JPH0224081B2 - - Google Patents

Info

Publication number
JPH0224081B2
JPH0224081B2 JP56072957A JP7295781A JPH0224081B2 JP H0224081 B2 JPH0224081 B2 JP H0224081B2 JP 56072957 A JP56072957 A JP 56072957A JP 7295781 A JP7295781 A JP 7295781A JP H0224081 B2 JPH0224081 B2 JP H0224081B2
Authority
JP
Japan
Prior art keywords
circuit
current
detection circuit
phase
minimum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56072957A
Other languages
Japanese (ja)
Other versions
JPS57186901A (en
Inventor
Junichiro Kaneda
Yoshiharu Hiramatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56072957A priority Critical patent/JPS57186901A/en
Publication of JPS57186901A publication Critical patent/JPS57186901A/en
Publication of JPH0224081B2 publication Critical patent/JPH0224081B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/08Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【発明の詳細な説明】 この発明は、多相一重チヨツパ制御装置の回生
ブレーキ制御において、低速回生でも欠相検知が
働かないようにした電気車制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric vehicle control device in which open-phase detection does not operate even during low-speed regeneration in regenerative brake control of a multi-phase single chopper control device.

多相一重チヨツパ方式というのは、電源からみ
て2相以上のチヨツパ動作をし、かつモータから
みて1相のチヨツパ動作を行う方式である。第1
図が2相一重チヨツパの回生ブレーキ回路の一般
的な例を示す。この第1図においてpanはパンタ
グラフ、LFはフイルタリアクトル、CFはフイル
タコンデンサ、DF1,DF2は逆阻止ダイオード、
CH1,CH2はチヨツパ装置、MSL1,MSL2は
主平滑リアクトル、F1,F2は電動機界磁巻
線、A1,A2は電動機電機子、DCCT1
DCCT2は主回路電流を検出する直流変流器を示
す。
The multi-phase single chopper system is a system that performs chopper operation of two or more phases from the power source's perspective, and one-phase chopper operation from the motor's perspective. 1st
The figure shows a general example of a two-phase single chopper regenerative brake circuit. In this figure 1, pan is a pantograph, LF is a filter reactor, CF is a filter capacitor, DF1 and DF2 are reverse blocking diodes,
CH1 and CH2 are chopper devices, MSL1 and MSL2 are main smoothing reactors, F1 and F2 are motor field windings, A1 and A2 are motor armatures, DCCT 1 ,
DCCT 2 indicates a DC current transformer that detects the main circuit current.

この方式においては、相ごとに回路が独立して
いるので、モータ特性の違い、回路のインピーダ
ンスの違いなどにより、特に低速回生ブレーキで
のモータ電流の立ち上り特性が異なることがあ
る。場合によつては、一つの相のみが電流が立ち
上り、他の相は電流が立ち上らないことが考えら
れる。
In this system, the circuits are independent for each phase, so the rise characteristics of the motor current may differ, especially during low-speed regenerative braking, due to differences in motor characteristics, circuit impedance, etc. In some cases, the current may rise in only one phase, and the current may not rise in the other phases.

一方、多相一重チヨツパにおいて、一つ以上の
相の電流が立ち上らない場合には、架線に流れる
電流リツプルが大きくなり、軌道上の信号回路に
悪影響を与える、いわゆる誘導障害の危険性が考
えられる。
On the other hand, in a multi-phase single chopper, if the current in one or more phases does not rise, the current ripple flowing through the overhead wire becomes large, and there is a risk of so-called inductive failure, which adversely affects the signal circuit on the track. Conceivable.

これを防止するために、通常相間の電流差があ
る一定値以上になつた場合に回路をしや断する保
護回路が具備されている。そのブロツク図を第2
図に示す。
To prevent this, a protection circuit is usually provided that shuts off the circuit when the current difference between the phases exceeds a certain value. The block diagram is the second one.
As shown in the figure.

