
るとおりである。 これら加圧式注湯炉は上部を密閉した貯湯室と
貯湯室の下部より立上る受湯路と出湯路および貯
湯室の下部に連通した溶融金属を加熱するための
溝型誘導加熱部を有し、注湯に際しては注湯直前
に注湯路内の湯面高さを一定位置(プリレベル)
に保持するように貯湯室内へベース圧力Pを加圧
しておき、注湯時には所定の注湯速度に見合うシ
ヨツト圧ΔPをベース圧に加えて加圧し注湯する
(特開昭53−33929号公報参照)。 この方式は受湯路から必要の都度溶湯を補給
し、継続して注湯操作を行うことができ、その注
湯操作の制御も容易なことから鋳物等の単一合金
種の連続的、逐次的な注湯に極めて有効である。 (発明が解決しようとする問題点) しかし加圧式注湯炉は溶湯量が減少して下限量
以下になると加圧ガスが注湯炉内へ流出して突沸
現象を生じ、したがつて常に下限量以上の残溶湯
を必要とし、その量は総重量に対し、30〜50%の
割合となる。(前記の引用文献参照)この残溶湯
は合金種変更や炉の交換時に排湯することに起因
して歩留りの低下を招き、とくに合金種が多種に
わたる注湯に供する場合は成分変更毎に残溶湯の
排湯が必要となるので歩留り低下は大きな損失と
なる。 そこで加圧式注湯炉の所要残湯量を可及的に低
減して、多品種生産時におけるような残湯の排湯
による歩留りの低下を著しく軽減し得る加圧式注
湯炉を与えることがこの発明の目的である。 (問題点を解決するための手段) 加圧式注湯炉の最小残湯量は、出湯炉立上り部
の上面に相当する、下限溶湯レベルによつて決ま
る。 すなわち、このレベルにより溶湯面が下がる
と、加圧の際に加圧ガスが出湯路を通じて外部へ
流出するのみで、溶湯をガス圧で押出すことがで
きなくなる。 上記の下限溶湯レベルにおける貯湯室の断面積
が大きい程、残湯量は多い。したがつて、上記下
限溶湯レベルにおける貯湯室断面積を可及的に小
さくすることにより残湯量を軽減することが可能
となる。 従つて、この発明は溶融金属2を貯蔵する、上
部で密閉した加圧可能な貯湯室1と、この貯湯室
1の下部より立上る出湯路3とを有する注湯炉に
おいて、 出湯路3の立上り部分8が貯湯室1の底面9よ
りも下方に位置する ことを特徴とする加圧式注湯炉である。 ここに貯湯室1が、その下部と連通する溝型誘
導加熱部10をそなえること、また溝型誘導加熱
部10が、出湯炉3の立上り部と連なつて溝型誘
導加熱部10に向け下向きに3度以上の傾斜をな
す底面をもつ連通径路を有すること、さらには貯
湯室1がこれに連通して貯湯室と同時に加圧可能
な受湯炉を有することが実施上好適である。 この発明の構成を第1図および第2図にて具体
的に示す。 図中1は貯湯室、2は溶融金属、3は出湯路、
4は鋳型等へ注湯するための出湯口であり、5は
他の溶湯保持容器から溶湯を受けるための受湯
路、6,7は密閉するための蓋、8は出湯路立上
り部分、9は特に出湯路立上り部分8より上方に
位置する貯湯室1の底面、そして10は溶湯を加
熱するための溝型誘導加熱装置である。 (作用) 第3図にて出湯路3の立上り部分8に施した上
記の改良前後にわたる比較を図解したように、溶
融金属2の加圧注湯限界量は従来構造bに比較し
この発明による炉底嵩上げ構造aでその分だけ低
減できる。 なお受湯路5をも加圧することによつて受湯路
部分の溶湯も低減できる。 配慮すべきことはこの炉底嵩上げによつて溝型
誘導加熱装置10による熱が出湯路3に伝わらず
出湯路内で溶湯が凝固するうれいをなくすことで
ある。すなわち、溝型誘導加熱装置10は溶湯に
対するさほど大きな撹拌能がないため、溶融金属
2中の伝熱は主に自然対流に負うところが大き
い。自然対流下では、低温の溶融金属2は、密度
差のためより低い部分に留るが、単純に、出湯炉
立上り部分8を、貯湯室の底面9より低く設置す
ると、この部分が低温の溶融金属2の留り部とな
り、加熱部からの熱が十分に伝わらない可能性が
ある。これは第1図の例の場合矢印α、βで示し
たように貯湯室1の底面9、出湯路3の立上り部
分8をすべて溝型誘導加熱装置10へ向かつて下
りの傾斜底面をもつ連通径路11で連通させるこ
とにより解決できる。 すなわち低温の溶融金属は貯湯室1の炉底から
その傾斜(矢印α、β)に沿つて溝型誘導加熱装
置10の方へ流入し、加熱され、また昇温した溶
融金属は傾斜の向きと反対に流れて出湯路3及び
貯湯室1内の溶湯の対流が極めてスムースに行わ
れて、凝固のおそれは無い。 なお出湯路3の立上り部分8から溝型誘導装置
10へ向かつて傾斜する連通径路底面の角度は第
4図にて、この傾斜角度を変え、貯湯室1内に
1600℃の溶融金属2を保持したときの出湯路3内
の溶湯温度に及ぼす影響を示したように、上記の
傾斜が3度あれば十分でそれ以下だと出湯炉3内
で溶湯凝固を誘発するうれいのあることがわかつ
た。 もちろん第2図の具体例の場合のように貯湯室
1の底面9でクレビス状に連通径路11を開口さ
せて溝型誘導加熱装置10による加熱を行うと、
出湯路3内に低温溶湯が存在せず誘導加熱された
溶融金属が直接出湯路3へ流出することとなる。 この発明のさらに有利な点は、有効溶湯量に対
する総溶湯の比が小さいので溝型誘導加熱装置1
0で消費される溶湯保持電力が少なくて済み、省
エネルギの観点からも有効である。 (実施例) 有効容量5.0tの場合、第3図bに示す従来の注
湯炉の総容量は7.7tであつたのに対し第3図aの
ように実施例で注湯炉の総容量はほぼ6.4tになつ
た。したがつて出湯不能となる湯面レベルでの炉
内残留溶湯量は従来の2.7tに対して実施例では
1.4tである。 さて第3図a,bの両注湯炉を用いて、
SUS430、SUS308及びインコロイ800の順次注湯
を行つた。まずSUS430溶湯を5ton、ついで
SUS308溶湯とインコロイ800溶湯をそれぞれ
2ton鋳造した時の追湯の方法とその場合のNi、
Cr及びFeの歩留り比較を表1に示す。 【表】 実施例では残湯量が少ないのでSUS430から
SUS308への移行時に追湯中のCr、Ni分は比較例
よりも少なくて済み、またSUS308からインコロ
イ800への移行時にはCr、Ni濃度の高い溶湯の追
加前に炉を傾動して排湯したが実施例ではこの排
湯が0.2tにとどまり、比較例で1.0tにも上つたの
と比べて排湯量を格段に少なくできた。すなわ
ち、注湯すべ合金種の変更に際してこの発明の方
法では変更前と変更後の合金の成分が著しく異つ
ていても、排湯なし又は排湯量を極く少なくして
も容易に合金種を変更できるから、合金種の変更
のフレキシビリテイが従来法に比べて大きく拡大
されるのである。また、最終残湯量も実施例で
1.4t、これに対し比較例は2.7tで約半減した。し
たがつてNi、Cr、Feの歩留りも実施例は比較例
よりもはるかに高く維持できる。 次に表2には、注湯炉の保持電力量を比較して
示し、実施例、比較例とも約3ケ月間溶湯を保持
した平均値であるが、保持溶湯量の少ない実施例
では比較例よりも10kw少ない電力で足りる。 【表】 (発明の効果) この発明によれば加圧式注湯炉の所要残湯量を
低減できることより、溶湯の歩留りの向上がはか
れる上に、中間排湯なしか又は少量の中間排湯だ
けで容易に溶湯成分変更ができ多品種の連続注湯
に有利な上、常時必要最少限の溶湯保持ひいては
所要の電力消費量が少なくて済むなど、画期的で
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The following describes improvements in pouring furnaces that hold molten metal for timely injection, particularly improvements in pressurized pouring furnaces. (Prior art) Molten metal pouring furnaces, which have begun to be used to replace the old manual pouring method using a ladle, are used in the casting of castings, especially in casting lines that perform sequential continuous casting. There are pressurized types, tilting types, electromagnetic pump types, etc. Among them, the pressurized type is advantageous in terms of pouring accuracy and power consumption.
52 ('79), 619; Mitsubishi Electric Technical Report 53 ('79), 652;
