JPH02241019A - X-ray mask blanks, x-ray mask structure body, x-ray aligner and x-ray exposure method - Google Patents

X-ray mask blanks, x-ray mask structure body, x-ray aligner and x-ray exposure method

Info

Publication number
JPH02241019A
JPH02241019A JP1062763A JP6276389A JPH02241019A JP H02241019 A JPH02241019 A JP H02241019A JP 1062763 A JP1062763 A JP 1062763A JP 6276389 A JP6276389 A JP 6276389A JP H02241019 A JPH02241019 A JP H02241019A
Authority
JP
Japan
Prior art keywords
ray
film
mask
thickness
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1062763A
Other languages
Japanese (ja)
Inventor
Keiko Chiba
啓子 千葉
Yoshiaki Fukuda
福田 恵明
Yutaka Watanabe
豊 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1062763A priority Critical patent/JPH02241019A/en
Publication of JPH02241019A publication Critical patent/JPH02241019A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a suitable X-ray mask blanks excellent in alignment property and dimensional accuracy by setting the thickness variation rate of the X-ray transmitting region of an X-ray transmitting film in a range, and forming an antireflection film relieving the reflectivity variation of alignment light caused by the thickness variation of the transmitting film, on the both surfaces of the transmitting region. CONSTITUTION:An X-ray mask blanks are constituted of an X-ray transmitting film 2 to retain an X-ray absorber 4 and a retaining frame to retain the absorber 4. The thickness variation rate of an X-ray transmitting region of the X-ray transmitting film 2 is in the range of 0.5-5%. On both surfaces of the region, an antireflection film 3 to relieve the reflectivity variation of alignment light caused by the thickness variation of the transmitting film 2 is formed. For example, on a silicon substrate 1, a silicon carbide film 2 is formed by plasma CVD method; an etching protection film composed of silicon oxide is formed on the periphery of the rear of the silicon substrate 1; the substrate 1 is back-etched, and then the protecting film is eliminated. By sputtering method, silicon oxide is deposited to be 0.146mum+ or -10% thick on the surface and the rear, thereby forming the antireflection film 3 and obtaining the X-ray mask blanks.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体製造装置、特にX線マスクと被露光材と
のアライメント性に優れたX線マスクブランクス、X線
マスク構造体、X線露光装置及びX線露光方法に関する
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to semiconductor manufacturing equipment, particularly X-ray mask blanks with excellent alignment properties between an X-ray mask and an exposed material, an X-ray mask structure, and an X-ray exposure device. The present invention relates to an apparatus and an X-ray exposure method.

(従来の技術) 近年、半導体集積回路の高密度化及び高速化に伴い、集
積回路のパターン線幅が約3年間で70%に縮小される
傾向にある。
(Prior Art) In recent years, with the increasing density and speed of semiconductor integrated circuits, the pattern line width of integrated circuits has tended to be reduced by 70% in about three years.

大容量メモリ素子(例えば4MDRAM)の更なる集積
化により、16Mbit容量のもの等では0.5μmル
ールのデバイス設計が行われる様になってきた。この為
焼付装置も一層の高性能化が要求され、転写可能な最小
線幅が0.5μm以下という高性能が要求され始めて来
ている。その為露光光源波長としてX線領域(7乃至1
4人)の光を利用したX線露光装置が開発されつつある
With the further integration of large-capacity memory elements (for example, 4M DRAM), devices with a capacity of 16 Mbit and the like have come to be designed on a 0.5 μm rule. For this reason, printing devices are required to have even higher performance, and high performance such that the minimum line width that can be transferred is 0.5 μm or less is beginning to be required. Therefore, the wavelength of the exposure light source is in the X-ray region (7 to 1
An X-ray exposure device that uses the light of four people is being developed.

上記X線露光装置は第5図示の様に、X線発生源(X−
Ray)と露光チャンバー10とシリコンウェハ等の被
露光材15を所定位置に固定するウェハチャック16と
X線マスク14を所定位置に固定するマスクチャック1
2とアライメント光源とアライメント検出部13等を主
要な要素として構成されている。
The X-ray exposure apparatus has an X-ray generation source (X-
ray), an exposure chamber 10, a wafer chuck 16 that fixes an exposed material 15 such as a silicon wafer in a predetermined position, and a mask chuck 1 that fixes an X-ray mask 14 in a predetermined position.
2, an alignment light source, an alignment detection section 13, etc. as main elements.

これらX線露光装置に用いられるマスク構造体としては
、例えば、第4図に示す様に、シリコンウェハ1上に化
学気相堆積法等により2μm程度の硅素化合物、特に窒
化硅素、炭化硅素、ポリシリコン等の膜2が僅かに引っ
張り応力をもつ様に形成される(第4図a)。次に膜2
の表面に金等のX線を良く吸収する材料により吸収体の
パターン4を形成しく第4図b)、次いでシリコンウェ
ハ1を、裏面から必要な領域(X線を透過せしめる為の
領域)をエツチングにより除去すると、無機薄膜2がシ
リコンウェハ1上に緊張保持された状態のマスクが得ら
れる。しかしながらこのままの状態ではシリコンウェハ
1が薄い為、強度が小さく取扱いにも実用にも不便であ
る為、第4図Cに示す様に補強体5を接着剤6により接
着して用いる場合もある。
For example, as shown in FIG. 4, the mask structure used in these X-ray exposure devices is made of a silicon compound of about 2 μm, particularly silicon nitride, silicon carbide, polyamide, etc., deposited on a silicon wafer 1 by chemical vapor deposition or the like. A film 2 made of silicon or the like is formed so as to have a slight tensile stress (FIG. 4a). Next, membrane 2
An absorber pattern 4 is formed on the surface of the silicon wafer 1 using a material that absorbs X-rays well, such as gold (Fig. 4b), and then the necessary area (an area for transmitting X-rays) is formed from the back side of the silicon wafer 1. When removed by etching, a mask in which the inorganic thin film 2 is held under tension on the silicon wafer 1 is obtained. However, in this state, the silicon wafer 1 is thin and has low strength, making it inconvenient for handling and practical use.Therefore, as shown in FIG. 4C, the reinforcing body 5 may be bonded with an adhesive 6 for use.

