JPH02241073A - Redundancy system of light source for pumping - Google Patents

Redundancy system of light source for pumping

Info

Publication number
JPH02241073A
JPH02241073A JP6294389A JP6294389A JPH02241073A JP H02241073 A JPH02241073 A JP H02241073A JP 6294389 A JP6294389 A JP 6294389A JP 6294389 A JP6294389 A JP 6294389A JP H02241073 A JPH02241073 A JP H02241073A
Authority
JP
Japan
Prior art keywords
light source
pumping light
light
optical
pumping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6294389A
Other languages
Japanese (ja)
Other versions
JPH0738474B2 (en
Inventor
Noboru Edakawa
登 枝川
Kiyobumi Mochizuki
望月 清文
Hiroharu Wakabayashi
若林 博晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP6294389A priority Critical patent/JPH0738474B2/en
Publication of JPH02241073A publication Critical patent/JPH02241073A/en
Publication of JPH0738474B2 publication Critical patent/JPH0738474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/09408Pump redundancy

Abstract

PURPOSE:To manufacture the title redundancy system in high reliability without augmenting the output of a pumping light source by a method wherein an optical signal propagating in an amplifier medium is converted into electric signal so as to identify the interruption of the optical signal and then the first and second light sources of pumping light are converted from each other conforming to the interruption data. CONSTITUTION:The title redundancy system of the pumping light source exciting an optical signal 11 propagating in an amplifying medium 6 (Er doped quartz base optical fiber) of an optical fiber doped with an rare earth element is provided with the first pumping light source 7 and the second pumping light source 8 respectively and independently arranged on both ends of the said amplifying medium 6, a photo detector 12 to convert the said pumping light propagating in the amplifying medium 6 or the optical signal 11 into electric signal, an interruption identifier 13 identifying the interruption of the pumping light or optical signal 11 using the electric signal from the photodetector 12. Through these procedures, the first and the second pumping light sources 7, 8 are converted from each other conforming to the interruption data of the interruption identifier 13 so that the optical signal may be excited by the pumping light.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、光ファイバに希土類元素をドープした光増幅
器や光フアイバレーザ等に用いるポンピング光用光源に
係わり、特にポンピング光用光源の冗長方式に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a light source for pumping light used in an optical amplifier, an optical fiber laser, etc. in which an optical fiber is doped with a rare earth element, and particularly relates to a redundancy system for a light source for pumping light. It is something.

(従来技術とその問題点) これまで光通信においては弱まった光信号を増幅する方
法として、−度微弱な光信号を光検出器を介して電気信
号に変換し、その電気信号を等化・増幅・識別した後、
増幅された電気信号を半導体レーザを介して強い光信号
に変換するという方法が用いられてきた。それに対して
、光信号を光のままで増幅するいわゆる光直接増幅(以
下光増幅)方式がある。光増幅方式では、光−電気−光
変換を用いないので、ビットレートの選択・変更が任意
に行えたり波長多重光信号や周波数多重光信号の一括増
幅ができる上に、強度変調光信号でもコヒーレント光信
号でも増幅することができる。
(Prior art and its problems) Until now, as a method for amplifying weakened optical signals in optical communication, the weak optical signal is converted into an electrical signal via a photodetector, and the electrical signal is equalized and After amplification and identification,
A method has been used in which an amplified electrical signal is converted into a strong optical signal via a semiconductor laser. On the other hand, there is a so-called optical direct amplification (hereinafter referred to as optical amplification) method that amplifies optical signals as they are. Since the optical amplification method does not use optical-electrical-optical conversion, it is possible to select or change the bit rate arbitrarily, perform batch amplification of wavelength-multiplexed optical signals and frequency-multiplexed optical signals, and also allows coherent amplification of intensity-modulated optical signals. Optical signals can also be amplified.

