JPH02241146A - Level calibration method for propagation delay time measuring instrument - Google Patents

Level calibration method for propagation delay time measuring instrument

Info

Publication number
JPH02241146A
JPH02241146A JP1061829A JP6182989A JPH02241146A JP H02241146 A JPH02241146 A JP H02241146A JP 1061829 A JP1061829 A JP 1061829A JP 6182989 A JP6182989 A JP 6182989A JP H02241146 A JPH02241146 A JP H02241146A
Authority
JP
Japan
Prior art keywords
signal
level
calibration
correlation
delay time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1061829A
Other languages
Japanese (ja)
Other versions
JP2648957B2 (en
Inventor
Eiji Orii
織井 英二
Shigeru Kozono
小園 茂
Satoru Tanaka
哲 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Anritsu Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp, Nippon Telegraph and Telephone Corp filed Critical Anritsu Corp
Priority to JP1061829A priority Critical patent/JP2648957B2/en
Publication of JPH02241146A publication Critical patent/JPH02241146A/en
Application granted granted Critical
Publication of JP2648957B2 publication Critical patent/JP2648957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To obtain a correlation output with a level corresponding to a level of an input signal continuously and to attain stable level calibration with high accuracy by calibrating the level while a code phase of a pseudo noise signal (PN signal) is coincident and a calibration input signal is received in a detuning state with a frequency difference within a range of able to take correlation. CONSTITUTION:A spread modulation wave from a calibrated transmitter 20 or the like is received in advance as an input signal for calibration and the code phase of a PN signal of a propagation delay time measuring instrument 30 is made coincident with that of a PN signal resulting from modulating the calibration input signal. Then the calibration input signal is subject to correlation detection while being detuned by frequency difference within a range from which the correlation output is able to be obtained and the level of the signal in response to the frequency difference outputted at the correlation detection is detected and the level of the input signal to be received at the propagation delay time measurement is calibrated based on the level. Thus, a correlation output with a level corresponding to the level of the input signal is obtained continuously and stable level calibration with high accuracy is implemented.

Description

【発明の詳細な説明】 く本発明の産業上の利用分野〉 本発明は擬似雑音信号(以下PN信号と記す)で拡散変
調された信号を受信し、この受信波を、送信側のPN信
号と同一符号列のPN信号で拡散変調された信号で相関
検波することにより、受信波の伝搬遅延時間を測定する
伝搬遅延時間測定装置のレベル較正方法に関する。
[Detailed Description of the Invention] Industrial Application Field of the Present Invention The present invention receives a signal spread-modulated with a pseudo-noise signal (hereinafter referred to as PN signal), and uses this received wave as a PN signal on the transmitting side. The present invention relates to a level calibration method for a propagation delay time measurement device that measures the propagation delay time of a received wave by performing correlation detection with a signal spread-modulated with a PN signal of the same code string.

〈従来技術〉(第6〜7図) 電波の伝搬遅延時間、例えば、直接波に対づ”る反射波
の遅延時間を正確に測定するために従来より第6図に示
すような測定系が用いられている。
<Prior art> (Figures 6 and 7) In order to accurately measure the propagation delay time of radio waves, for example, the delay time of reflected waves relative to direct waves, a measurement system as shown in Figure 6 has conventionally been used. It is used.

図において、1はPN信号で拡散変調された電波を出力
する送信機であり、2は信号発生器3カ)ら出力される
周波数f1のクロック信号に同期したPN信号を出力す
るPN信号発生器、4は信号発生器3から出力される周
波数f2の搬送信号をPN信丹で拡散変調してアンテナ
5から出力さぼる変調器である。
In the figure, 1 is a transmitter that outputs a radio wave spread-modulated with a PN signal, and 2 is a PN signal generator that outputs a PN signal synchronized with the clock signal of frequency f1 output from the signal generator 3). , 4 is a modulator that performs spread modulation on the carrier signal of frequency f2 outputted from the signal generator 3 using PN Shintan and outputs it from the antenna 5.

10は、送信機1からの電波をアンテナ11でうけて、
この受信波を相関検波することにより、送信側からの直
接波および反射波等により直接波と異なる伝搬経路でア
ンテナ11に到達する反射波の遅延時間を測定する伝搬
遅延測定装置である。
10 receives the radio waves from the transmitter 1 with the antenna 11,
This propagation delay measuring device measures the delay time of a reflected wave that reaches the antenna 11 through a propagation path different from that of the direct wave using a direct wave from the transmitting side and a reflected wave by performing correlation detection on the received wave.

