JPH02240499A - Evaporated gas processing for liquefied natural gas storage facility - Google Patents

Evaporated gas processing for liquefied natural gas storage facility

Info

Publication number
JPH02240499A
JPH02240499A JP1061245A JP6124589A JPH02240499A JP H02240499 A JPH02240499 A JP H02240499A JP 1061245 A JP1061245 A JP 1061245A JP 6124589 A JP6124589 A JP 6124589A JP H02240499 A JPH02240499 A JP H02240499A
Authority
JP
Japan
Prior art keywords
lng
bog
gas
pressurized
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1061245A
Other languages
Japanese (ja)
Inventor
Yoshibumi Numata
沼田 義文
Takashi Chiba
隆司 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Chiyoda Corp
Tokyo Electric Power Co Inc
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Tokyo Electric Power Co Inc, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP1061245A priority Critical patent/JPH02240499A/en
Publication of JPH02240499A publication Critical patent/JPH02240499A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process

Abstract

PURPOSE:To permit effective liquefaction in a easy-to-operate and low-cost facility by having at least one type of C2-C4 saturated hydrocarbon added to pressurized evaporated-gas and then heat-exchanged with liquefied natural gas from a storage facility to liquefy the evaporated gas. CONSTITUTION:BOG which is given out of a LNG storage tank 1 is pressurized by a BOG compressor 2 to add thereto at least one type of saturated hydrocarbon, such as ethane, propane or butane, led through a heavy-gravity lead line 9 and sent to a heat exchanger 3. On the other hand, LNG which is pressurized up by a LNG pump 6 through the LNG storage tank 1 is led into the heat exchanger 3. Then, heavy-gravity added BOG is cooled and liquefied for storage in a drum 4 and, after returned to the tank 1 or pressurized up by a pump 7, jointed to the LNG which is extracted through the heat exchanger 3, to be sent to consumers through a sending gas pipe system via a LNG carbureter 5. As a result, it is possible to perform effective liquefaction in a easy-to-operate and low-cost facility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液化天然ガス(以下、LNGとする。[Detailed description of the invention] [Industrial application field] The present invention relates to liquefied natural gas (hereinafter referred to as LNG).

)の貯蔵設備における蒸発ガス(以下、BOGとする。) evaporated gas (hereinafter referred to as BOG) in a storage facility.

)の処理方法に関する。さらに詳しくはBOG成分を調
整することにより、効率的にBOGを液化することに関
する。
). More specifically, the present invention relates to efficiently liquefying BOG by adjusting BOG components.

〔従来の技術〕[Conventional technology]

LNGはクリーンエネルギーとして現在その使用量は極
めて多くなっている。LNGは、我が国においてはその
殆どが輸入に依存し、受入れのLNG基地では断熱性の
低温貯槽に貯蔵されているものである。この場合LNG
はメタン等の低沸点成分を組成分とするため貯蔵中外部
入熱による蒸発は避けられず、BOGが多量に発生する
。このBOGは、通常ガス化LNGの送出ガス配管系に
混入して需要先に送ることで処理されているが。
LNG is currently being used in extremely large quantities as a clean energy source. In Japan, most of the LNG is imported, and is stored in insulated low-temperature storage tanks at receiving LNG terminals. In this case LNG
Because the composition consists of low boiling point components such as methane, evaporation due to external heat input during storage is unavoidable, and a large amount of BOG is generated. This BOG is normally treated by mixing it into the gasified LNG delivery gas piping system and sending it to the demand destination.

送出ガス圧力が高くなるに従ってBOGコンプレッサー
の消費動力が増大することになる。そこで消費電力の軽
減を目的に従来からBOGの処理に関して種々の方法が
提案され、大きくはLNGと直接接触吸収液化する方法
とLNGと熱交換器を介して熱交換して液化する方法の
2種に分類される。
As the delivery gas pressure increases, the power consumption of the BOG compressor increases. Therefore, various methods have been proposed for processing BOG in order to reduce power consumption, and there are two main methods: direct contact with LNG and absorption and liquefaction, and liquefaction by heat exchange with LNG through a heat exchanger. are categorized.