(発明が解決しようとしている問題点)以上の如きX線
マスクの吸収体を保持するX線透過膜としては、炭化硅
素、窒化硅素、ポリシリコン等の無機膜が保持枠となる
シリコン基板と近い熱膨張係数を有することから有望視
されている。これらのX線透過膜はX線透過率から見れ
ば薄い程よいが、逆に機械的強度の点からは厚い方がよ
い。これらの両方の性能を考慮して従来は約2μm程度
の膜厚のものが多く用いられている。
(Problem to be solved by the invention) As the X-ray transparent film that holds the absorber of the X-ray mask as described above, inorganic films such as silicon carbide, silicon nitride, and polysilicon are close to the silicon substrate that serves as the holding frame. It is considered promising because of its high coefficient of thermal expansion. The thinner these X-ray transmitting membranes are, the better from the standpoint of X-ray transmittance, but on the contrary, the thicker the better from the standpoint of mechanical strength. In consideration of both of these performances, a film having a thickness of about 2 μm has conventionally been used in many cases.

又、これらのX線透過膜はそのX線透過領域において膜
厚むらがあると、透過X線に強度むらが発生するので、
均一な厚さの膜であることが望ましいが、透過X線の強
度むらは、装置の反射ミラーやBe窓の厚さむら等によ
っても生じるので、透過X線の強度むらは3.5%以内
に抑える必要がある。
In addition, if these X-ray transparent films have uneven film thickness in their X-ray transparent region, intensity unevenness will occur in the transmitted X-rays.
Although it is desirable that the film has a uniform thickness, the intensity unevenness of the transmitted X-rays is also caused by the unevenness of the thickness of the reflecting mirror and Be window of the device, so the intensity unevenness of the transmitted X-rays should be within 3.5%. It is necessary to keep it to

ところが、これらの炭化硅素膜、窒化硅素膜、ポリシリ
コン膜等は、X線露光に先立って半導体レーザー(例え
ば8,300人)を例えば17.5 @の角度で入射し
て、マスクのアライメントを行う場合に最大で約55%
(炭化硅素)、約36%(窒化硅素)、約76%(ポリ
シリコン)もの反射があり、透過X線強度むらが3.5
%以内の膜であっても、膜厚の僅かの違いにより反射率
が大きく変動する為アライメント光のS/N比を下げ、
アライメント効率が劣るという問題がある。
However, for these silicon carbide films, silicon nitride films, polysilicon films, etc., prior to X-ray exposure, a semiconductor laser (for example, 8,300 laser beams) is incident at an angle of, for example, 17.5@ to align the mask. Up to about 55% if
(silicon carbide), approximately 36% (silicon nitride), and approximately 76% (polysilicon), and the transmitted X-ray intensity unevenness is 3.5%.
Even if the film is within %, the reflectance will vary greatly due to slight differences in film thickness, so lower the S/N ratio of the alignment light,
There is a problem that alignment efficiency is poor.

又、アライメントの検出部の配置にもよるが、反射光に
より検出が妨げられることもある。
Further, depending on the arrangement of the alignment detection section, detection may be hindered by reflected light.

従って本発明の目的は上記従来技術の問題点を解決し、
アライメント性に優れ、適正且つ寸法精度に優れたX線
マスクブランクス、X線マスク構造体、X線露光装置及
びX線露光方法を提供することである。
Therefore, an object of the present invention is to solve the problems of the prior art described above,
An object of the present invention is to provide an X-ray mask blank, an X-ray mask structure, an X-ray exposure apparatus, and an X-ray exposure method that have excellent alignment properties, are appropriate, and have excellent dimensional accuracy.

(問題点を解決する為の手段) 上記目的は以下の本発明によって達成される。(Means for solving problems) The above objects are achieved by the present invention as described below.

即ち、本発明は、X線吸収体を保持する為のX線透過膜
とこれを保持する保持枠とからなるX線マスクブランク
スにおいて、上記X線透過膜のX線透過領域の厚さ変動
率が0.5%乃至5%の範囲内であり、且つ上記領域の
両面に透過膜の厚さ変動によるアライメント光の反射率
変動を緩和する反射防止膜を形成したことを特徴とする
X線マスクブランクス及びこれらのマスクブランクスを
利用したX線マスク構造体、X線露光装置及びX線露光
方法である。
That is, the present invention provides an X-ray mask blank consisting of an X-ray transparent film for holding an X-ray absorber and a holding frame for holding the same, in which the thickness variation rate of the X-ray transparent area of the X-ray transparent film is is within the range of 0.5% to 5%, and an antireflection film is formed on both sides of the above region to alleviate changes in the reflectance of alignment light due to changes in the thickness of the transmitting film. The present invention provides blanks, an X-ray mask structure, an X-ray exposure apparatus, and an X-ray exposure method using these mask blanks.

(作  用) X線透過膜のxa透過領域の厚さ変動率を、0.5%乃
至5%の範囲内とし、且つX線透過領域の両面に透過膜
の厚さ変動によるアライメント光の反射率変動を緩和す
る反射防止膜を形成することによって、透過X線の強度
むらを3.5%以内に抑えつつ、アライメント光に対す
る反射率及びその厚さ変化による反射率変動率が低下し
、アライメント性に優れ、通正且つ寸法精度に優れたX
線露光が実現される。
(Function) The thickness variation rate of the xa transmission region of the X-ray transmission film is set within the range of 0.5% to 5%, and the alignment light is reflected on both sides of the X-ray transmission region due to the thickness variation of the transmission film. By forming an anti-reflection film that alleviates the rate fluctuation, the intensity unevenness of transmitted X-rays is suppressed to within 3.5%, and the reflectance for alignment light and the rate of change in reflectance due to thickness changes are reduced, making alignment X with excellent properties, regularity, and dimensional accuracy
Line exposure is achieved.

(実施例) 以下図面に示す実施例により本発明を更に詳しくする。(Example) The present invention will be explained in more detail with reference to embodiments shown in the drawings below.

実施例1 第1図は本発明のX線マスクブランクス及びX線マスク
構造体の製造工程の断面図である。
Example 1 FIG. 1 is a sectional view of the manufacturing process of an X-ray mask blank and an X-ray mask structure of the present invention.

先ず、シリコン基板1を、プラズマCVD用チャンバー
内にセットし、背圧を2 X 10−’Torr迄引い
た後、水素で10%に希釈されたシランガス10scc
■とメタンガス10105eとを下部電極に開炒られた
穴から供給した。基板1の温度を650℃に加熱し、圧
力5×10弓torrで高周波パワー50Wを印加して
基板1上に炭化硅素膜2を成膜した(第1図a)。
First, the silicon substrate 1 was set in a plasma CVD chamber, the back pressure was reduced to 2 x 10-' Torr, and then 10 sc of silane gas diluted to 10% with hydrogen was applied.
(2) and methane gas 10105e were supplied through a hole drilled in the lower electrode. The temperature of the substrate 1 was heated to 650° C., and a high frequency power of 50 W was applied at a pressure of 5×10 Torr to form a silicon carbide film 2 on the substrate 1 (FIG. 1a).