したがって、このような光増幅器を光中継器に用いると
等価的にシステム全体を一種の極低損失な伝送路と見な
すことができるので、−度敷設した光通信システムでも
端局装置を交換する・だけで随時システムアップするこ
とができるようになる。
Therefore, when such an optical amplifier is used in an optical repeater, the entire system can be equivalently regarded as a type of extremely low-loss transmission line, so even in an optical communication system that has been installed several times, it is easy to replace terminal equipment. You will be able to upgrade your system at any time.

このように光増幅器を用いた光中継器技術は、柔軟性が
あり経済性にも優れた光通信システムを提供できる可能
性があることから、将来の光通信および光計測などにお
いて不可欠の技術として各国で盛んに研究開発が行われ
ている。
In this way, optical repeater technology using optical amplifiers has the potential to provide flexible and economical optical communication systems, so it is expected to be an indispensable technology for future optical communications and optical measurement. Research and development is actively conducted in each country.

そのような光増幅器のひとつとして希土類元素をドープ
した光ファイバを用いて光増幅を行う方法がある0例え
ば、希土類元素のひとつであるEr(エルビウム)を石
英系ガラスファイバにドープすることにより1.5μm
帯の信号光を20〜30dB増幅できる光増幅器(以下
、rErドープ光ファイバレーザ増幅器」と称す)が得
られることが確認されており、飽和出力レベルが高い・
偏光依存性が小さい・雑音指数が小さい等様々な利点か
ら、将来の実用的な光増幅器のひとつとして盛んに研究
がおこなわれている。Erドープ光フアイバレーザ増幅
器の基本的な動作原理はErのf殻内電子エネルギー準
位をもちいて通常の3準位レーザと同じように考えるこ
とができる。即ち、第1図に示すように基底状態(ω。
One such optical amplifier is a method of amplifying light using an optical fiber doped with a rare earth element. 5μm
It has been confirmed that an optical amplifier (hereinafter referred to as "rEr-doped optical fiber laser amplifier") capable of amplifying signal light in the band by 20 to 30 dB can be obtained, and has a high saturation output level.
Due to its various advantages such as low polarization dependence and low noise figure, it is being actively researched as a future practical optical amplifier. The basic operating principle of an Er-doped optical fiber laser amplifier can be considered in the same way as a normal three-level laser using the electron energy level in the f-shell of Er. That is, as shown in FIG. 1, the ground state (ω.

)、励起状態1(ω、)及び2(ω2)があり、基底状
態ω。と励起状態ω、とのエネルギー準位差に相当する
エネルギー(ω、−ω。)を有する光を吸収することに
より、基底状態ω。にあった電子は励起状態1に励起さ
れる。励起状態ω、に励起された電子は非発光遷移によ
って励起状態ω2に移行し、基底状態ω0と励起状態ω
2とのエネルギー準位差に相当するエネルギーを有する
光(振動数ニジ2=(ω2−ω。)/h、但しhはブラ
ンク定数)を発光することにより励起状態2にあった電
子は基底状態ω。にもどろ、この時振動数ν2の光を入
射すると、励起状態2から基底状態ω。への発光遷移が
入射光に誘発されて発生するので、これより振動数ν2
の光を増幅することができる。Erの場合、振動数ν2
の光の波長は1.5μm帯となるのでErドープ光フア
イバレーザ増幅器は1.5μm用の光増幅器として用い
ることができる。このような光フアイバレーザ増幅器を
光中継器に用いた場合、中継器全体としての信頼性を高
めるためには励起(ボンピング)用光源に冗長構成をも
たせる必要がある。
), excited states 1 (ω, ) and 2 (ω2), and a ground state ω. and the ground state ω by absorbing light with energy (ω, −ω) corresponding to the energy level difference between the excited state ω and the excited state ω. The electrons that were in the state are excited to excited state 1. The electron excited to the excited state ω moves to the excited state ω2 by a non-emissive transition, and the ground state ω0 and the excited state ω
By emitting light having an energy corresponding to the energy level difference between 2 and 2 (frequency 2 = (ω2 - ω.)/h, where h is a blank constant), the electrons in excited state 2 are brought to the ground state. ω. However, if light with a frequency ν2 is incident at this time, the state changes from the excited state 2 to the ground state ω. Since the luminescence transition to occurs induced by the incident light, the frequency ν2
light can be amplified. In the case of Er, the frequency ν2
Since the wavelength of the light is in the 1.5 μm band, the Er-doped optical fiber laser amplifier can be used as an optical amplifier for 1.5 μm. When such an optical fiber laser amplifier is used in an optical repeater, it is necessary to provide a pumping (bumping) light source with a redundant configuration in order to improve the reliability of the repeater as a whole.