12は、受信波を90度位相の異なる信号成分に分(プ
て出力する移相器、13.14は移相器12からの信号
を、変調器18から送出されるPNイg@で拡散変調さ
れた信号で相関検波する相関検波器、15は相関検波器
13.14からの検波出力の自乗平均を算出して、移相
器12に入力される信号の強度に対応覆る信号に合成す
る演樟器である。
12 is a phase shifter that divides the received wave into signal components with a phase difference of 90 degrees and outputs the divided signal components. 13.14 is a phase shifter that spreads the signal from the phase shifter 12 with PNig@ sent out from the modulator 18. A correlation detector 15 performs correlation detection using a modulated signal, and a correlation detector 15 calculates the root mean square of the detection outputs from the correlation detectors 13 and 14, and synthesizes it into a signal corresponding to the intensity of the signal input to the phase shifter 12. It is a magisterial device.

16は、信号光とV器17から出力される周波数f1−
△fのクロック信号に同期したPN信号を出力するPN
信号発生器であり、送信側のPN信号と同一の符号系列
(例えば511ビット系列)のPN信号を出力する。
16 is the signal light and the frequency f1- output from the voltage converter 17.
PN that outputs a PN signal synchronized with the clock signal of △f
It is a signal generator and outputs a PN signal with the same code sequence (eg, 511 bit sequence) as the PN signal on the transmitting side.

18は、信号発生器17から出力される周波数f2の搬
送信号をPN信号で拡散変調づる変調器である。
A modulator 18 performs spread modulation on the carrier signal of frequency f2 output from the signal generator 17 using a PN signal.

したがって、送信側のP N Ni とと受信側のPN
信号の相対位相は、イのクロック周波数差ΔI゛に対応
する速度でずれでいくことになり、PN符号の1フレー
ム(511ビツト)内で直接波および反射波のPN信号
の位相が受信側PN信号の位相と時間差Tをもって一致
すると、第7図に示すように、三角波状に変化する相関
用ノ、JA、Bが演棹器15より出力されることになる
Therefore, P N Ni on the sending side and PN on the receiving side
The relative phases of the signals will shift at a speed corresponding to the clock frequency difference ΔI' in A, and within one frame (511 bits) of the PN code, the phases of the PN signals of the direct wave and the reflected wave will be different from that of the receiving side PN. When the phase of the signal coincides with the time difference T, the deducer 15 outputs correlation signals JA and B that change in the form of triangular waves, as shown in FIG.

この出力をオシロスコープ等で観11i11 すれば直
接波の相関出力Aと反01波の相関出力Bの時間差Tを
求めることができ、こ7の時間差下から直接波に対する
反射波の伝搬遅延時間が演尊測定できる。
By observing this output with an oscilloscope, etc., it is possible to obtain the time difference T between the correlation output A of the direct wave and the correlation output B of the anti-01 wave, and from this time difference, the propagation delay time of the reflected wave with respect to the direct wave can be calculated. It can be measured.

相関出力が最大となるのは、受信波のPN信号とPN信
号発生器16からのPN信号との符号位相が一致した時
であり、このときの相関出力は、移相器12に入力され
る信号の強度に比例している。
The correlation output becomes maximum when the code phase of the PN signal of the received wave and the PN signal from the PN signal generator 16 match, and the correlation output at this time is input to the phase shifter 12. It is proportional to the signal strength.

したがって、相関出力を移相器12に入力される信号の
絶対レベルで較正しておけば、伝搬遅延時間とともに受
信波の入力レベルを相関出力から正確に知ることができ
る。
Therefore, if the correlation output is calibrated with the absolute level of the signal input to the phase shifter 12, the input level of the received wave can be accurately determined from the correlation output along with the propagation delay time.

〈発明が解決しようとづる課題〉 しかしながら、この種の測定装置に対して高精度なレベ
ル較正方法は提案されておらず、レベル測定の信頼性が
十分でなく、高精度なレベル較正方法の実現が望まれて
いた。
<Problem to be solved by the invention> However, no highly accurate level calibration method has been proposed for this type of measuring device, and the reliability of level measurement is insufficient, making it difficult to realize a highly accurate level calibration method. was desired.