次にシリコン基板1の背面の周辺に酸化硅素からなるエ
ツチング保護膜を形成し、基板1をピロカテコール:エ
チレンジアミン:水=4:46.4:49.6の混合液
でバックエツチングし、その後弗酸と弗化アンモニウム
=1:1の混合液で酸化硅素保護膜を除去し、第1図(
b)の様なマスクブランクスを形成した。
Next, an etching protective film made of silicon oxide is formed around the back surface of the silicon substrate 1, and the substrate 1 is back-etched with a mixed solution of pyrocatechol: ethylenediamine: water = 4:46.4:49.6, and then etched with fluoroethylene diamine. The silicon oxide protective film was removed with a mixture of acid and ammonium fluoride = 1:1, as shown in Figure 1 (
A mask blank as shown in b) was formed.

このブランクスのX線透過領域のX線透過膜2の厚さは
、1.96乃至2.04μmであり、最大で0.08μ
mの厚さむらを有していた。この膜の厚さむらにより発
生する透過X線の強度むらは2.1%であった。
The thickness of the X-ray transparent film 2 in the X-ray transparent region of this blank is 1.96 to 2.04 μm, and the maximum is 0.08 μm.
It had thickness unevenness of m. The intensity unevenness of transmitted X-rays caused by the uneven thickness of this film was 2.1%.

第5図は本発明のX線露光装置の簡略図モあり、10は
露光チャンバーである。11はBe窓ポートであり、2
0は排気ポートであり、露光チャンバー10はB e 
f X線発生源と遮断され、チャンバー内は大気、真空
、He雰囲気等あらゆる状態での露光が可能である。
FIG. 5 is a simplified diagram of the X-ray exposure apparatus of the present invention, and 10 is an exposure chamber. 11 is the Be window port, 2
0 is an exhaust port, and the exposure chamber 10 is B e
f It is isolated from the X-ray generation source, and the chamber can be exposed in any conditions such as air, vacuum, He atmosphere, etc.

12はマスクステージ、13はアライメント検出部、1
4はマスク、15はウェハ、16はウェハチャック、1
7はウニ八ステージ、18はX軸ステージ駆動モーター
、19はY軸ガイドである。
12 is a mask stage, 13 is an alignment detection section, 1
4 is a mask, 15 is a wafer, 16 is a wafer chuck, 1
Reference numeral 7 designates a Unihachi stage, 18 represents an X-axis stage drive motor, and 19 represents a Y-axis guide.

マスク14はマスクステージ12に吸着される際、ある
程度室められた方向に位置決めビン又はオリエンテーシ
ョンフラット等を用い機械的にセットされる。ウェハ1
5も同様にウェハチャック16にセットされ、その後マ
スク14とウェハ15の相対的な位置関係をアライメン
ト検出部13からの指示により定められ、その後X線に
より露光される。
When the mask 14 is attracted to the mask stage 12, it is mechanically set in a certain direction using a positioning bin or an orientation flat. Wafer 1
5 is similarly set on the wafer chuck 16, and then the relative positional relationship between the mask 14 and the wafer 15 is determined by instructions from the alignment detection section 13, and then exposed to X-rays.

前記マスクブランクスを上記の様な露光チャンバー10
にセットし、入射角17.5°の半導体レーザー(83
00人)アライメント光を用い、マスク(ブランクス)
14とウェハ15のアライメントを行ったところ、反射
率が場所により27.5%から55%迄大きく変動し、
アライメント光のS/N比を一定にすることが困難であ
った。
The mask blanks are placed in the exposure chamber 10 as described above.
and a semiconductor laser (83°) with an incident angle of 17.5°.
00 people) Using alignment light, mask (blanks)
When aligning 14 and wafer 15, the reflectance varied greatly from 27.5% to 55% depending on the location.
It was difficult to keep the S/N ratio of alignment light constant.

次に上記マスクブランクスの表裏両面にスパッタ法によ
り酸化硅素を0.146μm±10%の厚さに蒸着して
反射防止膜3を形成して本発明のX線マスクブランクス
とした。
Next, silicon oxide was deposited to a thickness of 0.146 μm±10% on both the front and back surfaces of the mask blank by sputtering to form an antireflection film 3, thereby obtaining an X-ray mask blank of the present invention.

該ブランクスを前記と同様にしてX線露光装置に装着し
、同様にアライメント光の反射率を測定したところ、場
所による反射率及びその変動幅は0.1%から6.3%
迄の範囲となり、アライメント精度が向上した。又、ア
ライメント光の反射によるアライメント検出部へのノイ
ズも著しく減少した。又、最終的なX線透過膜(2+3
)の透過X線の強度分布は最大で3.35%となった。
When the blank was attached to an X-ray exposure device in the same manner as above and the reflectance of the alignment light was measured in the same manner, the reflectance and its fluctuation range depending on the location were 0.1% to 6.3%.
The alignment accuracy has been improved. Furthermore, noise on the alignment detection section due to reflection of alignment light has also been significantly reduced. In addition, the final X-ray transparent membrane (2+3
) The maximum intensity distribution of transmitted X-rays was 3.35%.

又、第1図(e)のように補強体5を接着剤6により接
着して用いてもよい。
Alternatively, the reinforcing body 5 may be bonded with an adhesive 6 as shown in FIG. 1(e).

実施例2 第2図は本発明のマスク構造体の製造工程の断面図であ
る。
Example 2 FIG. 2 is a sectional view of the manufacturing process of the mask structure of the present invention.

実施例1において、炭化硅素膜2の厚さむらは最大で0
.08μmであり、透過X線の強度むらは3.5%程度
であるが、この程度の厚さむら(O,Oaμm)であっ
ても、アライメント光の反射率は、例えば、波長8,3
00人、入射角17.5°のアライメント光で27.5
%から55%迄変動する。
In Example 1, the thickness unevenness of silicon carbide film 2 is at most 0.
.. 08 μm, and the intensity unevenness of transmitted X-rays is about 3.5%, but even with this level of thickness unevenness (O, Oa μm), the reflectance of the alignment light is, for example, at wavelengths 8, 3.
00 people, 27.5 with alignment light with an incident angle of 17.5°
It varies from % to 55%.