最も単純な冗長構成としては第2図に示すように、二つ
のボンピング光用光源をシングルモード光ファイバカッ
プラをもちいて合波する方法である。第2図において、
1はErをドープした石英系光ファイバ、2,3はボン
ピング光用光源、4はポンピング光と信号光を合波する
合分波器、5はボンピング光用光源を合波する合波器、
20は伝送路となるシングルモード光ファイバである。
As shown in FIG. 2, the simplest redundant configuration is a method in which two pumping light sources are combined using a single mode optical fiber coupler. In Figure 2,
1 is an Er-doped silica optical fiber; 2 and 3 are light sources for bombing light; 4 is a multiplexer/demultiplexer that combines the pumping light and the signal light; 5 is a multiplexer that combines the light sources for bombing light;
20 is a single mode optical fiber serving as a transmission path.

(発明が解決しようとする課題) しかしながら、ビームスプリッタやシングルモード光フ
ァイバカップラ等の対称なシングルモード導波路を用い
た合波器5で合波した場合には、合波器5による合波後
の光パワーが各ボンピング光用光源の出力の1/2にな
ってしまうので、必要な出力パワーを得るには各ボンピ
ング光用光源2.3の出力を上げなければならない。ま
た、−般に、レーザ光源の信頼性はその光出力に反比例
するので、装置全体の信頼性が逆に劣化してしまうとい
う問題点があった。
(Problem to be Solved by the Invention) However, when multiplexing is performed using a multiplexer 5 using a symmetrical single-mode waveguide such as a beam splitter or a single-mode optical fiber coupler, after multiplexing by the multiplexer 5, Since the optical power of the pumping light source 2.3 becomes 1/2 of the output of each pumping light source, the output of each pumping light source 2.3 must be increased in order to obtain the necessary output power. Furthermore, since the reliability of a laser light source is generally inversely proportional to its optical output, there is a problem in that the reliability of the entire device is adversely affected.

本発明は、上述した従来技術の問題点を解決するために
なされたもので、ボンピング光用光源の出力を上げるこ
となく信頼性の高いボンピング光用光源の冗長方式を提
供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the conventional technology, and an object of the present invention is to provide a highly reliable redundancy system for a light source for bombing light without increasing the output of the light source for bombing light. .

(発明の目的) 本発明の特徴は、希土類元素を光ファイバにドープした
増幅媒体内を伝搬する光信号をポンピング光により励起
するボンピング光用光源の冗長方式において、 前記増幅媒体の両端部にそれぞれ独立に配置された第1
のボンピング光用光源及び第2のボンピング光用光源と
、 前記増幅媒体内を伝搬する前記光信号を電気信号に変換
するための受光器と、 該受光器からの電気信号を用いて前記光信号の断を判定
する判定器と、 該断判定器の新情報に基づいて前記第1のボンピング光
用光源または第2のボンピング光用光源を一方から他方
に切換えて前記ポンピング光による励起が行われるよう
に構成されていることを特徴とするボンピング光用光源
の冗長方式にすることにある。
(Object of the Invention) The present invention is characterized in that, in a redundant system for a pumping light source in which pumping light excites an optical signal propagating in an amplification medium in which an optical fiber is doped with a rare earth element, The first independently placed
a bombing light light source and a second bombing light light source; a light receiver for converting the optical signal propagating in the amplification medium into an electrical signal; a determiner for determining disconnection of the disconnection; and excitation by the pumping light is performed by switching the first pumping light light source or the second pumping light light source from one to the other based on new information of the disconnection determiner. An object of the present invention is to provide a redundant system for a light source for bombing light, which is characterized by being configured as follows.