例えば、特開昭55−145897は、BOGをBOG
コンプレッサーにて昇圧後、熱交換器にてLNGと熱交
換し液化した後LNGと合流して気化器に送るものであ
る。また特開昭57−43095は、BOGをBOGコ
ンプレッサーにて昇圧抜、加圧ホルダー中へ供給すると
ともに当該ホルダー中にLNGをスプレーすることによ
りBOGとLNGとを直接接触させ、BOGを冷却液化
させて当該加圧ホルダー中に貯蔵するものである。
For example, Japanese Patent Application Laid-Open No. 55-145897 describes BOG as BOG.
After increasing the pressure in a compressor, it exchanges heat with LNG in a heat exchanger and liquefies it, then merges with LNG and sends it to a vaporizer. In addition, JP-A No. 57-43095 discloses that BOG is depressurized by a BOG compressor, supplied into a pressurized holder, and LNG is sprayed into the holder to bring the BOG into direct contact with the LNG, thereby cooling and liquefying the BOG. and stored in the pressurized holder.

さらに特開昭62−142980はBOCをコンプレッ
サーによる2段圧縮とLN(1,を冷媒とした熱交換器
さらに膨張弁とを組み合わせて液化して貯蔵タンクに戻
しているものである。
Furthermore, JP-A-62-142980 discloses a method in which BOC is liquefied by a combination of two-stage compression using a compressor, a heat exchanger using LN (1) as a refrigerant, and an expansion valve, and then returned to a storage tank.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来法は、いずれもBOGを液化するものであるが
、液化システムが複雑となると共に設備装置も増え、操
作が簡便でなくなる上、設備費も嵩むようになっている
。このため発明者等は操作が容易であり、設備費も嵩ま
ないBOG処理について従来法とは全く別の観点から新
な検討を行い本発明に至った。
All of the above-mentioned conventional methods liquefy BOG, but the liquefaction system becomes complicated and the number of equipment increases, making operations less easy and increasing equipment costs. For this reason, the inventors conducted a new study on BOG processing, which is easy to operate and does not require high equipment costs, from a completely different perspective from conventional methods, and arrived at the present invention.

即ち、BOGを液化するための冷媒としては、LNG基
地においてはLNGが最も有効である。
That is, LNG is the most effective refrigerant for liquefying BOG at LNG terminals.

前述のようにBOGを液化するには、コンプレッサーで
BOGをある程度加圧した後、熱交換器にてBOGに液
化潜熱を与える必要がある。一方冷媒となるLNG自体
は熱交換器内では殆ど顕熱の形で熱交換するため、通常
BOGの液化に要するLNG量はBOG処理量の数倍〜
10倍となる。
As mentioned above, in order to liquefy BOG, it is necessary to pressurize BOG to some extent with a compressor and then apply latent heat of liquefaction to BOG with a heat exchanger. On the other hand, LNG itself, which serves as a refrigerant, exchanges heat in the heat exchanger mostly in the form of sensible heat, so the amount of LNG required to liquefy BOG is usually several times the amount of BOG processed.
It becomes 10 times.

このBOG液化のために使われたLNGは、最終的には
気化器で気化されて送出ガス配管系へ送られることにな
る。しかしLNGガスの需要は時間、季節等様々な要因
により変動し、BOG液化用に抜出すLNG量が増大す
るとLNG基地の運用に支障が生じることもあるので、
BOG液化用LNGはできるだけ少量に抑えるのが望ま
しい。
The LNG used for this BOG liquefaction will ultimately be vaporized in a vaporizer and sent to the delivery gas piping system. However, the demand for LNG gas fluctuates depending on various factors such as time and season, and an increase in the amount of LNG extracted for BOG liquefaction may hinder the operation of LNG terminals.
It is desirable to keep the amount of LNG for BOG liquefaction as small as possible.