その為、シリコン基板1の表面に予め反射防止膜3とし
て厚み0.105μm±10%の窒化硅素膜をマグネト
ロンスパッタリング法にて形成し、更にその表面に実施
例1と同様な条件で炭化硅素膜2を形成し、更にその表
面に反射防止膜3として上記と同様に窒化硅素膜を形成
したく第2図a)。
Therefore, a silicon nitride film with a thickness of 0.105 μm ± 10% was previously formed on the surface of the silicon substrate 1 as an antireflection film 3 by magnetron sputtering, and then a silicon carbide film was further formed on the surface under the same conditions as in Example 1. 2 and then further form a silicon nitride film as an antireflection film 3 on the surface thereof in the same manner as described above (FIG. 2a).

次に基板1の背面にエツチング保護膜を形成して30重
量%苛性カリ溶液でバックエツチングして基板を除去し
く第2図b)、更に表面のタンタル膜を形成し、これを
ドライエツチングしてX線吸収体のパターン4を形成し
て本発明のX線マスク構造体を得た(第2図C)。
Next, an etching protection film is formed on the back surface of the substrate 1, and the substrate is removed by back etching with a 30% by weight caustic potassium solution (Fig. 2b).Furthermore, a tantalum film is formed on the surface, and this is dry etched to remove the etching film. A radiation absorber pattern 4 was formed to obtain an X-ray mask structure of the present invention (FIG. 2C).

前記X線マスクを前記の様な露光チャンバー10にセッ
トし、入射角17.5°の半導体レーザー(8300人
)アライメント光を用い、アライメントを行ったところ
、場所による反射率及びその変動幅は0.1%から18
.5%迄の範囲となり、アライメント精度が向上した。
When the X-ray mask was set in the exposure chamber 10 as described above and alignment was performed using a semiconductor laser (8,300 people) alignment light with an incident angle of 17.5°, the reflectance and its variation range depending on location were 0. .1% to 18
.. The alignment accuracy has improved to within 5%.

又、アライメント光の反射によるアライメント検出部へ
のノイズも著しく減少した。又、最終的なX線透過膜(
2◆3)の透過X線の強度分布は最大で2.6%となっ
た。
Furthermore, noise on the alignment detection section due to reflection of alignment light has also been significantly reduced. In addition, the final X-ray transparent membrane (
The intensity distribution of transmitted X-rays in 2◆3) was 2.6% at maximum.

実施例3 第3図は本発明のマスク構造体の製造工程の断面図であ
る。
Example 3 FIG. 3 is a sectional view of the manufacturing process of the mask structure of the present invention.

実施例2と同様に反射率を緩和する反射防止膜3として
厚み0.620μm±3%のポリイミド膜をシリコン基
板1上に塗布法で形成した。
As in Example 2, a polyimide film having a thickness of 0.620 μm±3% was formed on the silicon substrate 1 by a coating method as an antireflection film 3 for reducing reflectance.

反射防止膜3を有する基板lを、マグネトロンスパッタ
装置にセットし、背圧を2 X 10−”Torr迄引
いた後、アルゴンガスを30 secm流し、圧力5 
X 10 ””Torrとし、高周波パワー100Wを
窒化硅素ターゲットに印加し、十分放電が安定した後に
シャッターを開き基板1上に炭化硅素膜2を成膜した。
The substrate l having the anti-reflection film 3 was set in a magnetron sputtering device, and after the back pressure was reduced to 2×10-” Torr, argon gas was flowed for 30 seconds and the pressure was increased to 5.
X 10 "" Torr, high frequency power of 100 W was applied to the silicon nitride target, and after the discharge was sufficiently stabilized, the shutter was opened to form a silicon carbide film 2 on the substrate 1.

この炭化硅素膜2の膜厚は1.98μmから2.02μ
mであり、最大で0.04μmの厚みむらを有している
(尚、ポリイミド膜を形成することなく同一厚みむらを
有する炭化硅素膜は波長8.300人、入射角17.5
@で46%から55%迄の反射率むらを有している)。
The thickness of this silicon carbide film 2 is from 1.98 μm to 2.02 μm.
m, and has a maximum thickness unevenness of 0.04 μm (note that a silicon carbide film with the same thickness unevenness without forming a polyimide film has a wavelength of 8.300 nm and an incident angle of 17.5
It has reflectance unevenness from 46% to 55% at @).

更に上記炭化硅素膜2の表面に反射防止膜3として上記
と同様な塗布法で厚み0.620μm±3%のポリミド
膜を形成した(第3図a)。
Furthermore, a polyimide film having a thickness of 0.620 μm±3% was formed as an antireflection film 3 on the surface of the silicon carbide film 2 by the same coating method as described above (FIG. 3a).

次にその表面にタングステン膜を形成し、ドライエツチ
ング法によりX線吸収体のパターン4を形成しく第3図
b)、最後に基板の背面にエツチング保護膜を形成後、
バックエツチングして基板の一部を除去して本発明のX
線マスク構造体を得た(第3図c)。
Next, a tungsten film is formed on the surface, and an X-ray absorber pattern 4 is formed by dry etching (Fig. 3b).Finally, an etching protection film is formed on the back surface of the substrate.
By back etching and removing a part of the substrate,
A line mask structure was obtained (Figure 3c).

前記X線マスクを前記の様な露光チャンバー10にセッ
トし、入射角17.5@の半導体レーザー(8300人
)アライメント光を用い、アライメントを行ったところ
、場所による反射率及びその変動幅は0%から3.0%
迄の範囲に減少し、アライメント精度が向上した。又、
アライメント光の反射によるアライメント検出部へのノ
イズも著しく減少した。又、最終的なX線透過1!! 
(2+3)の透過X線の強度分布は最大で1.6%とな
った。
When the X-ray mask was set in the exposure chamber 10 as described above and alignment was performed using a semiconductor laser (8,300 people) alignment light with an incident angle of 17.5@, the reflectance and its variation range depending on location were 0. % to 3.0%
The alignment accuracy has been improved. or,
Noise on the alignment detection unit due to reflection of alignment light has also been significantly reduced. Also, the final X-ray transmission 1! !
The maximum intensity distribution of the (2+3) transmitted X-rays was 1.6%.

又、ポリイミド膜の形成によってマスク全体の強度が向
上して取扱いが容易になった。
Furthermore, the formation of the polyimide film improves the strength of the entire mask, making it easier to handle.