As disclosed in Mitsubishi Electric Technical Report 52 ('78), 450, etc. These pressurized pouring furnaces have a hot water storage chamber whose upper part is sealed, a hot water receiving path and a hot water outlet path rising from the bottom of the hot water storage chamber, and a groove-shaped induction heating section for heating molten metal that communicates with the bottom of the hot water storage chamber. , When pouring, just before pouring, the level of the hot water in the pouring path is set at a fixed position (pre-level).
A base pressure P is pressurized in the hot water storage chamber so as to maintain the same, and when pouring hot water, a shot pressure ΔP corresponding to a predetermined pouring speed is added to the base pressure and the hot water is pressurized. reference). With this method, molten metal can be replenished from the receiving channel as needed and the molten metal can be continuously poured.Since the molten metal pouring operation is easy to control, it can be used continuously or sequentially for single alloy types such as castings. It is extremely effective for pouring hot water. (Problem to be solved by the invention) However, in a pressurized pouring furnace, when the amount of molten metal decreases and becomes below the lower limit, the pressurized gas flows into the pouring furnace, causing a bumping phenomenon, and therefore, the amount of molten metal always decreases. A limited amount of residual molten metal is required, and the amount is 30 to 50% of the total weight. (Refer to the cited document above) This residual molten metal is discharged when changing the alloy type or replacing the furnace, leading to a decrease in yield, and especially when pouring with a wide variety of alloy types, the remaining molten metal remains after changing the composition. Since it is necessary to drain the molten metal, a decrease in yield results in a large loss. Therefore, it is desirable to provide a pressurized pouring furnace that can reduce the amount of remaining metal required for the pressurized pouring furnace as much as possible and significantly reduce the decrease in yield due to drainage of residual metal during multi-product production. This is the object of the invention. (Means for solving the problem) The minimum amount of remaining metal in a pressurized pouring furnace is determined by the lower limit molten metal level, which corresponds to the upper surface of the rising part of the tapping furnace. That is, if the molten metal level is lowered by this level, the pressurized gas will only flow out through the outlet path during pressurization, and the molten metal will no longer be pushed out by gas pressure. The larger the cross-sectional area of the hot water storage chamber at the above-mentioned lower limit molten metal level, the larger the amount of remaining hot metal. Therefore, by making the cross-sectional area of the hot water storage chamber as small as possible at the lower limit molten metal level, it is possible to reduce the amount of remaining hot metal. Therefore, the present invention provides a pouring furnace having a pressurizable hot water storage chamber 1 which stores molten metal 2 and which is sealed at the upper part, and a hot water outlet path 3 rising from the bottom of this hot water storage chamber 1. This pressurized pouring furnace is characterized in that the rising portion 8 is located below the bottom surface 9 of the hot water storage chamber 1. Here, the hot water storage chamber 1 is provided with a groove-type induction heating section 10 that communicates with the lower part thereof, and that the groove-type induction heating section 10 is connected to the rising portion of the tapping furnace 3 and is directed downward toward the groove-type induction heating section 10. It is practical to have a communication path with a bottom surface inclined at an angle of 3 degrees or more, and furthermore, it is preferable that the hot water storage chamber 1 has a hot water receiving furnace that communicates with the hot water storage chamber 1 and can be pressurized simultaneously with the hot water storage chamber. The structure of this invention is specifically shown in FIGS. 1 and 2. In the figure, 1 is the hot water storage chamber, 2 is the molten metal, 3 is the outlet path,