本発明は、加圧BOGにBOG成分より高沸点成分即ち
重質分を添加し、LNGの冷熱をより効率的に利用し、
従来法の最も簡便なりOGコンプレッサーと熱交換器と
を用いるBOG液化方法において冷媒としてのLNGの
使用量を少量に抑え効果的な液化を提供するものである
The present invention adds a higher boiling point component, that is, a heavier component than the BOG component to pressurized BOG to more efficiently utilize the cold energy of LNG,
This is the simplest conventional BOG liquefaction method that uses an OG compressor and a heat exchanger, which reduces the amount of LNG used as a refrigerant and provides effective liquefaction.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、液化天然ガス貯蔵設備より発生する蒸
発ガスの処理において、該蒸発ガスを加圧し、加圧蒸発
ガスに02〜C4の飽和炭化水素の少なくとも1種を添
加した後、該貯蔵設備からの液化天然ガスと熱交換して
該蒸発ガスを液化することを特徴とする液化天然ガス貯
蔵設備の蒸発ガス処理方法が提供される。
According to the present invention, in the treatment of evaporative gas generated from a liquefied natural gas storage facility, the evaporative gas is pressurized, at least one of 02 to C4 saturated hydrocarbons is added to the pressurized evaporative gas, and then the evaporated gas is stored. Provided is a method for treating evaporated gas from a liquefied natural gas storage facility, which comprises liquefying the evaporated gas by exchanging heat with liquefied natural gas from the facility.

〔実施例〕〔Example〕

本発明について実施例により図面に基づき詳しく説明す
る。
The present invention will be explained in detail by way of examples based on the drawings.

第1図はLNG基地に応用した一実施例の系統図である
。LNG貯蔵貯蔵タンクリ発生するBOGはBOGコン
プレッサー2にて約5 Kg/cm”に加圧後、エタン
、プロパン、及びブタンの飽和炭化水素の少なくとも1
種を重質分導入ライン9にて導入したのち熱交換器3に
送られる。この場合、これら炭化水素の添加量は、LN
Gの組成、LNG貯蔵タンク、LN’G基地環境等によ
りBOGの組成も変化するため一概に規定することはで
きないが、−船釣には重質分添加後のBOC中の重質分
成分比が1〜3容量%(以下同様に%は容量%とする。
FIG. 1 is a system diagram of an embodiment applied to an LNG terminal. The BOG generated in the LNG storage tank is pressurized to approximately 5 Kg/cm" by the BOG compressor 2, and then compressed to at least one of saturated hydrocarbons such as ethane, propane, and butane.
After the seeds are introduced through the heavy fraction introduction line 9, they are sent to the heat exchanger 3. In this case, the amount of these hydrocarbons added is LN
The composition of BOG changes depending on the composition of G, the LNG storage tank, the LN'G base environment, etc., so it cannot be absolutely specified, but - for boat fishing, the ratio of heavy components in BOC after adding heavy components. is 1 to 3% by volume (hereinafter, % is % by volume).

)となるように重質分を添加するのが好ましい。この場
合添加する重質分の成分組成は、冷媒として用いるLN
G組成、圧力、熱交換器の大きさ及び構造等によって適
宜選択することになるが、通常は液化石油ガス(LPG
)が用いられる。また添加する重質分は液状、気体状の
いずれでもよいが、熱交換器入口では全量BOC中へ蒸
発気化しているのが望ましい。熱交換器3に送られた重
質分添加BOGは、前記タンク1から抜出されてLNG
ポンプ6にて昇圧されたLNGと熱交換され液化された
のちドラム4に貯留される。
) is preferably added. In this case, the composition of the heavy component added is LN used as a refrigerant.
Although it is selected appropriately depending on the G composition, pressure, size and structure of the heat exchanger, etc., liquefied petroleum gas (LPG) is usually selected.
) is used. Further, the heavy component to be added may be either liquid or gaseous, but it is desirable that the entire amount be evaporated into BOC at the inlet of the heat exchanger. The heavy content added BOG sent to the heat exchanger 3 is extracted from the tank 1 and converted into LNG.
After being liquefied by heat exchange with LNG pressurized by the pump 6, it is stored in the drum 4.