・て課題を解決するための手段〉 前記課題を解決するために、本発明の伝搬遅延時間測定
装置のレベル較正方法は、 予め較正された送信IN等からの拡散変調波を較正用の
入力信号として受けて、 伝搬遅延時間測定装置のPN信号と較正用の入力信号を
変調しているPN信号との符号位相を致さけ、較正用の
入力信号を、相関出力が1qられる範囲内の周波数差だ
け離調させた状態で相関検波し、その相関検波したとき
出力される前記周波数差に応じた信号のレベルを検出し
、このレベルをもとに伝搬遅延時間測定時に受信する入
力信号のレベルを較正Jるようにしている。。
・Means for Solving the Problem> In order to solve the above problem, the level calibration method of the propagation delay time measuring device of the present invention includes the following steps: Then, the code phase of the PN signal of the propagation delay time measuring device and the PN signal modulating the input signal for calibration is avoided, and the input signal for calibration is adjusted to a frequency difference within the range where the correlation output is 1q. Correlation detection is performed in a state where the signal is detuned by I am trying to calibrate it. .

〈作用〉 したがって、相関検波出力として較正出入ノ〕信号のレ
ベルに対応した大きさの8」力が得られ、較正用の入力
信号のレベルを変えることによって伝搬遅延時間測定装
置のレベル較正が行なえる。
<Operation> Therefore, an 8" force corresponding to the level of the calibration input/output signal is obtained as the correlation detection output, and the level calibration of the propagation delay time measuring device can be performed by changing the level of the input signal for calibration. Ru.

〈本発明の実施例〉(第1〜3図) 以下、図面に基づいて本発明の一実施例を説明する。<Embodiments of the present invention> (Figures 1 to 3) Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は、送信機20と伝搬遅延時間測定装置(以下、
測定装置と略J)30とを減衰器50を介して接続し、
相関出力をオシロスコープ40で測定するレベル較正の
ための接続を示すブロック図である。
FIG. 1 shows a transmitter 20 and a propagation delay time measuring device (hereinafter referred to as
Connect the measuring device and approximately J) 30 via an attenuator 50,
4 is a block diagram showing connections for level calibration in which correlation output is measured with an oscilloscope 40. FIG.

第1図において、送信機20は周波数f1のクロック信
号に同期したPN信号をPN信号発生器21より変調器
22に出力させて周波数f2(例えば140MHz)の
搬送信8をPN信号で拡散変調(以下、PN変調と記す
)し、このPN変調信号を周波数変換器23において周
波数「3の局発信号で例えばGHz帯に周波数変換する
ように構成されている。
In FIG. 1, a transmitter 20 causes a PN signal generator 21 to output a PN signal synchronized with a clock signal of frequency f1 to a modulator 22, and spread-modulates a carrier signal 8 of frequency f2 (for example, 140 MHz) with the PN signal ( (hereinafter referred to as PN modulation), and the frequency converter 23 converts this PN modulated signal into a local oscillator signal having a frequency of 3, for example, to a GHz band.

なお、クロック信号、搬送信号および局発信号は、ルビ
ジュウム発振器を基準源として用いたPL L方式の信
号発生器24から出力されており、各信号の周波数は高
精I良な遅延時間測定に必要な精度を有している。
Note that the clock signal, carrier signal, and local oscillator signal are output from a PLL type signal generator 24 that uses a rubidium oscillator as a reference source, and the frequency of each signal is determined by the frequency required for high-precision delay time measurement. It has excellent accuracy.

送信ta20からの電波を受信して相関検波する測定装
置30は、周波数変換器31において周波数f3の局発
信号で入力信号を中間周波信号(例えば140MHz帯
)に周波数変換し、この中間周波信号を移相器32によ
り位相の90度異なる2信号■、Qに分岐し、それぞれ
を第1、第2の相関検波器33.34で相関検波するよ
うに構成されている。
The measuring device 30 that receives radio waves from the transmitter ta20 and performs correlation detection converts the input signal into an intermediate frequency signal (for example, 140 MHz band) using a local oscillation signal of frequency f3 in the frequency converter 31, and converts this intermediate frequency signal into an intermediate frequency signal. The phase shifter 32 branches the signal into two signals (1) and (Q) having a phase difference of 90 degrees, and the first and second correlation detectors 33 and 34 perform correlation detection on each signal.