実施例4 先ず、シリコン基板1を、プラズマCVD用チャンバー
内にセットし、背圧を2 x 10−’Torr迄引い
た後、水素で10%に希釈されたシランガス5 sec
mとアンモニアガス20 sec+aを下部電極に開け
られた穴から供給した。基板1の温度を250℃に加熱
し、圧カフ、 5X 10−3Torrで高周波パワー
50Wを印加して基板1上に窒化硅素WA2を成膜した
(第1図a)。
Example 4 First, a silicon substrate 1 was set in a plasma CVD chamber, and after the back pressure was reduced to 2 x 10-'Torr, silane gas diluted to 10% with hydrogen was applied for 5 seconds.
m and ammonia gas for 20 sec+a were supplied through a hole made in the lower electrode. The temperature of the substrate 1 was heated to 250° C., and a high frequency power of 50 W was applied using a pressure cuff at 5×10 −3 Torr to form a film of silicon nitride WA2 on the substrate 1 (FIG. 1a).

次に実施例1と同様にして基板をバックエツチングして
マスクブランクスを作成した(第1図b)、このブラン
クスの膜厚は1.96μmから2.04μmの間であり
、透過X線の強度むらは2.3%であったが、波長8.
30OA、入射角17.5°のアライメント光に対する
反射率は場所により21%から36%迄の間で変動した
Next, a mask blank was created by back-etching the substrate in the same manner as in Example 1 (Fig. 1b).The film thickness of this blank was between 1.96 μm and 2.04 μm, and the intensity of transmitted X-rays was The unevenness was 2.3%, but the wavelength was 8.
The reflectance for alignment light of 30 OA and an incident angle of 17.5° varied from 21% to 36% depending on the location.

膜2の上に金からなるX線吸収体パターン4を形成後、
膜2の両面に酸化硅素からなる厚さ0.146μm±1
0%の反射防止膜3を蒸着法で形成した。
After forming the X-ray absorber pattern 4 made of gold on the film 2,
Both sides of membrane 2 are made of silicon oxide and have a thickness of 0.146 μm±1.
A 0% antireflection film 3 was formed by vapor deposition.

前記X線マスクを前記の様にアライメントを行ったとこ
ろ、場所による反射率及びその変動幅は0%から1.1
%迄の範囲となり、アライメント精度が向上した。又、
アライメント光の反射によるアライメント検出部へのノ
イズも著しく減少した。又、最終的なX線透過膜(2◆
3)の透過X線の強度分布は最大で3.5%となった。
When the X-ray mask was aligned as described above, the reflectance and its fluctuation range depending on the location were from 0% to 1.1.
%, improving alignment accuracy. or,
Noise on the alignment detection unit due to reflection of alignment light has also been significantly reduced. In addition, the final X-ray transparent membrane (2◆
The maximum intensity distribution of the transmitted X-rays in 3) was 3.5%.

実施例5 先ず、シリコン基板1を、マグネトロンスパッタ装置に
セットし、背圧を2 X 10−’Torr迄引いた後
、アルゴンガスを30 secm流し、圧力5×10−
’Torrとし、高周波パワーtoowを窒化硅素ター
ゲットに印加し、十分放電が安定した後にシャッターを
開き基板1上に窒化硅素膜2を成膜した(第1図a)e 次に実施例1と同様にして基板をバックエツチングして
マスクブランクスを作成した(第1図b)。このブラン
クスの膜厚は1.98μmから2.24μm迄の間であ
り、波長8,300人、入射角17.5°のアライメン
ト光に対する反射率は場所により30%から36.1%
の間で変動した。
Example 5 First, a silicon substrate 1 was set in a magnetron sputtering device, and after reducing the back pressure to 2 x 10-'Torr, argon gas was flowed at a rate of 30 sec to a pressure of 5 x 10-' Torr.
' Torr, high frequency power too was applied to the silicon nitride target, and after the discharge was sufficiently stabilized, the shutter was opened and a silicon nitride film 2 was formed on the substrate 1 (Fig. 1a) e Next, the same as in Example 1 A mask blank was prepared by back-etching the substrate (FIG. 1b). The film thickness of this blank is between 1.98 μm and 2.24 μm, and the reflectance for alignment light with a wavelength of 8,300 and an incident angle of 17.5° is 30% to 36.1% depending on the location.
It varied between.

上記マスクブランクスの膜2の両面に0.620μm上
2゜5%のポリイミド膜を塗布法で形成し、同様にして
アライメントを行ったところ、場所による反射率の及び
そ変動幅は3.1%から13.2%の範囲に迄減少し、
アライメント精度が向上した。又、アライメント光の反
射によるアライメント検出部へのノイズも著しく減少し
た。
When a 2.5% polyimide film of 0.620 μm thickness was formed on both sides of the film 2 of the mask blank by a coating method and alignment was performed in the same manner, the reflectance and its fluctuation range depending on location were 3.1%. It decreased from 13.2% to 13.2%.
Alignment accuracy has been improved. Furthermore, noise on the alignment detection section due to reflection of alignment light has also been significantly reduced.

又、最終的なX線透過膜(2+3)の透過X線の強度分
布は最大で1.6%となった。
Moreover, the intensity distribution of the transmitted X-rays of the final X-ray transmitting membrane (2+3) was 1.6% at the maximum.

又、窒化硅素のみの場合に比べ、弾性限界が大となり、
マスク全体の強度が向上して取扱いが容易になった。
In addition, the elastic limit is larger than in the case of silicon nitride alone,
The overall strength of the mask has been improved, making it easier to handle.

実施例6 実施例3と同様であるが、X線透過膜をポリシリコンか
ら形成する。
Example 6 Same as Example 3, but the X-ray transparent film is formed from polysilicon.

先ず、シリコン基板1の表面に予め反射防止膜3として
、厚み0.105μm±10%の窒化硅素膜をマグネト
ロンスパッタリング法にて形成し次に熱分解CVD装置
において、背圧を2×10−’Torr迄引いた後、水
素で10%に希釈されたシランガスを50 secm流
し、圧力を0.3乃至0 、5 Torrとし、基板1
の温度を600乃至650℃に加熱し、基板1上にポリ
シリコン膜2を成膜した。
First, a silicon nitride film with a thickness of 0.105 μm±10% was formed on the surface of a silicon substrate 1 as an antireflection film 3 by magnetron sputtering, and then a back pressure of 2×10 −′ was applied in a pyrolytic CVD apparatus. After pulling down to Torr, silane gas diluted to 10% with hydrogen was flowed for 50 sec, the pressure was set to 0.3 to 0.5 Torr, and the substrate 1
was heated to a temperature of 600 to 650° C., and a polysilicon film 2 was formed on the substrate 1.