貯留された液化BOGは前記タンク1に戻すか、或いは
液化BOGポンプ7にて昇圧後、熱交換器3を経た抜出
しLNGに合流してLNG気化器5へ送られて気化され
た後、送出ガス配管系8を通じ発電所等ガス需要先に送
られる。
The stored liquefied BOG is returned to the tank 1, or after being pressurized by the liquefied BOG pump 7, it joins the extracted LNG through the heat exchanger 3, and is sent to the LNG vaporizer 5 where it is vaporized, and then converted into the delivery gas. The gas is sent through a piping system 8 to power plants and other gas demand destinations.

上記の実施例において、BOG137ONm3/hrを
液化して液化BOG1トンを得るのに、重質分としてプ
ロパン55 Kg/hrを添加した場合に要したLNG
は4.4トンであった。これに対しプロパンを添加しな
い場合には、同様に液化BOG 1トンを同一条件で得
るために要したLNGは5.4トンであった。
In the above example, the LNG required when 55 Kg/hr of propane was added as a heavy component to liquefy 137 ONm3/hr of BOG to obtain 1 ton of liquefied BOG
was 4.4 tons. On the other hand, when propane was not added, 5.4 tons of LNG were required to similarly obtain 1 ton of liquefied BOG under the same conditions.

上記実施例のように構成された本発明の方法の作用を第
2図に示す熱交換器内のBOG冷却曲線及びLNG昇温
曲線にて説明する。
The operation of the method of the present invention configured as in the above embodiment will be explained with reference to the BOG cooling curve and LNG temperature rising curve in the heat exchanger shown in FIG.

第2図において、メタン97%、窒素3%からなるBO
Gは、A’ −B’ −C’ のBOG冷却曲線に沿っ
て冷却されB′点において液化が始まり、C゛点で液化
が終了する。BOGは、貯蔵LNGの組成によって多少
の差異はあるがLNGの重質分であるメタン及び窒素か
らなり、殆どは窒素を約2〜lO%含むメタンペーパー
で、エタン、プロパン等LNG中の重質分は僅かに含ま
れる場合があるのみである。
In Figure 2, BO consists of 97% methane and 3% nitrogen.
G is cooled along the BOG cooling curve of A'-B'-C', and liquefaction begins at point B' and ends at point C'. BOG is composed of methane and nitrogen, which are the heavy components of LNG, although there are some differences depending on the composition of the stored LNG. Most of the BOG is methane paper containing about 2 to 10% nitrogen, and it is a methane paper that contains methane and nitrogen, which are the heavy components of LNG such as ethane and propane. Only a small amount may be included.

一方BOGを冷却するLNGは、一般に窒素0゜04〜
0.15%、メタン82〜99.8%、エタン0.07
〜16%、プロパンO〜4%、ブタン0〜1.5%から
なりBOGに冷熱を与えつつ第2図の昇温曲線D”−E
’−F’に沿って昇温する。
On the other hand, LNG used to cool BOG is generally nitrogen 0°04~
0.15%, methane 82-99.8%, ethane 0.07
~16%, propane O~4%, and butane 0~1.5%, while giving cold heat to BOG, temperature rise curve D''-E in Figure 2
The temperature is increased along '-F'.

この場合、BOGを液化するためにBOG冷却曲線とL
NG昇温曲線とが交叉しないように、BOGの発生量に
応じ熱交換器3へのLNG供給量を調節する。
In this case, in order to liquefy BOG, the BOG cooling curve and L
The amount of LNG supplied to the heat exchanger 3 is adjusted according to the amount of BOG generated so that the NG temperature rise curve does not intersect.

本発明の方法においては、上記実施例のようにBOGに
プロパンを添加し、窒素2.9%、メタン95.1%、
プロパン2%としたBOGの場合には、冷却曲線A−B
−Cに沿って冷却されることになり、B点で液化が始ま
り0点で液化が終了する。
In the method of the present invention, propane is added to BOG as in the above example, nitrogen is 2.9%, methane is 95.1%,
In the case of BOG with 2% propane, the cooling curve A-B
-C, liquefaction starts at point B and ends at point 0.