この第2図において、電流I1とI2の差の絶対値
を検出する絶対値検出回路1の出力|I1−I2|と
基準値I0を比較し、絶対値検出回路1の出力|I1
−I2|が基準値I0を上回わつたときに欠相を検知
して回路をオフする電流検知回路2より構成され
ている。
In FIG . 2, the output of the absolute value detection circuit 1 that detects the absolute value of the difference between the currents I 1 and I 2 is compared with the reference value I 0 and the output of the absolute value detection circuit 1 is |I 1
It is comprised of a current detection circuit 2 that detects an open phase and turns off the circuit when -I 2 | exceeds a reference value I 0 .

また、回生ブレーキを使用する場合、通常回生
ブレーキが立ち上つているかどうかを検知する回
路が設けられている。そのブロツク図を第3図に
示す。この第3図において電流I1とI2の最大値を
検出する最大値検出回路3の出力Imaxと基準値
I0を比較し、出力Imaxが基準値I0を上回わつたと
きに出力する電流検知回路4より構成されてい
る。
Furthermore, when using regenerative braking, a circuit is usually provided to detect whether or not the regenerative braking is activated. Its block diagram is shown in FIG. In this Figure 3, the output Imax of the maximum value detection circuit 3 that detects the maximum values of currents I 1 and I 2 and the reference value
The current detection circuit 4 compares I0 and outputs an output when the output Imax exceeds the reference value I0 .

この発明は、上記の点にかんがみ、通常のチヨ
ツパ装置で使用されている上記検出回路を一つの
回路に簡素化することのできる電気車制御装置を
提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above points, an object of the present invention is to provide an electric vehicle control device that can simplify the detection circuit used in a normal chopper device into a single circuit.

以下、この発明の電気車制御装置の実施例につ
いて図面に基づき説明する。第4図はその一実施
例における電気車制御装置における多相一重チヨ
ツパの電流検知回路のブロツク図である。
Embodiments of the electric vehicle control device of the present invention will be described below with reference to the drawings. FIG. 4 is a block diagram of a current detection circuit of a multi-phase single chopper in an electric vehicle control device in one embodiment.

この第4図において、DCCT1,DCCT2はそれ
ぞれ第1図で示したように、電気車制御装置の主
回路における直流変流器であつて、これらの直流
変流器DCCT1,DCCT2は主回路電流を検知し
て、検出電流I1,I2をそれぞれ最小値検出回路5
に送るようになつている。
In FIG. 4, DCCT 1 and DCCT 2 are DC current transformers in the main circuit of the electric vehicle control device, respectively, as shown in FIG . Detects the main circuit current and outputs the detected currents I 1 and I 2 to the minimum value detection circuit 5.
It is now being sent to

この最小値検出回路5は出力電流I1とI2を入力
して、この出力電流I1とI2の最小値Iminを検出
し、その出力を比較部6に送るようになつてい
る。
The minimum value detection circuit 5 receives the output currents I 1 and I 2 , detects the minimum value Imin of the output currents I 1 and I 2 , and sends the output to the comparison section 6 .

比較部6には、この最小値Iminと基準値I0とが
加えられるようになつており、比較部6は比較器
により構成され、Inio≧I0の場合に出力を出し、
電流検知回路4は電流を検知する。この電流検知
回路4は第3図の電流検知回路と同じものであ
る。
The minimum value Imin and the reference value I 0 are added to the comparison unit 6, which is composed of a comparator and outputs an output when I nio ≧I 0 .
Current detection circuit 4 detects current. This current detection circuit 4 is the same as the current detection circuit shown in FIG.

次に、この発明の電気車制御装置の動作につい
て説明する。この第4図において、かりに直流変
流器DCCT1の検出電流I1が流れなかつた場合、
最小値検出回路5の出力Iminは0となり、電流
検知回路4は出力を出さない。つまり、この回路
は回生ブレーキがかかつていないとみて回路がし
や断されることになつて、片相のみ電流が流れて
誘導障害になる可能性がなくなる。
Next, the operation of the electric vehicle control device of the present invention will be explained. In this Fig. 4, if the detection current I 1 of the DC current transformer DCCT 1 does not flow,
The output Imin of the minimum value detection circuit 5 becomes 0, and the current detection circuit 4 does not output any output. In other words, in this circuit, it is assumed that the regenerative brake has not been applied and the circuit is immediately disconnected, eliminating the possibility that current will flow in only one phase and cause an induction failure.