以下に例を用いて本発明の詳細な説明する。The present invention will be explained in detail below using examples.

(実施例1) 第3図は本発明におけるボンピング光用光源の冗長方式
の概略図であり、6はErをドープした石英系光ファイ
バ、7.8はボンピング光用光源、9.10はポンピン
グ光と信号光とを合分波する合分波器、11は信号光、
12は信号光11を電気信号に変換する受光器、13は
信号光11が一定時間に亘って予め定めたレベル以下に
なった場合に断と判定する断判定器、14は受信した出
力信号である。例えば今、ボンピング光用光源7をもち
いてErドープ石英系光フアイバ6を励起していたとす
ると、受信側は断判定器13によりボンピング光用光源
7の異常が発見された場合、ボンピング光用光源7は停
止してボンピング光用光源8によりErドープ石英系光
フアイバ6の励起を行う、ボンピング光用光源を切り換
えることにより、信号光11とポンプ光との進行方向が
逆転するが、Erドープ石英系光フアイバ6の増幅特性
に合わせて、例えば適当な光ファイバ長とボンピングパ
ワーを調整し、増幅特性をほぼ同じにすることは可能で
ある。合分波器10の挿入により、第1図の場合と比べ
、光増幅器自体の挿入損失が増加するが、それは非常に
小さいため大きな欠点とはならない0例えば、信号光波
長が1.536μmでボンピング光波長が1.46μm
の場合、光フアイバカップラを用いれば、0.5dB程
度以下の挿入損失となる。
(Example 1) FIG. 3 is a schematic diagram of a redundant system of a light source for bombing light in the present invention, where 6 is an Er-doped quartz optical fiber, 7.8 is a light source for bombing light, and 9.10 is a pumping light source. A multiplexer/demultiplexer that multiplexes and demultiplexes light and signal light; 11 is a signal light;
12 is a light receiver that converts the signal light 11 into an electrical signal; 13 is a disconnection detector that determines that the signal light 11 is disconnected when it is below a predetermined level for a certain period of time; and 14 is a received output signal. be. For example, if the Er-doped silica optical fiber 6 is excited using the bombing light source 7, the receiving side will detect an abnormality in the bombing light source 7 by the disconnection detector 13. 7 stops, and the Er-doped quartz optical fiber 6 is excited by the bombing light source 8.By switching the bombing light source, the traveling directions of the signal light 11 and the pump light are reversed. It is possible to make the amplification characteristics almost the same by adjusting the appropriate optical fiber length and pumping power, for example, in accordance with the amplification characteristics of the system optical fiber 6. By inserting the multiplexer/demultiplexer 10, the insertion loss of the optical amplifier itself increases compared to the case shown in Fig. 1, but this is very small and is not a major drawback. Light wavelength is 1.46μm
In this case, if an optical fiber coupler is used, the insertion loss will be about 0.5 dB or less.

なお、合分波器10を合分波器9とEr ドープ石英系
光ファイバ6との間に挿入した場合には、ボンピング光
用光源7からのポンピング光がErドープ石英系光フア
イバ6側に入射せず、合分波器10の他のポートから出
射してしまい実用に供さなくなる。従って、予備のボン
ピング光用光源8を合波する合分波器10は、Er ド
ープ石英系光ファイバ6の出力端側に配置する必要があ
る。
Note that when the multiplexer/demultiplexer 10 is inserted between the multiplexer/demultiplexer 9 and the Er-doped silica optical fiber 6, the pumping light from the pumping light light source 7 is directed to the Er-doped silica optical fiber 6 side. The light does not enter and exits from another port of the multiplexer/demultiplexer 10, making it useless for practical use. Therefore, the multiplexer/demultiplexer 10 for multiplexing the preliminary bombing light source 8 needs to be placed on the output end side of the Er-doped silica optical fiber 6.