4 is a tap for pouring into a mold, etc.; 5 is a receiving channel for receiving molten metal from another molten metal holding container; 6 and 7 are lids for sealing; 8 is a rising portion of the tapping channel; 9 1 is the bottom surface of the hot water storage chamber 1 located particularly above the rising portion 8 of the tapping path, and 10 is a groove-type induction heating device for heating the molten metal. (Function) As illustrated in FIG. 3, which shows a comparison before and after the above-mentioned improvement made to the rising portion 8 of the tapping channel 3, the pressurized pouring limit amount of the molten metal 2 is higher than that of the conventional structure b. It can be reduced by that amount with the bottom raised structure a. By pressurizing the molten metal receiving path 5 as well, the amount of molten metal in the molten metal receiving path can also be reduced. What should be considered is that by raising the bottom of the furnace, the heat generated by the groove-type induction heating device 10 is not transmitted to the tapping path 3, and the molten metal is prevented from solidifying in the tapping path. That is, since the groove-type induction heating device 10 does not have a very large stirring ability for the molten metal, heat transfer in the molten metal 2 is mainly dependent on natural convection. Under natural convection, the low-temperature molten metal 2 stays in a lower part due to the density difference, but if the tapping furnace riser part 8 is simply installed lower than the bottom surface 9 of the hot water storage chamber, this part will be exposed to the low-temperature molten metal 2. There is a possibility that the metal 2 is stuck and the heat from the heating part is not sufficiently transmitted. In the case of the example in FIG. 1, this means that the bottom surface 9 of the hot water storage chamber 1 and the rising portion 8 of the hot water outlet path 3 are all directed toward the groove-type induction heating device 10, as indicated by arrows α and β, and have a downwardly sloping bottom surface. This can be solved by communicating through the path 11. That is, the low-temperature molten metal flows from the bottom of the furnace of the hot water storage chamber 1 along the slope (arrows α, β) toward the groove-type induction heating device 10 and is heated, and the molten metal that has been heated flows in the direction of the slope. The molten metal flows in the opposite direction, and the convection of the molten metal in the outlet path 3 and the hot water storage chamber 1 is extremely smooth, and there is no risk of solidification. The angle of the bottom surface of the communication path that slopes from the rising portion 8 of the hot water outlet path 3 toward the groove-type guiding device 10 is shown in FIG.
As shown in the effect on the temperature of the molten metal in the tap path 3 when holding the molten metal 2 at 1600℃, the above slope of 3 degrees is sufficient, and if it is less than that, the molten metal solidifies in the tap furnace 3. I found out that there is something I am happy about. Of course, if the communication path 11 is opened in the shape of a clevis at the bottom surface 9 of the hot water storage chamber 1 as in the specific example shown in FIG. 2, and heating is performed by the groove-type induction heating device 10,