冷媒用LNGは上記組成と同一のものを供給した場合、
第2図から明らかなように昇温曲′線D−E−Fにおけ
るD−Fの温度差は、上記D’−F温度差より大きくと
れ、本発明の方法はLNGの冷熱を効率よく有効利用で
きるものであることが分かる。
When LNG for refrigerant is supplied with the same composition as above,
As is clear from FIG. 2, the temperature difference between D and F in the temperature rise curve D-E-F can be larger than the temperature difference between D' and F, and the method of the present invention efficiently utilizes the cooling energy of LNG. It turns out that it is available.

(発明の効果) 本発明は、LNG貯蔵設備から発生するBOGを直接送
出ガス配管系に送らず、熱交換器を介して液化するもの
で、直接BOGを送出ガス配管系に送る場合に比し送出
ガス圧力の増加に伴うBOGコンプレッサー動力の増大
もなく、かつBOG液化に要するLNG所要量を低減さ
せ、送出ガス配管系への最低送出ガスを低減させること
ができる。さらに、装置設備も少なく設備費も低減でき
る上、処理操作も簡便であり工業上極めて有用である。
(Effects of the Invention) The present invention does not send BOG generated from LNG storage equipment directly to the delivery gas piping system, but instead liquefies it through a heat exchanger. There is no increase in BOG compressor power due to an increase in delivery gas pressure, and the amount of LNG required for BOG liquefaction can be reduced, and the minimum delivery gas to the delivery gas piping system can be reduced. Furthermore, it requires less equipment and equipment, reducing equipment costs, and the processing operation is simple, making it extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す系統図、第2図は実
施例及び比較例における熱交換器内でのBOG冷却曲線
及びLNG昇温曲線である。 1・−L N G貯蔵タンク 2・−B OGコンプレッサー 3・・・熱交換器   4・・・ドラム5−L N G
気化器 6・−L N Gポンプ7・・・液化BO’G
ポンプ 第1図 第 2 図
FIG. 1 is a system diagram showing an example of the present invention, and FIG. 2 is a BOG cooling curve and an LNG temperature increase curve within a heat exchanger in the example and the comparative example. 1・-LNG storage tank 2・-B OG compressor 3...heat exchanger 4...drum 5-LNG
Vaporizer 6・-L N G pump 7...Liquefied BO'G
Pump Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)液化天然ガス貯蔵設備より発生する蒸発ガスの処
理において、該蒸発ガスを加圧し、加圧蒸発ガスにC_
2〜C_4の飽和炭化水素の少なくとも1種を添加した
後、該貯蔵設備からの液化天然ガスと熱交換して該蒸発
ガスを液化することを特徴とする液化天然ガス貯蔵設備
の蒸発ガス処理方法。
(1) In the treatment of evaporative gas generated from liquefied natural gas storage equipment, the evaporative gas is pressurized and converted into pressurized evaporative gas.
A method for treating evaporated gas in a liquefied natural gas storage facility, which comprises adding at least one saturated hydrocarbon of 2 to C_4, and then liquefying the evaporated gas by exchanging heat with the liquefied natural gas from the storage facility. .
JP1061245A 1989-03-14 1989-03-14 Evaporated gas processing for liquefied natural gas storage facility Pending JPH02240499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1061245A JPH02240499A (en) 1989-03-14 1989-03-14 Evaporated gas processing for liquefied natural gas storage facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1061245A JPH02240499A (en) 1989-03-14 1989-03-14 Evaporated gas processing for liquefied natural gas storage facility

Publications (1)

Publication Number Publication Date
JPH02240499A true JPH02240499A (en) 1990-09-25

Family

ID=13165656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1061245A Pending JPH02240499A (en) 1989-03-14 1989-03-14 Evaporated gas processing for liquefied natural gas storage facility

Country Status (1)