なお、この局発信号、後述する搬送信号およびクロック
信号は、送信機20の信号発生器24と同様にルビジコ
ウム発振器を基準源とする信号発生器35から出力され
ている。
Note that this local oscillator signal, a carrier signal and a clock signal to be described later are outputted from a signal generator 35 which uses a rubidicoum oscillator as a reference source, similar to the signal generator 24 of the transmitter 20.

第1、第2の相関検波器33.3/Iには、分配器36
から出力される搬送信号が変調器37.38でPN変調
された信号がパノJされており、第1、第2の相関検波
器33.34から、このPN変調された信号と信号■、
Qとの相関出力’%Qが演算器39に入力され、演算合
成された出力eがオシロスコープ/IOに表示される。
The first and second correlation detectors 33.3/I include a distributor 36.
The carrier signal outputted from the modulator 37.38 is subjected to PN modulation, and the PN modulated signal is output from the first and second correlation detectors 33.34.
The correlation output '%Q with Q is input to the arithmetic unit 39, and the arithmetic and synthesized output e is displayed on the oscilloscope/IO.

なお、演算器39は、 e= F〒=17 の演算を行なう。ここで、一般に1=Acosθ、q=
Bsin (θ」−ψ)で表わされ、最適な場合A÷8
1φ今Oである。
Note that the calculator 39 performs the calculation e=F〒=17. Here, generally 1=Acosθ, q=
It is expressed as Bsin (θ”−ψ), and in the optimal case A÷8
1φ is now O.

分配器36に入力される搬送信号は、信号発生器35か
らの周波数f2の搬送信号と水晶発振回路41から出力
される周波数f゛2′の搬送(3号とをスイッチ42に
にって切換えられるように構成されている。
The carrier signal input to the distributor 36 is switched between the carrier signal of frequency f2 from the signal generator 35 and the carrier signal of frequency f2' (No. 3) output from the crystal oscillation circuit 41 using a switch 42. It is configured so that

なお、この水晶発振回路41は較正用に用いられるもの
であって、その周波数f2′の精度は通常10 程度で
ある。この発振周波数f2−は、−I+ ルビジコウム発振器の周波数[2(精度は10  )に
対して例えば数10 l−1zから数100 Hz程度
の偏差を有している。
Note that this crystal oscillation circuit 41 is used for calibration, and the accuracy of its frequency f2' is usually about 10 2 . This oscillation frequency f2- has a deviation of, for example, from several tens of l-1z to several hundred Hz with respect to the frequency [2 (accuracy is 10) of the -I+ rubidicoum oscillator.

また、変調器37.38に入力されるPN信号は、信号
発生器35より出力される周波数f1Δfのクロック信
号に同期してPN信号発生器43から発生するPN信号
と、送信機20から入力されるPN信号とをスイッチ4
4によって切換えられるように構成されている。これは
、PN信号を送信′fm20より受けることにより、早
く確実に相関をとるためであって、内部のPN信号発生
器43からのP N信号を用いても充分に動作可能であ
る。
The PN signals input to the modulators 37 and 38 are the PN signal generated from the PN signal generator 43 in synchronization with the clock signal of frequency f1Δf output from the signal generator 35, and the PN signal input from the transmitter 20. PN signal and switch 4
4. This is because by receiving the PN signal from the transmitter 'fm20, correlation can be established quickly and reliably, and it is also possible to operate satisfactorily using the PN signal from the internal PN signal generator 43.

このように構成された測定装置30のレベル較正を送信
機20の出力で行なうために、送信機20の出力を減衰
器50どスイッチ51とを介して測定装置30に接続し
、このスイッチ51によって減衰器50からの信号を測
定装置30側と、電力計52側に切換えられるようにす
るとともに、送信機20のPN信号発生器21からのP
N信号をスイッチ4 /1の外部入力側に接続し、演粋
器39の出力をオシロスコープ40で測定できるJ:う
にする。
In order to calibrate the level of the measuring device 30 configured in this way using the output of the transmitter 20, the output of the transmitter 20 is connected to the measuring device 30 via an attenuator 50 and a switch 51. The signal from the attenuator 50 can be switched to the measuring device 30 side and the wattmeter 52 side, and the P from the PN signal generator 21 of the transmitter 20
The N signal is connected to the external input side of the switch 4/1 so that the output of the generator 39 can be measured with an oscilloscope 40.