第2図と第3図の従来の方式では同じ状況の場
合は、第3図の回路は回生ブレーキが効いている
とみなして回路オフされないが、第2図の回路で
は絶対値差回路1の出力電流|I1−I2|が基準値
I0より大きくなつて結局回路オフされる。
In the conventional systems shown in Figures 2 and 3, in the same situation, the circuit in Figure 3 assumes that the regenerative brake is working and is not turned off, but in the circuit in Figure 2, the absolute value difference circuit 1 Output current | I 1 − I 2 | is the reference value
I becomes larger than 0 and the circuit is eventually turned off.

また、直流変流器DCCT2の出力電流I2が流れ
なかつた場合も上記と同様に回路オフされる。さ
らに直流変流器DCCT1,T2の検出電流I1,I2
両方の電流が流れなかつた場合には、この第4図
ではI1=I2=Inio=0でInio<I0となるため電流検
知回路4は出力を出さず、回路はオフされる。第
2図と第3図の従来の方式では、第3図の回路が
最大値検出回路3の出力Imaxが基準値I0に達し
ないため回路オフされる。
Also, when the output current I 2 of the DC transformer DCCT 2 does not flow, the circuit is turned off in the same way as above. Furthermore, if both of the detection currents I 1 and I 2 of the DC transformers DCCT 1 and T 2 do not flow, I 1 = I 2 = I nio = 0 and I nio < I in Fig. 4. Since it becomes 0 , the current detection circuit 4 does not output an output and the circuit is turned off. In the conventional systems shown in FIGS. 2 and 3, the circuit shown in FIG. 3 is turned off because the output Imax of the maximum value detection circuit 3 does not reach the reference value I0 .

さらに、直流変流器DCCT1,DCCT2の両方の
出力電流I1,I2が流れた場合は第4図に示すこの
発明では、電流検知回路4の出力により回生ブレ
ーキが効いているとみなして回路オフされない
が、第2図と第3図の従来方式では第2図の回路
の絶対値差回路1の出力電流|I1−I2|が基準値
I0より小さく、また第3図の回路では回生ブレー
キが効いているとみなされ、回路オフはされな
い。
Furthermore, when the output currents I 1 and I 2 of both the DC current transformers DCCT 1 and DCCT 2 flow, as shown in FIG. However, in the conventional methods shown in FIGS. 2 and 3, the output current |I 1 −I 2 | of the absolute value difference circuit 1 of the circuit shown in FIG. 2 is the reference value.
I is smaller than 0 , and in the circuit shown in Figure 3, it is assumed that the regenerative brake is working, and the circuit is not turned off.