このポリシリコン膜の膜厚は1.95μmから2.05
μmの間であり、同様に成膜したポリシリコン膜のみを
用いて測定したところ、透過X線の強度むらは2.2%
であった。波長8,300人、入射角17.5°のアラ
イメント光に対する反射率は、場所により4%から76
%の間で大きく変動した。
The thickness of this polysilicon film is from 1.95 μm to 2.05 μm.
When measured using only a similarly formed polysilicon film, the intensity unevenness of transmitted X-rays was 2.2%.
Met. The reflectance for alignment light with a wavelength of 8,300 and an angle of incidence of 17.5° varies from 4% to 76, depending on the location.
It varied widely between %.

更に窒化硅素からなる厚さ0.105μm±10%の反
射防止膜3を前記と同様の方法にて形成した(第3図a
)。
Further, an antireflection film 3 made of silicon nitride and having a thickness of 0.105 μm±10% was formed in the same manner as described above (Fig. 3a).
).

更に表面にタングステン膜を形成し、これをドライエツ
チングしてX線吸収体のパターン4を形成しく第3図c
)、更に基板1の背面にエッチング保護膜を形成後バッ
クエツチングして本発明のX線マスク構造体を得た(第
3図d)。
Furthermore, a tungsten film is formed on the surface and this is dry etched to form the pattern 4 of the X-ray absorber.
), an etching protection film was further formed on the back surface of the substrate 1, and back etching was performed to obtain the X-ray mask structure of the present invention (FIG. 3d).

このマスクブランクスを用いて前記と同様にアライメン
トを行ったところ、場所による反射率及びその変動幅は
0%から5.2%の範囲となり、アライメント精度が向
上した。又、アライメント光の反射によるアライメント
検出部へのノイズも著しく減少した。又、最終的なX線
透過膜(2÷3)の透過膜X線の強度分布は最大で3.
4%となった。
When alignment was performed in the same manner as described above using this mask blank, the reflectance and its fluctuation range depending on location were in the range of 0% to 5.2%, and the alignment accuracy was improved. Furthermore, noise on the alignment detection section due to reflection of alignment light has also been significantly reduced. In addition, the intensity distribution of the final X-ray transmitting membrane (2÷3) of the transmitted membrane X-rays is 3.
It was 4%.

実施例7 実施例5と同様の方法で基板!上に窒化硅素2を成膜し
てマスクブランクスを作製し、窒化硅素膜2の厚さを1
.96乃至2.04μmの間とした。この膜の透過X線
の強度むらは2.3%であった。
Example 7 A substrate was prepared in the same manner as in Example 5! A mask blank is prepared by forming a film of silicon nitride 2 on top, and the thickness of the silicon nitride film 2 is reduced to 1.
.. The thickness was between 96 and 2.04 μm. The intensity unevenness of transmitted X-rays through this membrane was 2.3%.

He−Noレーザー(6328人)、入射角20@のア
ライメント光を用い前記と同様にアライメントを行つな
ところ、場所により反射率が12.0%から37%迄と
大きく変動した。
When alignment was performed in the same manner as above using a He-No laser (6328 people) and alignment light with an incident angle of 20@, the reflectance varied greatly from 12.0% to 37% depending on the location.

次に反射防止膜3として酸化硅素を0.11μm±10
%の厚さに窒化硅素膜2の両面にスパッタ蒸着し、同様
にアライメントを行ったところ、反射率及びその変動幅
は0%から1.5%迄の範囲になった。
Next, as the anti-reflection film 3, silicon oxide was coated with a thickness of 0.11 μm±10
When the silicon nitride film 2 was sputter-deposited to a thickness of 1.5% on both sides and aligned in the same manner, the reflectance and its variation ranged from 0% to 1.5%.

又、最終的なX線透過膜(2+3)の厚さむらによる透
過X線の強度分布は3.2%であった。
Further, the intensity distribution of the transmitted X-rays due to the thickness unevenness of the final X-ray transmitting film (2+3) was 3.2%.

以上本発明を特定の実施例により説明したが、本発明は
これらの実施例に限定されない。即ち、本発明のマスク
ブランクス、マスク構造体、X線露光装置及び露光方法
は、マスクのX線透過膜の厚み変動率を規定し、且つそ
の両面に反射防止膜を形成したことを除き、他の構成は
いずれも従来公知の構成でよく上記実施例に限定されな
い。
Although the present invention has been described above using specific examples, the present invention is not limited to these examples. That is, the mask blank, mask structure, X-ray exposure apparatus, and exposure method of the present invention have no other features except that the thickness variation rate of the X-ray transmitting film of the mask is defined and an antireflection film is formed on both surfaces thereof. Any of the configurations may be a conventionally known configuration and is not limited to the above embodiment.

特に、本発明の効果を最大限発揮させるためには、X線
透過膜の厚み変動率を、透過X線の強度むらを3.5%
以内にする為に、線透過領域において0.5乃至5%の
範囲に抑えることが必要である。厚み変動率を0.5%
未満とすることは実際上困難であり、不可能ではないが
経済的には適当ではなく、一方、5%を越える変動率で
は、透過X線の強度むらを3.5%以内に抑えるのが困
難となる。
In particular, in order to maximize the effects of the present invention, it is necessary to reduce the thickness variation rate of the X-ray transmitting film and the intensity unevenness of transmitted X-rays by 3.5%.
In order to keep it within the range of 0.5 to 5% in the line-transmissive region, it is necessary to keep it within the range of 0.5 to 5%. Thickness variation rate 0.5%
It is difficult in practice to reduce the intensity of transmitted X-rays to less than 3.5%, and if the variation rate exceeds 5%, it is not economically appropriate. It becomes difficult.

尚、本発明で云う厚みの変動率とは下記式により算出さ
れる値である。
Incidentally, the rate of variation in thickness referred to in the present invention is a value calculated by the following formula.

T:X線透過膜の厚さの平均値 Δt=X線透過膜の膜厚むら(最大膜厚−最少膜厚) 又、本発明におけるX線透過膜の厚みは使用する材料に
よって異なるので一概には規定出来ないが、X線透過率
で云えば、好ましくはX線透過率が30乃至85%、よ
り好ましくは50乃至85%となる厚みである。
T: average value of the thickness of the X-ray transparent membrane Δt = film thickness unevenness of the X-ray transparent membrane (maximum film thickness - minimum film thickness) In addition, the thickness of the X-ray transparent film in the present invention varies depending on the material used, so there is no general rule. However, in terms of X-ray transmittance, the thickness is preferably such that the X-ray transmittance is 30 to 85%, more preferably 50 to 85%.

又、反射防止膜については、X線透過膜よりも屈折率が
低い材料から形成する限り、前記実施引例以外に、例え
ば、ポリシリコン膜のX線透過膜に炭化硅素や酸化硅素
の反射防止膜等も同様に使用できる。
Regarding the anti-reflection film, as long as it is formed from a material with a refractive index lower than that of the X-ray transmission film, in addition to the above-mentioned examples, for example, an anti-reflection film of silicon carbide or silicon oxide may be used on an X-ray transmission film of polysilicon film. etc. can be used similarly.

又、これらの反射防止膜の最適な厚さは、その材料、ア
ライメント光の波長及び入射角に依存し、次の様にして
求めることが出来る。
Further, the optimum thickness of these antireflection films depends on the material thereof, the wavelength and incidence angle of the alignment light, and can be determined as follows.

アライメント光の波長:  λ アライメント光の入射角: θ。Alignment light wavelength: λ Incident angle of alignment light: θ.

反射防止膜中での入射角: 01 反射防止膜の屈折率:   n。Incident angle in anti-reflection film: 01 Refractive index of anti-reflection film: n.

反射防止膜の最適厚さ:  d 整数二          m とすると Braggの式より 2n、d、cosθI = (m+H)λ−(1)Sn
e l lの式より sinθ。=n、sinθI−(2) (1)と(2)より 反射防止膜の最適の厚さは以上の式で規定されるが、±
10%程度の膜厚むらがあっても充分に反射防止膜とし
ての効果を示す。
Optimal thickness of anti-reflection film: If d is an integer 2 m, then from Bragg's formula, 2n, d, cosθI = (m+H)λ-(1)Sn
From the equation of e l l, sin θ. = n, sin θI - (2) From (1) and (2), the optimal thickness of the anti-reflection film is defined by the above formula, but ±
Even if there is a film thickness unevenness of about 10%, it exhibits sufficient effectiveness as an antireflection film.

又、mは整数であればかまわないが、mが大きすぎると
、反射防止膜が厚くなり、X線透過率を減少させるので
、m=0.1.2.3程度が好ましい。
Further, m may be an integer, but if m is too large, the antireflection film will become thick and the X-ray transmittance will decrease, so m is preferably about 0.1.2.3.

(効 果) 以上の様に本発明によれば、X線透過膜のX線透過領域
の厚さ変動率を0.5%乃至5%の範囲内とし、且つX
線透過領域の両面に透過膜の厚さ変動によるアライメン
ト光の反射率変動を緩和する反射防止膜を形成すること
によって、透過X線の強度むらを3.5%以内に抑えつ
つ、アライメント光に対する反射率及びその厚さ変化に
よる反射率変動率が低下し、アライメント性に優れ、適
正且つ寸法精度に優れたX線露光が実現される。
(Effects) As described above, according to the present invention, the thickness variation rate of the X-ray transparent region of the X-ray transparent membrane is within the range of 0.5% to 5%, and
By forming an anti-reflection film on both sides of the X-ray transmitting region to reduce changes in the reflectance of the alignment light due to changes in the thickness of the transmitting film, the unevenness of the intensity of the transmitted X-rays can be suppressed to within 3.5%, while the The reflectance and its rate of change in reflectance due to changes in thickness are reduced, and X-ray exposure with excellent alignment and appropriate dimensional accuracy is realized.

又、反射防止膜は片面でも効果を示すが、両面の場合に
は更に効果が増大する。更にアライメント光に波長変動
(±100人程度)が生じた場合のアライメント光反射
率変動率を低下させることもできる。
Further, although the anti-reflection coating is effective even on one side, the effect is even greater when it is coated on both sides. Furthermore, it is also possible to reduce the rate of variation in the alignment light reflectance when wavelength variation (approximately ±100) occurs in the alignment light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明におけるX線マスク製造工程
の断面図であり、第4図は従来のX線マスクの製造工程
の断面図であり、第5図は本発明におけるX線露光装置
の簡略図である。 1:シリコン基板 2:X線透過膜 3:反射防止膜 4:X線吸収体 5:補強体 6:接着剤 10:露光チャンバー 11:Be窓ボート 12:マスクステージ 13:アライメント検出部 14:マスク 15:ウェハ 16:ウェハチャック 17:ウェハステージ 18:x軸ステージ駆動モーター 19:Y軸ガイド 20:排気ボート 第1図 第2図 第5図
1 to 3 are cross-sectional views of the X-ray mask manufacturing process according to the present invention, FIG. 4 is a cross-sectional view of the conventional X-ray mask manufacturing process, and FIG. 5 is a cross-sectional view of the X-ray mask manufacturing process according to the present invention. FIG. 2 is a simplified diagram of the device. 1: Silicon substrate 2: X-ray transmission film 3: Anti-reflection film 4: X-ray absorber 5: Reinforcement body 6: Adhesive 10: Exposure chamber 11: Be window boat 12: Mask stage 13: Alignment detection section 14: Mask 15: Wafer 16: Wafer chuck 17: Wafer stage 18: X-axis stage drive motor 19: Y-axis guide 20: Exhaust boat Figure 1 Figure 2 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)X線吸収体を保持する為のX線透過膜とこれを保
持する保持枠とからなるX線マスクブランクスにおいて
、上記X線透過膜のX線透過領域の厚さ変動率が0.5
%乃至5%の範囲内であり、且つ上記領域の両面に透過
膜の厚さ変動によるアライメント光の反射率変動を緩和
する反射防止膜を形成したことを特徴とするX線マスク
ブランクス。
(1) In an X-ray mask blank consisting of an X-ray transparent film for holding an X-ray absorber and a holding frame for holding the same, the thickness variation rate of the X-ray transparent area of the X-ray transparent film is 0. 5
% to 5%, and is characterized in that an antireflection film is formed on both sides of the above region to alleviate changes in reflectance of alignment light due to changes in the thickness of the transmitting film.
(2)X線吸収体と該吸収体を保持する為のX線透過膜
とこれらを保持する保持枠とからなるX線マスク構造体
において、上記X線透過膜のX線透過領域の厚さ変動率
が0.5%乃至5%の範囲内であり、且つ上記領域の両
面に透過膜の厚さ変動によるアライメント光の反射率変
動を緩和する反射防止膜を形成したことを特徴とするX
線マスク。
(2) In an X-ray mask structure consisting of an X-ray absorber, an X-ray transparent membrane for holding the absorber, and a holding frame for holding these, the thickness of the X-ray transparent area of the X-ray transparent membrane. The variation rate is within the range of 0.5% to 5%, and an antireflection film is formed on both sides of the above region to alleviate changes in reflectance of the alignment light due to changes in the thickness of the transparent film.
line mask.
(3)X線発生源と露光チャンバーと被露光材を所定位
置に固定する手段とX線マスクを所定位置に固定する手
段とアライメント光源とアライメント検出部とを含むX
線露光装置において、上記X線マスクが、X線吸収体と
該吸収体を保持する為のX線透過膜とこれらを保持する
保持枠とからなり、上記X線透過膜のX線透過領域の厚
さ変動率が0.5%乃至5%の範囲内であり、且つ上記
領域の両面に透過膜の厚さ変動によるアライメント光の
反射率変動を緩和する反射防止膜を形成したX線マスク
であることを特徴とするX線露光装置。
(3) An X-ray generator including an X-ray generation source, an exposure chamber, a means for fixing the exposed material in a predetermined position, a means for fixing an X-ray mask in a predetermined position, an alignment light source, and an alignment detection section.
In the radiation exposure apparatus, the X-ray mask includes an X-ray absorber, an X-ray transparent film for holding the absorber, and a holding frame for holding these, and the X-ray mask includes an X-ray transparent area of the X-ray transparent film. An X-ray mask that has a thickness variation rate within the range of 0.5% to 5% and has an anti-reflection film formed on both sides of the above region to alleviate changes in the reflectance of the alignment light due to changes in the thickness of the transmission film. An X-ray exposure device characterized by the following.
(4)被露光材の表面にX線マスクを重ね、アライメン
ト光によりX線マスクのアライメントを行ない且つ該マ
スクを通してX線を露光するX線露光方法において、上
記X線マスクが、X線吸収体と該吸収体を保持する為の
X線透過膜とこれらを保持する保持枠とからなり、上記
X線透過膜のX線透過領域の厚さ変動率が0.5%乃至
5%の範囲内であり、且つ上記領域の両面に透過膜の厚
さ変動によるアライメント光の反射率変動を緩和する反
射防止膜を形成したX線マスクであることを特徴とする
X線露光方法。
(4) In an X-ray exposure method in which an X-ray mask is stacked on the surface of a material to be exposed, the X-ray mask is aligned using alignment light, and X-rays are exposed through the mask, the X-ray mask is made of an X-ray absorber. and an X-ray transparent membrane for holding the absorber, and a holding frame for holding these, and the thickness variation rate of the X-ray transparent area of the X-ray transparent membrane is within the range of 0.5% to 5%. An X-ray exposure method characterized in that the X-ray mask is an X-ray mask in which an anti-reflection film is formed on both sides of the region to alleviate changes in the reflectance of alignment light due to changes in the thickness of the transmission film.
JP1062763A 1989-03-15 1989-03-15 X-ray mask blanks, x-ray mask structure body, x-ray aligner and x-ray exposure method Pending JPH02241019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1062763A JPH02241019A (en) 1989-03-15 1989-03-15 X-ray mask blanks, x-ray mask structure body, x-ray aligner and x-ray exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1062763A JPH02241019A (en) 1989-03-15 1989-03-15 X-ray mask blanks, x-ray mask structure body, x-ray aligner and x-ray exposure method

Publications (1)

Publication Number Publication Date
JPH02241019A true JPH02241019A (en) 1990-09-25

Family

ID=13209753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1062763A Pending JPH02241019A (en) 1989-03-15 1989-03-15 X-ray mask blanks, x-ray mask structure body, x-ray aligner and x-ray exposure method

Country Status (1)

Country Link
JP (1) JPH02241019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372112A (en) * 1991-06-20 1992-12-25 Nippon Telegr & Teleph Corp <Ntt> X-ray exposure mask
JPH0590136A (en) * 1991-09-30 1993-04-09 Toppan Printing Co Ltd Mask for x-ray exposure and its blank
JPH0629193A (en) * 1992-07-10 1994-02-04 Mitsubishi Materials Corp X-ray mask

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372112A (en) * 1991-06-20 1992-12-25 Nippon Telegr & Teleph Corp <Ntt> X-ray exposure mask
JPH0590136A (en) * 1991-09-30 1993-04-09 Toppan Printing Co Ltd Mask for x-ray exposure and its blank
JPH0629193A (en) * 1992-07-10 1994-02-04 Mitsubishi Materials Corp X-ray mask

Similar Documents

Publication Publication Date Title
US4989226A (en) Layered devices having surface curvature
JP2527890B2 (en) Mask, manufacturing method thereof, and method of laser processing target substrate
JP3542118B2 (en) Formation of non-reflective material layer, semiconductor manufacturing method using the same, and method of forming transistor gate stack
US7780302B2 (en) Method of forming and mounting an angled reflector
JP2007534007A (en) Films for optical applications and methods for making such films
US4543266A (en) Method of fabricating a membrane structure
US4885055A (en) Layered devices having surface curvature and method of constructing same
JP2003257824A (en) Reflection mask blank for exposure, its manufacturing method, and reflection mask for exposure
JP2883100B2 (en) Half mirror or beam splitter for soft X-ray and vacuum ultraviolet
TW202033828A (en) Extreme ultraviolet mask absorber materials
JPH02241019A (en) X-ray mask blanks, x-ray mask structure body, x-ray aligner and x-ray exposure method
JPH02241020A (en) X-ray mask blanks, x-ray mask structure body, x-ray aligner and x-ray exposure method
US4940851A (en) Membrane for use in X-ray mask and method for preparing the same
US11555953B2 (en) Optical device with wires and organic moieties
JPH02181908A (en) X-ray mask structure body, x-ray aligner and x-ray exposure
TW202111420A (en) Extreme ultraviolet mask absorber materials
KR20210066016A (en) Extreme UV Mask with Back Coating
JPH02181905A (en) X-ray aligner and x-ray exposure
JP4797252B2 (en) X-ray optical element and manufacturing method thereof
US5080739A (en) Method for making a beam splitter and partially transmitting normal-incidence mirrors for soft x-rays
JPH06118211A (en) Integrated optical mirror and manufacture thereof
US5177773A (en) X-ray mask and method for producing same
JPH0855791A (en) Resist pattern formation method and reflection preventive film formation method
JP2001108802A (en) Antireflection film
US20240085590A1 (en) Materials for metalenses, through-waveguide reflective metasurface couplers, and other metasurfaces