電力計52は測定装置30の1ノベル較正をする場合に
減衰器から出力される信号のレベルを正しく知るための
ものである。
The power meter 52 is used to accurately determine the level of the signal output from the attenuator when performing one-novel calibration of the measuring device 30.

測定装@30のレベル較正は、スイッチ42を水晶発振
回路/41側、スイッチ44を外部入力側(送信機20
のPN信号発生器21側)、スイッチ51を測定装置3
0側に切換えて行なう。
To calibrate the level of the measurement device @30, set the switch 42 to the crystal oscillation circuit/41 side and the switch 44 to the external input side (transmitter 20
(PN signal generator 21 side), switch 51 to measuring device 3
Switch to the 0 side.

このとき、送信Ia20側と測定装置30側の[〕N信
号は完全に符号同期した状態であるが、搬送信号の周波
数に差があり、僅かに離調した状態であるため、第1、
第2の相関検波器33.34からの相関出力は、第2図
(a)、(b)に示すように、90度位相差のある周波
数r 2−f 2−のの成分を持った信号が出力される
At this time, the []N signals on the transmitting Ia 20 side and the measuring device 30 side are completely code-synchronized, but there is a difference in the frequency of the carrier signals and they are slightly detuned.
The correlation output from the second correlation detector 33, 34 is a signal having components of the frequency r2-f2- with a phase difference of 90 degrees, as shown in FIGS. 2(a) and (b). is output.

なお、このr2−f2−の成分を持った信号の周波数は
数1001−(Z程度であり、第1、第2の相関検波器
33.34の積分帯域を損失なく通過する。
Note that the frequency of the signal having the r2-f2- component is approximately several 1001-(Z), and passes through the integration bands of the first and second correlation detectors 33 and 34 without loss.

演算器39はこの2つの信号を上記したように自乗平均
し、第2図(C)のように一定の直流信号を出力する。
The arithmetic unit 39 averages the square of these two signals as described above, and outputs a constant DC signal as shown in FIG. 2(C).

この出力をオシロスコープ40で測定しlc後、スイッ
チ51を電力計52側に切換えて、入力信号の絶対レベ
ルを測定する。
After measuring this output with an oscilloscope 40 and lc, the switch 51 is switched to the wattmeter 52 side and the absolute level of the input signal is measured.

減衰器50の減衰量即ち、測定装置30に対する入力レ
ベルを変えながら前記同様の測定を行なうことにより、
第3図に示すような入力レベル対相関出力の較正データ
が得られる。
By performing the same measurements as described above while changing the attenuation amount of the attenuator 50, that is, the input level to the measuring device 30,
Calibration data of input level versus correlation output as shown in FIG. 3 is obtained.

また、入力レベルに対する第1、第2の相関検波器33
.34の相関出力を単独に較正する場合は、各相関出力
をオシ1]スコープ40に接続して測定すればよい。
Also, the first and second correlation detectors 33 for the input level
.. When calibrating the 34 correlation outputs independently, each correlation output may be connected to the oscilloscope 40 and measured.

上記説明におけるAシ1]スー1−140は、いわばレ
ベルのピーク値を測定するのに用いられており、ピーク
レベルを測定するものなら他の測定器でもよい。
The A1-140 in the above description is used to measure the peak level, so to speak, and any other measuring device may be used as long as it measures the peak level.

なお、実際に伝搬遅延時間の測定を行なう場合は、送信
機20の出力および測定装置30の入力にアンテナを接
続して、測定1ノたい伝搬経路の両端にそれぞれ送信機
20どを測定装置30とを設置し、測定装置30のスイ
ッチ42を信シー〕発生器35側、スイッチ44をPN
信号発生器/13側に切換えて同調状態で伝搬遅延時間
等の測定を行なう。
Note that when actually measuring the propagation delay time, antennas are connected to the output of the transmitter 20 and the input of the measuring device 30, and the transmitter 20 and the measuring device 30 are connected to both ends of the propagation path to be measured. and connect the switch 42 of the measuring device 30 to the generator 35 side, set the switch 44 to PN.
Switch to the signal generator/13 side and measure propagation delay time, etc. in a tuned state.