以上のようにこの発明の電気車制御装置によれ
ば、電気車制御装置の回生ブレーキ回路における
各相ごとの電流を検出する各直流変流器からの出
力電流を最小値検出回路に入力して最小値検出回
路で各相電流の最小値を検出し、その検出値と基
準値とを比較した結果が基準値を上回わつたこと
を電流検知回路で検出するようにしたので、従来
2回路で片側回路の失効検知及び回生ブレーキ電
流の立上り検知を行つていたのに対し、この発明
では従来の2回路の機能が集約され、回路構成が
簡素化される利点がある。
As described above, according to the electric vehicle control device of the present invention, the output current from each DC transformer that detects the current for each phase in the regenerative brake circuit of the electric vehicle control device is input to the minimum value detection circuit. The minimum value detection circuit detects the minimum value of each phase current, and the current detection circuit detects when the result of comparing the detected value with the reference value exceeds the reference value, so the conventional two circuits In contrast, the present invention has the advantage of consolidating the functions of the two conventional circuits and simplifying the circuit configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2相一重チヨツパの回生ブレーキ回路
の一般的な例を示す回路図、第2図は従来の2相
一重チヨツパの片側回路失効検知回路のブロツク
図、第3図は従来の回生ブレーキ回路構成検知回
路のブロツク図、第4図はこの発明の電気車制御
装置の一実施例における多相一重チヨツパの電流
検知回路の部分のブロツク図である。 DCCT1,DCCT2……直流変流器、4……電流
検知回路、5……最小値検出回路、6……比較
部。なお、図中同一符号は同一または相当部分を
示す。
Figure 1 is a circuit diagram showing a general example of a regenerative brake circuit for a two-phase single chopper, Figure 2 is a block diagram of a conventional two-phase single chopper one-side circuit failure detection circuit, and Figure 3 is a conventional regenerative brake circuit. Block Diagram of Circuit Configuration Detection Circuit FIG. 4 is a block diagram of the current detection circuit portion of a multi-phase single chopper in an embodiment of the electric vehicle control device of the present invention. DCCT 1 , DCCT 2 ... DC current transformer, 4 ... Current detection circuit, 5 ... Minimum value detection circuit, 6 ... Comparison section. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 二つ以上の直流電動機を制御する多相一重チ
ヨツパ制御装置において、各相電流をそれぞれ検
出する各相ごとの直流変流器からの出力電流を入
力され各相の電流のうちの最小値を検出する最小
値検出回路、上記最小値と基準値とを比較する比
較部、上記最小値が基準値を下回つた場合に直流
電動機の回路をしや断する電流検知回路を具備し
てなることを特徴とする電気車制御装置。
1. In a multi-phase single chopper control device that controls two or more DC motors, the output current from the DC transformer for each phase that detects the current of each phase is input, and the minimum value of the current of each phase is calculated. A minimum value detection circuit for detecting the minimum value, a comparison section for comparing the minimum value with a reference value, and a current detection circuit for cutting off the DC motor circuit when the minimum value falls below the reference value. An electric vehicle control device featuring:
JP56072957A 1981-05-13 1981-05-13 Controlling device for electric rolling stock Granted JPS57186901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56072957A JPS57186901A (en) 1981-05-13 1981-05-13 Controlling device for electric rolling stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56072957A JPS57186901A (en) 1981-05-13 1981-05-13 Controlling device for electric rolling stock

Publications (2)

Publication Number Publication Date
JPS57186901A JPS57186901A (en) 1982-11-17
JPH0224081B2 true JPH0224081B2 (en) 1990-05-28

Family

ID=13504364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56072957A Granted JPS57186901A (en) 1981-05-13 1981-05-13 Controlling device for electric rolling stock

Country Status (1)

Country Link
JP (1) JPS57186901A (en)

Also Published As

Publication number Publication date
JPS57186901A (en) 1982-11-17

Similar Documents

Publication Publication Date Title
CN100550599C (en) Control apparatus for electric railcar
GB2292846A (en) Inverter apparatus for controlling a plurality of motors
US5469351A (en) Fault isolation in an induction motor control system
EP0199315B1 (en) Control system for an electric locomotive having ac to dc converters
JPH07239359A (en) Inverter apparatus and driving method therefor
JPH0224081B2 (en)
JP3910357B2 (en) Electric vehicle control device
USRE39109E1 (en) Inverter circuit
JP4147449B2 (en) Power regeneration converter
JP2613584B2 (en) Electric car control device
JP2763834B2 (en) AC electric car protection system
JP2724324B2 (en) Uninterruptible power supply system
JPH05227759A (en) Power regenerating unit
JPS5918922B2 (en) electric car protection device
JPS5845261B2 (en) Overcurrent detection circuit
JPH0214293Y2 (en)
JP3071975B2 (en) Power converter
JPS58151879A (en) Control circuit for alternating current/direct current converting circuit
KR20000004448U (en) Rectification Circuit of Power Control System
JPH07241001A (en) Auxiliary power supply apparatus for vehicle
JP2779106B2 (en) Open / close control device
SU1585854A1 (en) Three-phase current relay
JPH0246105A (en) Controller for ac electric vehicle
KR20240078681A (en) Motor control circuit
JPH10304554A (en) Malfunction detector and protective device for ac-to-dc converter