Since there is no low-temperature molten metal in the tapping path 3, the induction-heated molten metal flows directly into the tapping path 3. A further advantage of the present invention is that the ratio of the total molten metal to the effective molten metal amount is small, so the groove type induction heating device 1
Since the molten metal holding power consumed at zero is small, it is also effective from the viewpoint of energy saving. (Example) When the effective capacity is 5.0t, the total capacity of the conventional pouring furnace shown in Figure 3b is 7.7t, whereas in the example shown in Figure 3a, the total capacity of the pouring furnace is The total weight was almost 6.4t. Therefore, the amount of molten metal remaining in the furnace at the level where the melt cannot be tapped is 2.7 tons in the conventional example, but
It is 1.4t. Now, using both the pouring furnaces shown in Figure 3 a and b,
SUS430, SUS308 and Incoloy 800 were sequentially poured. First, 5 tons of SUS430 molten metal, then
SUS308 molten metal and Incoloy 800 molten metal respectively
How to add hot water when casting 2 tons and Ni in that case,
Table 1 shows a comparison of the yields of Cr and Fe. [Table] In the example, the amount of remaining hot water is small, so from SUS430
When transitioning from SUS308 to Incoloy 800, the amount of Cr and Ni in the additional molten metal was lower than in the comparative example, and when transitioning from SUS308 to Incoloy 800, the furnace was tilted to drain the molten metal before adding molten metal with a high concentration of Cr and Ni. However, in the example, the amount of hot water discharged was only 0.2 t, which was significantly lower than in the comparative example, which exceeded 1.0 t. In other words, when changing the type of alloy to be poured, the method of the present invention allows the type of alloy to be easily changed without draining the hot metal or with a very small amount of hot metal draining, even if the composition of the alloy before and after the change is significantly different. Since it can be changed, the flexibility of changing the alloy type is greatly expanded compared to conventional methods. In addition, the final amount of remaining hot water is also shown in the example.
1.4t, whereas the comparative example was 2.7t, which was about half that. Therefore, the yields of Ni, Cr, and Fe can be maintained much higher in the example than in the comparative example. Next, Table 2 shows a comparison of the amount of power held by the pouring furnaces, and the average value is the average value after holding molten metal for about three months in both the example and the comparative example. 10kw less power is sufficient. [Table] (Effects of the invention) According to the present invention, the amount of remaining metal required for the pressurized pouring furnace can be reduced, which not only improves the yield of molten metal, but also requires no intermediate discharge or only a small amount of intermediate discharge. It is revolutionary in that it allows the composition of the molten metal to be easily changed and is advantageous for continuous pouring of a wide variety of molten metals, as well as the ability to maintain the minimum necessary amount of molten metal at all times, which in turn requires less power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は各別実施例の断面図、第3図
は所要残湯量の比較図、第4図は出湯路溶湯温度
比較グラフである。 1……貯湯室、2……溶融金属、3……出湯
炉、8……立上り部分、9……貯湯室底面。
FIG. 1 and FIG. 2 are cross-sectional views of the respective embodiments, FIG. 3 is a comparison diagram of the required amount of remaining molten metal, and FIG. 4 is a comparison graph of molten metal temperature in the outlet channel. 1... hot water storage chamber, 2... molten metal, 3... tapping furnace, 8... rising portion, 9... bottom surface of hot water storage chamber.