この際、オシロスコープ40に表われる相関出力波形の
高さを測定し、この測定値を較正データによって較正す
ることにより、直接波や反射波の入力信号レベルを正確
に知ることができる。
At this time, by measuring the height of the correlation output waveform appearing on the oscilloscope 40 and calibrating this measured value using calibration data, it is possible to accurately know the input signal level of the direct wave or reflected wave.

く本発明の他の実施例〉(第4〜5図)なお、前記実施
例では、測定装置30内に水晶発振回路41を設(プで
、レベル較正時に、この出力をスイッチ44で切換える
ようにしていたが、本発明はこの実施例に限定されず、
例えば送信機2o内にこの発振回路を設りて搬送信号を
切換えたり、この水晶発振回路41をレベル較正用の発
振器として測定装置30と別個に用意して、測定装置3
0あるいは送信機20側の搬送信号をこの発振器の出力
に切換えるようにしてもよい。
Other Embodiments of the Present Invention (FIGS. 4 and 5) In the embodiment described above, a crystal oscillation circuit 41 is provided in the measuring device 30, and its output is switched by a switch 44 during level calibration. However, the present invention is not limited to this example,
For example, this oscillation circuit may be provided in the transmitter 2o to switch the carrier signal, or this crystal oscillation circuit 41 may be provided separately from the measuring device 30 as an oscillator for level calibration, and the measuring device 30 may be
0 or the carrier signal on the transmitter 20 side may be switched to the output of this oscillator.

また、送信機20の信号発生器24あるいは測定装置3
0の信号発生器35から、周波数f2に対して僅かに差
のある周波数f2−の信号を出力できるように構成して
おけば、前記実施例で用いIζζ水晶発振絡路41省略
することもできる。
Also, the signal generator 24 of the transmitter 20 or the measuring device 3
The Iζζ crystal oscillation circuit 41 used in the above embodiment can be omitted by configuring the signal generator 35 of 0 to output a signal with a frequency f2− that is slightly different from the frequency f2. .

また、前記実施例では、PN変調信号をG HZ帯に周
波数変換して送信する送信機20からの信号を測定装置
30側で逆の周波数変換を行なって移相器32に入力す
るようにしているが、本発明はこの実施例に限定されず
、前述の第6図に示した測定装置についても全く同様に
適用できる。
Furthermore, in the above embodiment, the signal from the transmitter 20 that frequency-converts the PN modulated signal to the GHZ band and transmits the signal is subjected to reverse frequency conversion on the measuring device 30 side and input to the phase shifter 32. However, the present invention is not limited to this embodiment, and can be applied in exactly the same manner to the measuring device shown in FIG. 6 described above.

また、前記実施例では、周波数f2′の搬送信号をPN
変調した相関用信号だ(〕で相関検波していたが、例え
ば、第4図に示すように、移相器32からの信号1.Q
をそれぞれ相関乗算器60.70で周波数f4の中間周
波信号に変換して、帯域通過フCルタ61.71からの
信号のレベルをそれぞれ対数圧縮器62.72で対数変
換してから、ミキサ63.73、おにびLPF (低域
通過フィルタ)64.7/Iからなる検波回路65.7
5において周波数「4の信号で検波する測定装置の場合
は、周波数f2′±「4の搬送信号を送信側のPN信号
で拡散変調して相関乗鋒器60.70に入力することに
よって前記同様のレベル較正が行なえる。
Further, in the above embodiment, the carrier signal of frequency f2' is
For example, as shown in FIG. 4, the signal 1.Q from the phase shifter 32
are converted into intermediate frequency signals of frequency f4 by correlation multipliers 60 and 70, and the levels of the signals from bandpass filters 61 and 71 are logarithmically converted by logarithmic compressors 62 and 72, respectively, and then converted to intermediate frequency signals of frequency f4 by correlation multipliers 60 and 70. Detection circuit consisting of .73, Onibi LPF (low pass filter) 64.7/I 65.7
In the case of a measuring device that detects a signal with a frequency of ``4'' in 5, the carrier signal with a frequency of f2'±``4 is spread-modulated with the PN signal on the transmitting side and inputted to the correlation multiplier 60.70. Level calibration can be performed.

また前記実施例では、伝搬遅延時間を測定する際に用い
られる送信機と較正用信号源を兼ねる構成であったが、
第5図に示すように、較正用信号源53を前述の測定装
置30と一体化した較正機能付き伝搬遅延時間測定装置
60としてもよい。
Furthermore, in the embodiment described above, the configuration was such that the transmitter used to measure the propagation delay time and the calibration signal source also functioned.
As shown in FIG. 5, the calibration signal source 53 may be integrated with the measurement device 30 described above to form a propagation delay time measuring device 60 with a calibration function.

この場合、較正用信号源53は、送信機20が有してい
た信号発生器24の代りに、信号発生器35から各信号
を受1プるようにづればにい。この中でPN信号発生器
21もPN信号発生器43で兼ねることも可能である。
In this case, the calibration signal source 53 may be arranged to receive each signal from the signal generator 35 instead of the signal generator 24 included in the transmitter 20. Among these, the PN signal generator 43 can also serve as the PN signal generator 21.

この場合はスイッチ44をPN信号発生器21の前に設
【プで、PN信号発生器21に入力されるクロックを周
波数f1−Δf(伝搬遅延時間測定時)と[1(較正時
)とに切換えられるようにすればよい。
In this case, the switch 44 is installed in front of the PN signal generator 21 to set the clock input to the PN signal generator 21 at frequencies f1-Δf (during propagation delay time measurement) and [1 (during calibration). It may be possible to switch.

また、較正用信号源53を較正用信号源として独立した
構造とすることもできる。
Moreover, the calibration signal source 53 can also be structured as an independent calibration signal source.

〈本発明の効果〉 本発明のレベル較正方法は、前記説明のように、PN信
号の符号位相を一致させた状態で、較正用入力信号を、
相関のとれる範囲内の周波数差をもって離調受信させた
状態で、レベル較正するようにしているため、入力信号
のレベルに対応する大きさの相関出力を連続的に得るこ
とができ、安定で高精度なレベル較正が行なえる。
<Effects of the Present Invention> As described above, the level calibration method of the present invention, with the code phases of the PN signals matched, inputs the calibration input signal to
Since the level is calibrated while receiving detuned signals with a frequency difference within the correlation range, it is possible to continuously obtain a correlation output of a magnitude corresponding to the level of the input signal, resulting in a stable and high level signal. Accurate level calibration can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のレベル較正のための接続を
示すブロック図、第2図(a)、(b)、(C)は、レ
ベル較正時の相関用ツノを示す信号図、第3図はレベル
較正によって得られた較正データの一例を示1図である
。 第4図および第5図は本発明の他の実施例を説明するた
めのブロック図である。 第6図は、伝搬遅延時間測定装置と送信機の基本構成を
示すブロック図、第7図は第6図構成の測定動作を示す
出力波形図である。 20・・・・・・送信機、30・・・・・・伝搬遅延時
間測定装置、33・・・・・・第1の相関検波器、34
・・・・・・第2の相関検波器、35・・・・・・信号
発生器、39・・・・・・演算器、41・・・・・・水
晶発振回路、42.44・・・・・・スイッチ、50・
・・・・・減衰器、51・・・・・スイッチ、52・・
・・・・電力品(。 特許出願人   アンリツ株式会社 日本電信電話株式会君
FIG. 1 is a block diagram showing connections for level calibration in an embodiment of the present invention; FIGS. 2(a), (b), and (C) are signal diagrams showing correlation horns during level calibration; FIG. 3 is a diagram showing an example of calibration data obtained by level calibration. FIGS. 4 and 5 are block diagrams for explaining other embodiments of the present invention. FIG. 6 is a block diagram showing the basic configuration of a propagation delay time measuring device and a transmitter, and FIG. 7 is an output waveform diagram showing the measurement operation of the configuration shown in FIG. 20... Transmitter, 30... Propagation delay time measuring device, 33... First correlation detector, 34
... Second correlation detector, 35 ... Signal generator, 39 ... Arithmetic unit, 41 ... Crystal oscillation circuit, 42.44 ...・・・Switch, 50・
...Attenuator, 51...Switch, 52...
...Electric power products (. Patent applicant: Anritsu Corporation Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 所定符号列の疑似雑音信号で変調された拡散変調波を受
信し、前記疑似雑音信号に対して符号位相が変化する同
一符号列の疑似雑音信号で拡散変調された相関用の信号
によって、前記拡散変調波を相関検波することにより伝
搬遅延時間の測定を行なう伝搬遅延時間測定装置のレベ
ル較正方法であつて、 前記拡散変調波と同じ較正用の入力信号を受信し、その
入力信号を変調している疑似雑音信号と、前記伝搬遅延
時間測定装置の疑似雑音信号の符号位相を一致させ、前
記較正用の入力信号を、前記拡散変調波より所定周波数
差だけ離調させた前記相関用の信号で相関検波し、その
相関検波したとき出力される前記周波数差に応じた信号
のレベルを検出し、 前記レベルをもとに伝搬遅延時間測定時に受信した前記
拡散変調波のレベルを較正するようにした伝搬遅延時間
測定装置のレベル較正方法。
[Claims] A correlation device that receives a spread modulated wave modulated with a pseudo noise signal of a predetermined code string, and is spread modulated with a pseudo noise signal of the same code string whose code phase changes with respect to the pseudo noise signal. A level calibration method for a propagation delay time measuring device that measures a propagation delay time by correlation detection of the spread modulated wave using a signal, the method comprising: receiving the same calibration input signal as the spread modulated wave; The code phase of the pseudo noise signal modulating the input signal and the pseudo noise signal of the propagation delay time measuring device are made to match, and the input signal for calibration is detuned by a predetermined frequency difference from the spread modulated wave. Perform correlation detection with the correlation signal, detect the level of the signal corresponding to the frequency difference output when the correlation detection is performed, and based on the level, determine the level of the spread modulated wave received when measuring the propagation delay time. A level calibration method for a propagation delay time measuring device.
JP1061829A 1989-03-14 1989-03-14 Level calibration method for propagation delay time measuring device Expired - Lifetime JP2648957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1061829A JP2648957B2 (en) 1989-03-14 1989-03-14 Level calibration method for propagation delay time measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1061829A JP2648957B2 (en) 1989-03-14 1989-03-14 Level calibration method for propagation delay time measuring device