(実施例2) 第4図は本発明による第2の実施例であり、ボンピング
光用光源の冗長方式の概略構成図である。
(Embodiment 2) FIG. 4 is a second embodiment of the present invention, and is a schematic diagram of a redundant system of a light source for bombing light.

実施例1と異なる点は、ポンピング光の新情報に基づい
てボンピング光用光源7,8を交互に切替えることがで
きるようにしたことにある0図において15,15°は
受光器12及び12゛側へ印加されるポンピング光を極
めて少なくするように分岐比(例えば、1対99の分岐
比)が設定されている分波器である。
The difference from Embodiment 1 is that the pumping light sources 7 and 8 can be alternately switched based on new information about the pumping light. This is a branching filter whose branching ratio (for example, a branching ratio of 1:99) is set so as to extremely reduce the amount of pumping light applied to the side.

第4図において、ボンピング光用光源7(8)から出射
されたポンピング光は分波器15(15’)。
In FIG. 4, the pumping light emitted from the pumping light light source 7 (8) is sent to the demultiplexer 15 (15').

合分波器9 (10)、Erドープ石英系光フアイバ6
、合分波器10(9)及び分波器15(15’)を介し
て受光器12(12’)で電気信号に変換され、変換さ
れた電気信号(ポンピング光)を用いて断判定器13に
より断判定が行われ、他方のボンピング光用光源8(7
)をオンにして動作させるようにしたものである。
Multiplexer/demultiplexer 9 (10), Er-doped silica optical fiber 6
, is converted into an electric signal by the optical receiver 12 (12') via the multiplexer/demultiplexer 10 (9) and the demultiplexer 15 (15'). 13, and the other bombing light light source 8 (7
) is turned on to make it work.

なお、上述の説明では、ボンピング光用光源7(8)を
シングルモード光ファイバ20のところで合分波した構
成を示したが、合分波器9(10)の挿入位置までのE
rドープ石英系光フアイバ6で・吸収されて信号光11
のレベルが若干低下するが、Erドープ石英系光フアイ
バ6の両端で合分波しても良い。
In addition, in the above explanation, a configuration was shown in which the bombing light source 7 (8) is multiplexed and demultiplexed at the single mode optical fiber 20, but the E
Signal light 11 is absorbed by r-doped silica optical fiber 6
It is also possible to perform multiplexing and demultiplexing at both ends of the Er-doped silica optical fiber 6, although the level of .

すなわち、この合分波はBrドープ石英系光フアイバ6
の両端部の適当な位置において行われることになる。
That is, this multiplexing and demultiplexing is performed using the Br-doped silica optical fiber 6.
This will be done at appropriate locations on both ends of the .

以上の説明ではErドープ石英系光ファイバを光増幅器
として説明したが、Erドープ光ファイバをレーザ発振
器として用いる場合でも、同様のボンピング技術が適用
可能である。また、Er以外のNb(ニオジウム)、H
o(ホルリウム)及びTm(1−リウム)等の希土類元
素をドーパントに用いたり、またフッ化物光ファイバで
も、同様のボンピング技術が適用可能である。
Although the Er-doped silica optical fiber has been described above as an optical amplifier, the same bombing technique can be applied even when the Er-doped optical fiber is used as a laser oscillator. In addition, Nb (niodium) other than Er, H
Similar bombing techniques can be applied to rare earth elements such as o (phorium) and Tm (1-lium) as dopants, or to fluoride optical fibers.