Claims (1)

【特許請求の範囲】 1 溶融金属2を貯蔵する、上部で密閉した加圧
可能な貯湯室1と、この貯湯室1の下部より立上
る出湯路3とを有する注湯炉において、 出湯路3の立上り部分8が貯湯室1の底面9よ
りも下方に位置する ことを特徴とする加圧式注湯炉。 2 貯湯室1が、その下部と連通する溝型誘導加
熱部10をそなえる特許請求の範囲1記載の注湯
炉。 3 溝型誘導加熱部10が、出湯炉3の立上り部
と連なつて溝型誘導加熱部10に向け下向きに3
度以上の傾斜をなす底面をもつ連通径路を有す
る、特許請求の範囲2記載の注湯炉。 4 貯湯室1がこれに連通して貯湯室と同時に加
圧可能な受湯路を有する、特許請求の範囲1、2
又は3に記載の注湯炉。
[Scope of Claims] 1. A pouring furnace having a pressurizable hot water storage chamber 1 that stores molten metal 2 and is sealed at the top, and a hot water tap path 3 rising from the bottom of the hot water storage chamber 1, including: A pressurized pouring furnace characterized in that a rising portion 8 of the molten metal is located below the bottom surface 9 of the hot water storage chamber 1. 2. The pouring furnace according to claim 1, wherein the hot water storage chamber 1 is provided with a groove-shaped induction heating section 10 communicating with a lower part thereof. 3. The groove-type induction heating section 10 is connected to the rising part of the tapping furnace 3 and extends downward toward the groove-type induction heating section 10.
3. The pouring furnace according to claim 2, wherein the pouring furnace has a communication path having a bottom surface with an inclination of more than 100 degrees. 4 Claims 1 and 2, in which the hot water storage chamber 1 has a hot water receiving path that communicates with the hot water storage chamber and can be pressurized at the same time as the hot water storage chamber.
Or the pouring furnace described in 3.
JP13191886A 1986-06-09 1986-06-09 Pressurization type pouring furnace Granted JPS62289363A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13191886A JPS62289363A (en) 1986-06-09 1986-06-09 Pressurization type pouring furnace
EP19870108317 EP0252318B1 (en) 1986-06-09 1987-06-09 Pressure type automatic pouring furnace for casting
DE8787108317T DE3763016D1 (en) 1986-06-09 1987-06-09 PRINTING OVEN FOR AUTOMATICALLY CASTING.
US08/026,260 US5271539A (en) 1986-06-09 1993-03-04 Pressure type automatic pouring furnace for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13191886A JPS62289363A (en) 1986-06-09 1986-06-09 Pressurization type pouring furnace

Publications (2)

Publication Number Publication Date
JPS62289363A JPS62289363A (en) 1987-12-16
JPH0224184B2 true JPH0224184B2 (en) 1990-05-28

Family

ID=15069235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13191886A Granted JPS62289363A (en) 1986-06-09 1986-06-09 Pressurization type pouring furnace

Country Status (3)

Country Link
EP (1) EP0252318B1 (en)
JP (1) JPS62289363A (en)
DE (1) DE3763016D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051085U (en) * 1991-06-21 1993-01-08 株式会社ニフコ Mounting holder

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661610B2 (en) * 1989-05-30 1994-08-17 富士電機株式会社 Pressurized pouring furnace
AT404328B (en) * 1995-03-24 1998-10-27 Rauch Fertigungstech Gmbh METHOD AND DEVICE FOR LOADING CASTING MACHINES
ES2143341B1 (en) * 1996-05-06 2000-11-01 Fundacion Inasmet CAST FURNACE FOR PERFECTED AUTOMATIC MOLDING.
DE69719035T2 (en) * 1997-11-18 2003-12-04 Fundacion Inasmet, San Sebastian Pouring furnace for automatic pouring
EP1304184B1 (en) * 2000-06-22 2013-08-21 Hoei Shokai Co., Ltd. A Container For Supplying Molten Metal
CZ20031848A3 (en) 2000-12-27 2003-12-17 Hoei Shokai Co., Ltd. Container for transportation of molten metals
JP3613686B1 (en) * 2003-07-25 2005-01-26 日本坩堝株式会社 A ladle for molten metal transportation and a method for discharging molten metal
DE102023106055A1 (en) * 2023-03-10 2024-09-12 Fritz Winter Eisengiesserei Gmbh & Co. Kg LOW-PRESSURE CASTING VESSEL AND METHOD FOR THE PRODUCTION THEREOF
DE102023106056A1 (en) * 2023-03-10 2024-09-12 Fritz Winter Eisengiesserei Gmbh & Co. Kg LOW-PRESSURE CASTING VESSEL AND METHOD FOR DETERMINING THE STATUS OF A LOW-PRESSURE CASTING VESSEL

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1488313A (en) * 1966-04-22 1967-07-13 Ct De Rech S De Pont A Mousson Advanced device for controlling liquid ladles
CH646624A5 (en) * 1980-03-13 1984-12-14 Fischer Ag Georg Process for casting molten metal under the pressure of a protective gas and apparatus for carrying out the process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051085U (en) * 1991-06-21 1993-01-08 株式会社ニフコ Mounting holder

Also Published As

Publication number Publication date
EP0252318A1 (en) 1988-01-13
DE3763016D1 (en) 1990-07-12
JPS62289363A (en) 1987-12-16
EP0252318B1 (en) 1990-06-06

Similar Documents

Publication Publication Date Title
US4967827A (en) Method and apparatus for melting and casting metal
CN109249013A (en) A kind of stuffing sand interstitital texture and plus sand technique for refining ladle
US3991263A (en) Means for tapping
US3310850A (en) Method and apparatus for degassing and casting metals in a vacuum
JPH0224184B2 (en)
CN109332625A (en) A kind of casting method improving stopper rod flow control Al dexidized steel nozzle blocking
CN110000368A (en) A kind of intelligent multi-function metallurgy tundish and its casting method
US3206301A (en) Process for the continuous treatment of steel
US3844453A (en) Apparatus and method for melting and pouring metal
US2782476A (en) Apparatus for casting air foils and the like
US4436142A (en) Method and apparatus for making ductile iron castings
US4594723A (en) Method for providing pinch control of a tundish channel-type inductor
JPH06320255A (en) Pressurizing type molten metal pouring furnace for spheroidal graphite cast iron product
US4971294A (en) Induction heated sliding gate valve for vacuum melting furnace
Hurtuk Steel ingot casting
US3934863A (en) Apparatus for refining molten metal and molten metal refining process
JP2000301320A (en) Method for dissolving clogging of porous plug in ladle refining furnace
JP3386794B2 (en) Container for molten metal for metallurgy
CN204818029U (en) Magnesium alloy is smelted with changeing liquid package
JPS59163062A (en) Heater for molten steel in tundish
JPS6347402Y2 (en)
JPH0830222B2 (en) Continuous vacuum degasser for molten copper
JPS5980740A (en) Method and device for supplying alloy for cast die into melting furnace
JPS6348616B2 (en)
JPH0970656A (en) Production of metal and alloy cast block