Country Link
JP (1) JPH02240499A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703102A2 (en) 2005-02-23 2006-09-20 Kabushiki Kaisha Toshiba Liquefied natural gas power plant and operation method thereof
WO2008136119A1 (en) * 2007-04-26 2008-11-13 Hitachi, Ltd. Gas turbine utilizing cold heat of lng and operating method of gas turbine utilizing cold heat of lng
JP2008309190A (en) * 2007-06-12 2008-12-25 Tokyo Gas Co Ltd Device and method for re-liquefying bog generated in lng storage tank
CN103697327A (en) * 2013-12-13 2014-04-02 杭州克劳特低温设备有限公司 Zero-emission liquid adding system and zero-emission liquid adding method thereof
WO2015128903A1 (en) * 2014-02-28 2015-09-03 日揮株式会社 Receiving equipment for liquefied natural gas
JP2016505784A (en) * 2012-12-20 2016-02-25 クライオスター・ソシエテ・パール・アクシオンス・サンプリフィエ Method and apparatus for reliquefying natural gas
JP2016105022A (en) * 2016-03-01 2016-06-09 日揮株式会社 Liquefied natural gas receiving facility

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703102A2 (en) 2005-02-23 2006-09-20 Kabushiki Kaisha Toshiba Liquefied natural gas power plant and operation method thereof
US7603840B2 (en) 2005-02-23 2009-10-20 Kabushiki Kaisha Toshiba LNG power plant
WO2008136119A1 (en) * 2007-04-26 2008-11-13 Hitachi, Ltd. Gas turbine utilizing cold heat of lng and operating method of gas turbine utilizing cold heat of lng
JPWO2008136119A1 (en) * 2007-04-26 2010-07-29 株式会社日立製作所 LNG cold gas turbine and method of operating LNG cold gas turbine
JP4859980B2 (en) * 2007-04-26 2012-01-25 株式会社日立製作所 LNG cold gas turbine and method of operating LNG cold gas turbine
JP2008309190A (en) * 2007-06-12 2008-12-25 Tokyo Gas Co Ltd Device and method for re-liquefying bog generated in lng storage tank
JP2016505784A (en) * 2012-12-20 2016-02-25 クライオスター・ソシエテ・パール・アクシオンス・サンプリフィエ Method and apparatus for reliquefying natural gas
CN103697327A (en) * 2013-12-13 2014-04-02 杭州克劳特低温设备有限公司 Zero-emission liquid adding system and zero-emission liquid adding method thereof
WO2015128903A1 (en) * 2014-02-28 2015-09-03 日揮株式会社 Receiving equipment for liquefied natural gas
JP5959782B2 (en) * 2014-02-28 2016-08-02 日揮株式会社 Facility for receiving liquefied natural gas
JP2016105022A (en) * 2016-03-01 2016-06-09 日揮株式会社 Liquefied natural gas receiving facility

Similar Documents

Publication Publication Date Title
JP6533311B2 (en) Fuel gas supply system
EP3437980A1 (en) Boil-off gas re-liquefying device and method for ship
KR20090025514A (en) A bog re-liquefaction system for lng carrier
JP3868033B2 (en) Method and apparatus for reliquefaction of LNG boil-off gas
JPH02240499A (en) Evaporated gas processing for liquefied natural gas storage facility
US6237364B1 (en) Process for producing a pressurized methane-rich liquid from a methane-rich gas
JP3610251B2 (en) BOG reliquefaction method using LNG
US3760597A (en) Short term storage of natural gas
KR101883466B1 (en) Boil Off Gas Processing System and Method of Ship
JP2001208297A (en) Method of storing liquefied petroleum gas at low temperature
Choi LNG for petroleum engineers
CN109070977A (en) ship
KR20200144696A (en) Boil-Off Gas Processing System and Method
KR20010077227A (en) Reliquefication system of boiled-off-gas using cold energy in LNG and mothod therefor
KR20200067717A (en) liquefaction system of boil-off gas and ship having the same
KR102584509B1 (en) Fuel gas re-liquefaction system
EP3951297B1 (en) Cooling system
KR101945473B1 (en) Reliquefaction system
JPH11182795A (en) Method for reliquefying bog generated in lng tank and device therefor
KR102460400B1 (en) Boil-Off Gas Treatment System and Method for Ship
JPH04370499A (en) Treatment method for vaporized gas generated in liquefied natural gas storage tank
JP2002062043A (en) Apparatus for processing evaporated gas of liquefied natural gas
JPS5641297A (en) Treatment of boil-off gas produced in lng storage tank
KR101852132B1 (en) Lng supply system
KR20230121638A (en) BOG re-liquefaction system