(発明の効果) 本発明は、受信側で電気信号に変換した後に断判定を行
い、かつ受信側でボンピング光用光源を切換えることに
より、ボンピング光用光源の光出力を最も有効に使用で
きるボンピング光用光源冗長構成を可能にするものであ
る。これにより、ボンピング光用光源への負荷を軽減す
ることができるので、装置全体の信鯨性を著しく高める
ことができる。従って、本発明は、ボンピング光用光源
を用いた光中継システムおよび光計測の分野に適用でき
、その効果は極めて大である。
(Effects of the Invention) The present invention provides a bombing method that can make the most effective use of the optical output of the light source for bombing light by making a disconnection determination after converting it into an electrical signal on the receiving side and switching the light source for bombing light on the receiving side. This enables a redundant configuration of light sources for light. As a result, the load on the bombing light source can be reduced, and the credibility of the entire device can be significantly improved. Therefore, the present invention can be applied to the fields of optical relay systems and optical measurement using a pumping light source, and its effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のErドープ光フアイバレーザ増幅器の動
作原理を説明するためのエネルギー状態図、第2図は従
来のボンピング光用光源の冗長方式の概略構成図、第3
図および第4図は本発明によるボンピング光用光源の冗
長方式の各実施例を示す概略構成図である。 1.6・・・Erドープ石英系光ファイバ、2.3,7
.8・・・ボンピング光用光源、4.9.10・・・合
分波器、 5・・・合波器、11・・・光信号、 12
.12“・・・受光器、13・・・断判定器、 14・
・・出力信号、15.15’ ・・・分波器、 20・
・・シングルモード光ファイバ。
Fig. 1 is an energy state diagram for explaining the operating principle of a conventional Er-doped optical fiber laser amplifier, Fig. 2 is a schematic configuration diagram of a redundant system of a conventional bombing light source, and Fig. 3
4 are schematic configuration diagrams showing respective embodiments of a redundant system of a light source for bombing light according to the present invention. 1.6...Er-doped silica optical fiber, 2.3,7
.. 8... Light source for bombing light, 4.9.10... Multiplexer/demultiplexer, 5... Multiplexer, 11... Optical signal, 12
.. 12"... Light receiver, 13... Disconnection determiner, 14.
...output signal, 15.15' ...brancher, 20.
...Single mode optical fiber.

Claims (1)

【特許請求の範囲】 光ファイバに希土類元素をドープした増幅媒体内を伝搬
する光信号をポンピング光により励起するポンピング光
用光源の冗長方式において、前記増幅媒体の両端部にそ
れぞれ独立に配置された第1のポンピング光用光源及び
第2のポンピング光用光源と、 前記増幅媒体内を伝搬する前記ポンピング光もしくは光
信号を電気信号に変換するための受光器と、 該受光器からの電気信号を用いて前記ポンピング光もし
くは光信号の断を判定する断判定器と、該断判定器の新
情報に基づいて前記第1のポンピング光用光源と第2の
ポンピング光用光源を一方から他方に切換えて前記ポン
ピング光による励起が行われるように構成されているこ
とを特徴とするポンピング光用光源の冗長方式。
[Claims] In a redundant system for a pumping light light source that uses pumping light to excite an optical signal propagating in an amplification medium in which an optical fiber is doped with a rare earth element, the pumping light source is arranged independently at both ends of the amplification medium. a first pumping light light source and a second pumping light light source; a light receiver for converting the pumping light or optical signal propagating within the amplification medium into an electrical signal; and an electrical signal from the light receiver. a disconnection determiner that determines disconnection of the pumping light or optical signal using the disconnection determiner; and switching the first pumping light light source and the second pumping light light source from one to the other based on new information of the disconnection determiner. A redundant system for a light source for pumping light, characterized in that the pumping light source is configured to perform excitation by the pumping light.
JP6294389A 1989-03-15 1989-03-15 Redundant system of light source for pumping light Expired - Fee Related JPH0738474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6294389A JPH0738474B2 (en) 1989-03-15 1989-03-15 Redundant system of light source for pumping light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6294389A JPH0738474B2 (en) 1989-03-15 1989-03-15 Redundant system of light source for pumping light

Publications (2)

Publication Number Publication Date
JPH02241073A true JPH02241073A (en) 1990-09-25
JPH0738474B2 JPH0738474B2 (en) 1995-04-26

Family

ID=13214892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6294389A Expired - Fee Related JPH0738474B2 (en) 1989-03-15 1989-03-15 Redundant system of light source for pumping light