Publications (2)

Publication Number Publication Date
JPH02241146A true JPH02241146A (en) 1990-09-25
JP2648957B2 JP2648957B2 (en) 1997-09-03

Family

ID=13182377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1061829A Expired - Lifetime JP2648957B2 (en) 1989-03-14 1989-03-14 Level calibration method for propagation delay time measuring device

Country Status (1)

Country Link
JP (1) JP2648957B2 (en)

Also Published As

Publication number Publication date
JP2648957B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
EP0358756A1 (en) Phase noise measurement system.
US2929989A (en) Intermodulation distortion meter
CN105024770B (en) Quantitative testing for sensitivity of a non-coherent FMCW autodyne receiver
US6041083A (en) Method and system for tuning resonance modules
US4004230A (en) Critical parameter receiver tester
CN107181541B (en) Electromagnetic spectrum monitoring receiver self-checking circuit and receiver
JP3262311B2 (en) Frequency sweep error detection method and circuit, optical frequency sweep light source, and optical frequency domain reflection measurement circuit
JPH02241146A (en) Level calibration method for propagation delay time measuring instrument
US3071726A (en) Frequency modulation measurment method and apparatus
US6246727B1 (en) Method and system for tuning resonance modules
CN113595629A (en) Microwave photon frequency measuring device based on phase shift gain ratio
US6909508B2 (en) Measuring optical waveforms
Grauling et al. Instrumentation for measurement of the short-term frequency stability of microwave sources
JP3974880B2 (en) Jitter transfer characteristic measuring device
CA2450841C (en) Method and device for determining sideband ratios of superconducting mixers using comb generator
KR100877997B1 (en) Device for measuring power conversion loss using spectrum analyzer and method for the same
RU2099729C1 (en) Noise characteristics meter of superhigh and high-frequency transmitters
SU907463A1 (en) Device for measuring frequency characteristics of microwave section transmission and reflection coefficients
JP2003090881A (en) Laser range finding device
RU2234716C1 (en) Method for generating sounding frequency -modulated signal for range finer with periodic frequency modulation
Husten et al. Microwave frequency measurements and standards
RU2195689C2 (en) Procedure and device measuring distance (versions)
RU2082985C1 (en) Gear measuring directivity diagrams of antenna in far zone
JPS5818376Y2 (en) Eizou Soushinkino Ishiyu Henchyou Zatsuon Sokuteiki
SU924622A1 (en) Device for measuring communication line phase-frequency characteristics non-linearity