JPH0224087Y2 - - Google Patents

Info

Publication number
JPH0224087Y2
JPH0224087Y2 JP1982086046U JP8604682U JPH0224087Y2 JP H0224087 Y2 JPH0224087 Y2 JP H0224087Y2 JP 1982086046 U JP1982086046 U JP 1982086046U JP 8604682 U JP8604682 U JP 8604682U JP H0224087 Y2 JPH0224087 Y2 JP H0224087Y2
Authority
JP
Japan
Prior art keywords
optical fiber
linear expansion
aromatic polyamide
coefficient
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982086046U
Other languages
Japanese (ja)
Other versions
JPS58188606U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8604682U priority Critical patent/JPS58188606U/en
Publication of JPS58188606U publication Critical patent/JPS58188606U/en
Application granted granted Critical
Publication of JPH0224087Y2 publication Critical patent/JPH0224087Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は光フアイバ心線に関する。[Detailed explanation of the idea] The present invention relates to optical fiber cores.

光フアイバは光を伝送する細径なガラス質のフ
アイバであるが、細径なガラス素線のままでは破
断し易く使用上不都合であるので該光フアイバ素
線に被覆を施した光フアイバ心線として用いられ
ている。その従来の光フアイバ心線を第1図に示
す。光フアイバ心線はフアイバ1に1次被覆2が
施され、その上に機械的強度の大きなシリコンラ
バー等がバツフア層3として積層され、更にその
上にナイロン等の熱可塑性樹脂が2次被覆4とし
て積層されている。このような構成の光フアイバ
心線は製造が比較的容易であるものの、2次被覆
4として使用されるプラスチツクの温度依存性が
大きいため、温度変化に対して弱い欠点を有して
いる。例えば上記2次被覆として使用されるプラ
スチツクの線膨張率はガラス素線に比べて2桁以
上も大きい。このためある温度域では2次被覆4
が光フアイバ1に機械的応力を与えて伝送損失を
劣化させる。また2次被覆4の強度が不十分なた
め、2次被覆4を施したままの光フアイバ心線は
曲げや側圧に対して弱く、光フアイバ心線を単体
で使用することができない。このため該心線を束
ねてケーブルやコードとする場合においても、テ
ンシヨンメンバ等の補強材が必要であつた。
Optical fiber is a thin glass fiber that transmits light, but if the thin glass wire is used as it is, it is easy to break and is inconvenient to use. It is used as. The conventional optical fiber core wire is shown in FIG. In the optical fiber core, a fiber 1 is coated with a primary coating 2, on top of which a silicone rubber or the like with high mechanical strength is laminated as a buffer layer 3, and then a thermoplastic resin such as nylon is layered on top of that as a secondary coating 4. It is laminated as. Although the optical fiber core wire having such a structure is relatively easy to manufacture, it has the disadvantage that it is susceptible to temperature changes because the plastic used as the secondary coating 4 has a large temperature dependence. For example, the coefficient of linear expansion of the plastic used as the secondary coating is more than two orders of magnitude higher than that of the glass wire. Therefore, in a certain temperature range, the secondary coating 4
gives mechanical stress to the optical fiber 1 and deteriorates transmission loss. Further, since the strength of the secondary coating 4 is insufficient, the optical fiber coated with the secondary coating 4 is susceptible to bending and lateral pressure, and the optical fiber coated wire cannot be used alone. For this reason, reinforcing materials such as tension members are required even when the core wires are bundled to form a cable or cord.

本考案は光フアイバの温度依存性を極小にして
伝送特性を飛躍的に改善し、更に機械的強度もあ
わせて向上させた光フアイバ心線を提供すること
を目的とするものであつて、その構成は芳香族ポ
リアミド繊維を強化材とする線膨張率が負の強化
プラスチツクにより光フアイバ素線が被覆される
ことを特徴とする。
The purpose of the present invention is to provide a cored optical fiber that dramatically improves transmission characteristics by minimizing the temperature dependence of the optical fiber, and also improves mechanical strength. The structure is characterized in that the optical fiber wire is covered with a reinforcing plastic having a negative coefficient of linear expansion and using aromatic polyamide fiber as a reinforcing material.

以下、本考案の光フアイバ心線を実施例に基づ
いて詳細に説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the optical fiber core wire of this invention will be explained in detail based on an Example.

本考案の光フアイバ心線は、光フアイバ素線を
被い包む被覆として芳香族ポリアミド繊維で強化
した強化プラスチツクを使用するものであり、例
えば従前の光フアイバ心線の2次被覆として使用
されるナイロン等に代えて芳香族ポリアミド繊維
強化プラスチツクを使用する。すなわち、光フア
イバ素線に通常の1次被覆、バツフア層を被覆
し、更にその上に芳香族ポリアミド繊維強化プラ
スチツクを2次被覆する。一般的に強化プラスチ
ツクとしてはガラス繊維やポリエステル系繊維な
どを強化材とする不飽和ポリエステル樹脂、エポ
キシ樹脂成形物が良く知られているが、本考案で
使用する強化プラスチツクは強化材として芳香族
ポリアミド繊維を用いる。尚、芳香族ポリアミド
繊維としては例えばケブラーアラミツド繊維が使
用可能である。
The optical fiber core wire of the present invention uses reinforced plastic reinforced with aromatic polyamide fibers as a coating that covers the optical fiber wire, and is used, for example, as a secondary coating for conventional optical fiber core wires. Aromatic polyamide fiber-reinforced plastic is used instead of nylon, etc. That is, an optical fiber wire is coated with a normal primary coating and a buffer layer, and then an aromatic polyamide fiber-reinforced plastic is further coated thereon as a secondary coating. Generally, as reinforced plastics, unsaturated polyester resins and epoxy resin molded products using glass fibers, polyester fibers, etc. as reinforcement materials are well known, but the reinforced plastics used in this invention are made of aromatic polyamides as reinforcement materials. Use fiber. Incidentally, as the aromatic polyamide fiber, for example, Kevlar aramid fiber can be used.

上記の構成の光フアイバ心線は2次被覆として
芳香族ポリアミド繊維で強化された強化プラスチ
ツク(以下、強化プラスチツクと略す)を使用す
るため、光フアイバの温度依存性を極小にでき、
伝送損失を低く抑えることができる。それは強化
プラスチツクの線膨張率が−2×10-6-1であ
り、従前2次被覆として用いられるナイロンの線
膨張率2×10-4-1に比べるとその値は遥かにガ
ラスフアイバ固有の線膨張率6×10-6-1に近
い。従つて本考案の光フアイバ心線は低温下や高
温下に置かれた場合であつても、光フアイバと強
化プラスチツクとの膨張の不整は僅少であり、ナ
イロンで2次被覆した光フアイバ心線で経験する
ような光フアイバ素線が2次被覆に対して余長を
生じ、蛇行現象を起こして伝送特性上マイクロベ
ンドによる損失劣化を誘発する虞がないからであ
る。尚第3図に従前の光フアイバ心線及び本考案
の光フアイバ心線の伝送損失の温度特性を比較し
て示す。同図に示されるように従前の光フアイバ
心線の伝送損失変化は低温下で増加し、−60℃で
は40dB/Kmにも達していたが、本考案の光フア
イバ心線の伝送損失変化は−60℃〜60℃の範囲内
で0.1dB/Km以下に安定していた。
Since the optical fiber core wire with the above structure uses reinforced plastic reinforced with aromatic polyamide fibers (hereinafter referred to as reinforced plastic) as the secondary coating, the temperature dependence of the optical fiber can be minimized.
Transmission loss can be kept low. The coefficient of linear expansion of reinforced plastic is -2 x 10 -6-1 , which is much higher than that of glass fiber, compared to the linear expansion coefficient of 2 x 10 -4-1 of nylon, which is conventionally used as a secondary coating. The intrinsic coefficient of linear expansion is close to 6×10 -6 °C -1 . Therefore, even when the optical fiber core of the present invention is placed under low or high temperatures, there is little irregularity in the expansion between the optical fiber and the reinforced plastic, and the optical fiber core with a secondary coating of nylon is This is because there is no risk that the optical fiber strand will have an extra length with respect to the secondary coating, causing a meandering phenomenon and causing loss deterioration due to microbends in the transmission characteristics, as experienced in the above. FIG. 3 shows a comparison of the temperature characteristics of the transmission loss of the conventional optical fiber core and the optical fiber core of the present invention. As shown in the figure, the change in transmission loss of the conventional optical fiber increases at low temperatures, reaching as much as 40 dB/Km at -60℃, but the change in transmission loss of the optical fiber of the present invention increases at low temperatures. It was stable at 0.1 dB/Km or less within the range of -60℃ to 60℃.

更に、本考案の光フアイバ心線は強化プラスチ
ツクの線膨張率が負値であるので、正値である光
フアイバの線膨張率と屈折率変化に起因する光フ
アイバ心線の温度依存性を低下させることがで
き、高精度同期信号系の通信路に用いて最適な光
フアイバ心線を得ることができる。すなわち、2
次被覆された光フアイバ心線の複合体として線膨
張率αeqは次式(A)で示される。この式から明らか
なように強化プラスチツクの構成比率若しくは被
覆径を増大させることにより、光フアイバ心線全
体の線膨張率を強化プラスチツクの線膨張率−2
×10-6-1に近づけることができる。
Furthermore, since the reinforcing plastic in the optical fiber core of the present invention has a negative linear expansion coefficient, the temperature dependence of the optical fiber, which is caused by changes in the optical fiber's linear expansion coefficient and refractive index, which are positive values, is reduced. This makes it possible to obtain an optimal optical fiber for use in communication channels for high-precision synchronization signal systems. That is, 2
The coefficient of linear expansion α eq of the coated optical fiber composite is expressed by the following equation (A). As is clear from this equation, by increasing the composition ratio or coating diameter of the reinforcing plastic, the linear expansion coefficient of the entire optical fiber can be reduced by the linear expansion coefficient of the reinforcing plastic - 2
×10 -6-1 can be approached.

αep=ΣαiEiSi/ΣEiSi …(A) ここで、α,E,Sはそれぞれ光フアイバ心線
を構成する各材料の線膨張率、ヤング率、断面積
を表わし、添字iは各材料(光フアイバ、1次被
覆、バツフア層、2次被覆)を表す。このように
2次被覆された光フアイバ心線の線膨張率を−2
×10-6-1に近づけることができ、そして該光フ
アイバ素線の線膨張率によつて決定される伝搬時
間の温度依存性(1/γ)(dγ/dT)は次式(B)に
示されるように光フアイバ素線の線膨張率を小さ
くするに従がい、小さくなる。
α ep = Σα i E i S i /ΣE i Si …(A) Here, α, E, and S represent the coefficient of linear expansion, Young's modulus, and cross-sectional area of each material constituting the optical fiber, respectively, and the subscripts i represents each material (optical fiber, primary coating, buffer layer, secondary coating). The coefficient of linear expansion of the optical fiber coated with this secondary coating is -2
×10 -6 °C -1 , and the temperature dependence of the propagation time (1/γ) (dγ/dT) determined by the coefficient of linear expansion of the optical fiber is expressed by the following equation (B ), as the coefficient of linear expansion of the optical fiber is reduced, it becomes smaller.

1/γdγ/dT=1/ndn/dT+1.25/LdL/dT…(B) ここで、右辺の第1項は屈折率の温度依存性を
表わす項であり、第2項は光フアイバ素線の温度
依存性、つまり線膨張率に起因する項である。例
えば、標準的な光フアイバ素線の場合、屈折率の
温度依存性(1/n)(dn/dT)は6×10-6-1
程度であるので、本考案の光フアイバ心線全体の
線膨張率がほぼ−2×10-6-1に近いものになる
と、本考案の光フアイバ心線における伝搬時間の
温度依存性(1/γ)(dγ/dT)は約3.5×10-6
-1となる。この値は従前のFRP被覆心線、ナイ
ロン被覆心線の伝搬時間の温度依存性がそれぞれ
14.8×10-6-1,30×10-6-1であるのに比較し
て格段に小さい。このように本考案の光フアイバ
心線は伝搬時間の温度依存性が小さいため、高精
度同期信号系の通信路に用いて最適である。
1/γdγ/dT=1/ndn/dT+1.25/LdL/dT…(B) Here, the first term on the right side is a term representing the temperature dependence of the refractive index, and the second term is the term representing the temperature dependence of the optical fiber. This term is due to the temperature dependence of , that is, the coefficient of linear expansion. For example, in the case of a standard optical fiber, the temperature dependence of the refractive index (1/n) (dn/dT) is 6 × 10 -6 °C -1
Therefore, if the linear expansion coefficient of the entire optical fiber of the present invention is close to -2×10 -6 °C -1 , the temperature dependence of the propagation time of the optical fiber of the present invention (1 /γ) (dγ/dT) is approximately 3.5×10 -6
-1 . This value is based on the temperature dependence of the propagation time of the conventional FRP-coated core wire and nylon-coated core wire, respectively.
14.8×10 -6-1 , which is much smaller than 30×10 -6-1 . As described above, since the optical fiber of the present invention has a small temperature dependence of propagation time, it is optimal for use in a communication path for a high-precision synchronization signal system.

更に、本考案で使用される強化プラスチツク
は、通常使用されるガラス繊維で強化した強化プ
ラスチツク(GFRP)に比較して引張強さが約30
%、引張モジユラスが約2倍ほど大きく、機械的
強度が優れている。また本考案の光フアイバ心線
の重量はGFRPを使用する光フアイバ心線の約60
%程度しかなく、軽い。
Furthermore, the reinforced plastic used in this invention has a tensile strength of about 30% compared to the commonly used glass fiber reinforced plastic (GFRP).
%, the tensile modulus is about twice as high, and the mechanical strength is excellent. In addition, the weight of the optical fiber core of this invention is approximately 60% of the weight of the optical fiber core wire using GFRP.
It's only about % and it's light.

次に、本考案に係る光フアイバ心線の製造方法
の一例を第2図を参照して説明する。
Next, an example of a method for manufacturing a coated optical fiber according to the present invention will be explained with reference to FIG.

次に、本考案に係る光フアイバ心線の製造方法
の一例を第2図を参照して説明する。
Next, an example of a method for manufacturing a coated optical fiber according to the present invention will be explained with reference to FIG.

複数のロールから芳香族ポリアミド繊維11を
樹脂含浸槽12内へ送り込み、該槽12内の不飽
和ポリエステル樹脂を該芳香族ポリアミド繊維1
1に含浸させる。その後、該芳香族ポリアミド繊
維11を引き上げると共に該芳香族ポリアミド繊
維11に、1次被覆層及びバツフア層の施された
光フアイバ素線13を供給し、合わせて予備成形
装置14へ送る。該予備成形装置14で該光フア
イバ素線13を芳香族ポリアミド繊維11の中心
に保持した後、加熱硬化炉15へ送る。該加熱硬
化炉15で不飽和ポリエステル樹脂を加熱硬化さ
せて光フアイバ心線に一体化し、更に引抜装置1
6で形を整えた後、巻取装置17で巻取る。
Aromatic polyamide fibers 11 are fed from a plurality of rolls into a resin impregnation tank 12, and the unsaturated polyester resin in the tank 12 is impregnated with the aromatic polyamide fibers 1.
Impregnate with 1. Thereafter, the aromatic polyamide fiber 11 is pulled up, and an optical fiber 13 provided with a primary coating layer and a buffer layer is supplied to the aromatic polyamide fiber 11, and the fibers are sent together to a preforming device 14. After the optical fiber strand 13 is held at the center of the aromatic polyamide fiber 11 by the preforming device 14, it is sent to the heat curing furnace 15. The unsaturated polyester resin is heated and cured in the heat curing furnace 15 to integrate it into the optical fiber core wire, and then the drawing device 1
After adjusting the shape in step 6, it is wound up in a winding device 17.

以上、実施例に基づいて具体的に説明したよう
に本考案の光フアイバ心線によれば光フアイバ素
線の被覆として芳香族ポリアミド繊維強化プラス
チツクを用いたので、伝送特性の温度依存性が極
小になり、伝送特性を飛躍的に改善することがで
きると共に機械的強度もあわせて向上させること
ができる。更に光信号の伝搬時間の温度依存性を
小さくすることができるので、本考案の光フアイ
バ心線は高精度同期信号系の通信路としても最適
である。
As explained above in detail based on the examples, according to the optical fiber core wire of the present invention, aromatic polyamide fiber-reinforced plastic is used as a coating for the optical fiber wire, so the temperature dependence of transmission characteristics is minimized. As a result, transmission characteristics can be dramatically improved, and mechanical strength can also be improved at the same time. Furthermore, since the temperature dependence of the propagation time of an optical signal can be reduced, the optical fiber core of the present invention is also optimal as a communication path for a high-precision synchronization signal system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光フアイバ心線の端面図、第2図は本
考案の光フアイバを製造する方法を説明するため
の説明図、第3図は温度(℃)−伝送損失変化
(dB/Km)の相関関係を表わすグラスである。 図面中、1は光フアイバ、2は1次被覆層、3
はバツフア層、4は2次被覆層、11は芳香族ポ
リアミド繊維、12は樹脂含浸槽、13は1次被
覆層バツフア層の施された光フアイバ素線、14
は予備成形装置、15は加熱硬化装置、16は引
抜装置、17は巻取装置である。
Figure 1 is an end view of the optical fiber core wire, Figure 2 is an explanatory diagram for explaining the method of manufacturing the optical fiber of the present invention, and Figure 3 is temperature (°C) vs. transmission loss change (dB/Km). This is a glass that represents the correlation between In the drawing, 1 is an optical fiber, 2 is a primary coating layer, and 3 is an optical fiber.
1 is a buffer layer, 4 is a secondary coating layer, 11 is an aromatic polyamide fiber, 12 is a resin impregnation tank, 13 is an optical fiber wire provided with a primary coating layer and a buffer layer, 14
1 is a preforming device, 15 is a heat curing device, 16 is a drawing device, and 17 is a winding device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 芳香族ポリアミド繊維を強化材とする線膨張率
が負の強化プラスチツクにより光フアイバ素線が
被覆されることを特徴とする光フアイバ心線。
An optical fiber core wire characterized in that an optical fiber wire is covered with a reinforced plastic having a negative coefficient of linear expansion and using aromatic polyamide fiber as a reinforcing material.
JP8604682U 1982-06-11 1982-06-11 optical fiber core Granted JPS58188606U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8604682U JPS58188606U (en) 1982-06-11 1982-06-11 optical fiber core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8604682U JPS58188606U (en) 1982-06-11 1982-06-11 optical fiber core

Publications (2)

Publication Number Publication Date
JPS58188606U JPS58188606U (en) 1983-12-15
JPH0224087Y2 true JPH0224087Y2 (en) 1990-07-02

Family

ID=30094879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8604682U Granted JPS58188606U (en) 1982-06-11 1982-06-11 optical fiber core

Country Status (1)

Country Link
JP (1) JPS58188606U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539599B2 (en) * 1985-03-02 1996-10-02 株式会社フジクラ All UV resin coated optical fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587363Y2 (en) * 1980-11-25 1983-02-09 古河電気工業株式会社 coated optical fiber

Also Published As

Publication number Publication date
JPS58188606U (en) 1983-12-15

Similar Documents

Publication Publication Date Title
KR900002554B1 (en) Coated optical fiber
US4690503A (en) Glass optical fiber having a primary and a secondary coating
US6654527B2 (en) Optical fiber cable
US4795234A (en) Reinforced optical fiber
US6167180A (en) Cable having at least one layer of flexible strength members with adhesive and non-adhesive yarns for coupling an outer protective jacket and a buffer tube containing optical fibers
JPH06500183A (en) Insulated waveguide optical fiber cable with buffer
CA2281409A1 (en) Strengthened fiber optic cable
GB2296575A (en) Fibre optic cable ,manufacturing process and plant
CA1131953A (en) Optical fibre transmission cable reinforcement
CN113419319A (en) Aerial optical cable, manufacturing method and production system thereof
CA2209508C (en) Improved optical fiber cable
JPH0224087Y2 (en)
JPH0224086Y2 (en)
JPH09243886A (en) Nonmetallic optical fiber cable
JP2793621B2 (en) Flat optical fiber cord
JPS596268B2 (en) Method of reinforcing glass fiber for optical transmission
JPS6210402B2 (en)
US6625365B2 (en) Overcoated fiber for use in optical fiber cable
JPH0668570B2 (en) Optical fiber core
Foord et al. Special issue paper. Principles of fibre-optical cable design
JPS5965805A (en) Optical fiber core
JPH0414321B2 (en)
JPS646483Y2 (en)
JP2503790Y2 (en) Flexible non-metallic optical fiber cable
JP4593027B2 (en) Self-supporting aerial optical cable and its terminal retaining structure