Country Status (1)

Country Link
JP (1) JPH0738474B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425825A (en) * 1990-05-21 1992-01-29 Nippon Telegr & Teleph Corp <Ntt> Optical fiber amplifier
JPH057047A (en) * 1991-06-27 1993-01-14 Kansai Electric Power Co Inc:The Optical fiber amplifier
JPH05251797A (en) * 1992-03-06 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JPH05267757A (en) * 1992-03-23 1993-10-15 Mitsubishi Electric Corp Fiber type light amplifier
JPH05289127A (en) * 1992-04-09 1993-11-05 Hitachi Cable Ltd Backup method for excitation light source for optical fiber amplifier
EP0768766A2 (en) 1991-11-08 1997-04-16 Mitsubishi Denki Kabushiki Kaisha Optical fiber amplifier repeating system
JP2007318013A (en) * 2006-05-29 2007-12-06 Sumitomo Electric Ind Ltd Optical amplifier, and optical transmission system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425825A (en) * 1990-05-21 1992-01-29 Nippon Telegr & Teleph Corp <Ntt> Optical fiber amplifier
JPH057047A (en) * 1991-06-27 1993-01-14 Kansai Electric Power Co Inc:The Optical fiber amplifier
EP0768766A2 (en) 1991-11-08 1997-04-16 Mitsubishi Denki Kabushiki Kaisha Optical fiber amplifier repeating system
JPH05251797A (en) * 1992-03-06 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JP2620451B2 (en) * 1992-03-06 1997-06-11 日本電信電話株式会社 Optical amplifier
JPH05267757A (en) * 1992-03-23 1993-10-15 Mitsubishi Electric Corp Fiber type light amplifier
JPH05289127A (en) * 1992-04-09 1993-11-05 Hitachi Cable Ltd Backup method for excitation light source for optical fiber amplifier
JP2007318013A (en) * 2006-05-29 2007-12-06 Sumitomo Electric Ind Ltd Optical amplifier, and optical transmission system

Also Published As

Publication number Publication date
JPH0738474B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
EP0676871B1 (en) Optical amplifier and optical communication system provided with the optical amplifier
JP2933998B2 (en) Erbium-doped fiber amplifier coupling device
US6529314B1 (en) Method and apparatus using four wave mixing for optical wavelength conversion
JP4301822B2 (en) Optical amplifier with polarization mode dispersion compensation function
JP2918794B2 (en) Optical amplifier
Mikhailov et al. Amplified transmission beyond C-and L-bands: Bismuth doped fiber amplifier for O-band transmission
EP0704949A1 (en) An interferometric multiplexer
JP2757912B2 (en) Optical fiber communication system
JPH10261826A (en) Optical amplifier and optical fiber applicable to it
JPH02241073A (en) Redundancy system of light source for pumping
KR100904292B1 (en) Gain flattening utilizing a two-stage erbium-based amplifier
CA2321439A1 (en) Optical amplifying unit and optical transmission system
JPH03135081A (en) Optical amplifier
Masuda et al. Remotely pumped multicore erbium-doped fiber amplifier system with high pumping efficiency
JP2993493B2 (en) Light source module with built-in multiplexing function, optical amplifier and bidirectional optical transmission device using the same
EP1531563B1 (en) Multiple order raman amplifier
CN101427428B (en) Polarization-diverse optical amplification
US6504647B1 (en) Optical fiber amplifier, a method of amplifying optical signals, optical communications system
JP2627562B2 (en) Rare earth element doped optical fiber laser amplifier
Kannan et al. Unrepeatered bidirectional transmission system over a single fiber using optical fiber amplifiers
JP4095159B2 (en) Optical communication system and optical amplification system
JPH0392828A (en) Optical fiber laser amplifier
JPH02252330A (en) Wavelength multiplex coherent optical transmission system
JP2508846B2 (en) Optical amplifier and optical amplification method
EP1206016A1 (en) Temperature-stabilized optical amplifier and method for temperature-stabilizing an optical amplifier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees