JPH02240235A - Manufacture of high nitrogen-containing austenitic alloy - Google Patents

Manufacture of high nitrogen-containing austenitic alloy

Info

Publication number
JPH02240235A
JPH02240235A JP6019189A JP6019189A JPH02240235A JP H02240235 A JPH02240235 A JP H02240235A JP 6019189 A JP6019189 A JP 6019189A JP 6019189 A JP6019189 A JP 6019189A JP H02240235 A JPH02240235 A JP H02240235A
Authority
JP
Japan
Prior art keywords
alloy
powder
hot working
steel
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6019189A
Other languages
Japanese (ja)
Inventor
Shigeki Azuma
茂樹 東
Takeo Kudo
赳夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6019189A priority Critical patent/JPH02240235A/en
Publication of JPH02240235A publication Critical patent/JPH02240235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a high nitrogen austenitic alloy having excellent strength and corrosion resistance with high efficiency by packing metallic nitride fine powder and alloy powder into a metallic vessel and subjecting the mixed body to hot working under specified conditions. CONSTITUTION:The unsintered mixed body of fine powder of Cr series metallic nitride or the like and alloy powder of stainless steel or the like is packed into a metallic vessel made of steel or the like, which is deaerated and sealed. The mixed body is subjected to hot working a cross-sectional reduction ratio of >=5 at the temp. of 900 deg.C to the m.p. or below to refine the metallic nitride and to form an alloy phase. The hot working is executed by forging, rolling, extruding or the like. In this way, a sintering stage under high temp. and high pressure is unnecessitated, by which the high nitrogen-contg. austenitic alloy can be manufactured with high efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高窒素含有オーステナイト系合金の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a high nitrogen content austenitic alloy.

さらに詳述すれば、本発明は粉末冶金法を利用して、窒
素供給源として窒化物微粉を利用した高窒素含有オース
テナイト系焼結合金の製造方法に関する。
More specifically, the present invention relates to a method of manufacturing a high nitrogen content austenitic sintered alloy using powder metallurgy and using fine nitride powder as a nitrogen source.

(従来の技術) NはC、、Nis Mn、 Co等とならんで代表的な
オーステナイト生成元素であり、耐食性、特に耐孔食性
および耐隙間腐食性を改善する元素として、ならびに高
温における鋼の引張強度を高める元素として鋼中に添加
されてきた。
(Prior art) N is a typical austenite-forming element along with C, Nis, Mn, Co, etc., and is used as an element that improves corrosion resistance, especially pitting corrosion resistance and crevice corrosion resistance, and improves tensile strength of steel at high temperatures. It has been added to steel as an element to increase strength.

しかしながら、従来の溶解材においては溶鋼中への溶解
度、凝固時の気泡発生、バブリングの問題等によりその
添加量に限界があり、市販鋼においては特殊な耐熱高強
度鋼である高Mn含有鋼に高々0.45%程度含有され
ている例をみる程度である。
However, there are limits to the amount of conventional molten metals that can be added due to problems such as solubility in molten steel, bubble generation during solidification, and bubbling. There are only cases where the content is about 0.45% at most.

これらはいずれも溶解法によるものであるが、従来にあ
っても鋼の高窒素化の利点は十分に認識されており、そ
のために多くの努力が重ねられてきたことが分かる。
All of these methods are based on the melting method, but it can be seen that the advantages of high nitrogen content in steel have been well recognized in the past, and many efforts have been made for this purpose.

その他、高圧力雰囲気下での溶解、鋳造といった方法に
よる高窒素化も考えられるが、小規模実験的にはともか
く、工業的規模での実用化は甚だ困難であり、装置上の
制約も橿めて大きい。
Other methods of achieving high nitrogen content, such as melting or casting in a high-pressure atmosphere, can be considered, but apart from small-scale experiments, practical application on an industrial scale is extremely difficult, and there are also limitations on equipment. It's big.

例えば、[日本金属学会誌J Vol、34、寛2.1
970、pp、188〜194には高温高圧下で窒素を
平衡させる実験結果が述べられており、それによればF
6−Mn (27%Mn) !ltiについてほぼ1.
4%の窒素が吸収されたことが報告されている。
For example, [Journal of the Japan Institute of Metals J Vol, 34, Hiroshi 2.1
970, pp. 188-194 describes the experimental results of nitrogen equilibration under high temperature and high pressure, and according to this, F.
6-Mn (27%Mn)! About lti about 1.
It has been reported that 4% of nitrogen was absorbed.

このように従来より高窒素化には多くの努力が払われて
きたのであったが、未だそれを工業的規模で実用化する
ことは勿論、窒素の固溶限を超えて添加することは不可
能と考えられていたのが現状であった。
As described above, much effort has been made to increase the nitrogen content, but it is still difficult to put it into practical use on an industrial scale, and it is still difficult to add more than the solid solubility limit of nitrogen. At present, this was thought to be possible.

すなわち耐孔食性、耐隙間腐食性の改善、あるいは高強
度化といった観点からは鋼中窒素濃度は高い程望ましい
が、窒素はガス成分であるため溶鋼中への固溶度には限
界があり、さらには凝固時の気泡発生防止の面から添加
量は上限が決まっている。すなわち従来においてはステ
ンレス溶鋼中への固溶量を増大させる目的より高Mn化
等の成分調整あるいは加圧下での溶解、鋳造といった方
法が採用されていたが、例えば特公昭50−8967号
公報に開示されているように窒素の添加量は高々0.4
5%程度であった。
In other words, from the viewpoint of improving pitting corrosion resistance, crevice corrosion resistance, or increasing strength, the higher the nitrogen concentration in steel, the more desirable it is, but since nitrogen is a gas component, there is a limit to its solid solubility in molten steel. Furthermore, the upper limit of the amount added is determined from the viewpoint of preventing the generation of bubbles during solidification. In other words, in the past, methods such as component adjustment such as increasing Mn content, melting under pressure, and casting were adopted for the purpose of increasing the amount of solid solution in molten stainless steel. As disclosed, the amount of nitrogen added is at most 0.4
It was about 5%.

ところで、粉末冶金法により鉄系粉末と金属窒化物粉末
とから焼結晶を製造することは切削工具および軸受など
の耐摩耗性を必要とされる製品の製造方法として広く知
られている。
By the way, manufacturing sintered crystals from iron-based powder and metal nitride powder by powder metallurgy is widely known as a method for manufacturing products such as cutting tools and bearings that require wear resistance.

しかしながら、これらはいずれも窒化物それ自体が有す
る、高温下での安定性および耐熱性をそのまま利用しよ
うとするものであり、固溶窒素量を増大させることによ
りオーステナイト組織化を図るということは行われてい
なかった。またその場合の窒化物は炭化物と均等物と考
えられるものである。
However, these methods all attempt to utilize the stability and heat resistance at high temperatures that nitrides themselves have, and do not attempt to form an austenite structure by increasing the amount of solid solution nitrogen. It wasn't. In this case, the nitride is considered to be equivalent to the carbide.

そこで本発明者らは、特開昭61−227153号公報
において、金属窒化物微粉と合金粉とを混合し、これを
金属容器内で焼結することにより金属窒化物を分解し合
金側へ拡散させることにより、鋼の高強度化、高耐食性
化を図る手段を提案した。
Therefore, the present inventors, in Japanese Patent Application Laid-Open No. 61-227153, mixed metal nitride fine powder and alloy powder and sintered the mixture in a metal container to decompose the metal nitride and diffuse it to the alloy side. We proposed a means to increase the strength and corrosion resistance of steel by

(発明が解決しようとする課題) 特開昭61−227153号公報に開示した手段によれ
ば、任意の鋼中窒素濃度を有し、かつ高強度・高耐食性
を有する高窒素含有オーステナイト系合金を確実に製造
することができる。
(Problems to be Solved by the Invention) According to the means disclosed in JP-A No. 61-227153, a high nitrogen-containing austenitic alloy having an arbitrary nitrogen concentration in steel and having high strength and high corrosion resistance can be produced. It can be manufactured reliably.

しかし本発明者らがさらに検討を続けた結果、この手段
により高窒素含有オーステナイト系合金を得るためには
高温・高圧条件下での焼結工程が必要であり、通常この
焼結工程は数時間程度行う必要があるために、生産性、
製造コストとも低下し、工業的規模での実用化は比較的
困難であることがわかった。
However, as a result of further investigation by the present inventors, it was found that in order to obtain a high nitrogen content austenitic alloy by this method, a sintering process under high temperature and high pressure conditions is required, and this sintering process usually takes several hours. The degree of productivity that needs to be done,
It was found that the manufacturing cost was low and practical application on an industrial scale was relatively difficult.

すなわち従来は、高能率に、すなわち短時間で確実に高
窒素含有オーステナイト系合金を製造する方法を提供す
ることはできなかったのである。
That is, conventionally, it has not been possible to provide a method for reliably producing a high nitrogen content austenitic alloy with high efficiency, that is, in a short period of time.

ここに本発明の目的は、強度、耐食性に優れた高窒素含
有オーステナイト系合金を高能率で製造する方法を提供
することにある。
It is therefore an object of the present invention to provide a method for producing a highly nitrogen-containing austenitic alloy having excellent strength and corrosion resistance with high efficiency.

(課題を解決するための手段) 本発明者らは上記課題を解決するため、まず本発明者ら
が特開昭61−227153号公報に開示した手段にお
いて、金属窒化物微粉と合金粉との混合物を加熱し金属
窒化物を分解するために高温、高圧下に保持することが
必要であると考えた理由を再度詳細に検討した。つまり
、これまでは、高温、高圧下に保持しなければ、窒化物
の分解に伴って発生する窒素ガスが気泡となり健全な合
金組織が得られないと考えていたのであった。
(Means for Solving the Problems) In order to solve the above problems, the present inventors first proposed the method disclosed in JP-A No. 61-227153, in which a metal nitride fine powder and an alloy powder are combined. The reason why it was considered necessary to heat the mixture and hold it under high temperature and pressure to decompose the metal nitrides was examined in detail again. In other words, it was previously believed that unless the alloy was maintained at high temperature and high pressure, the nitrogen gas generated as the nitride decomposed would form bubbles and a healthy alloy structure could not be obtained.

ここに、本発明者らは、上述のような高温、高圧の条件
下での保持に代えて、すなわち焼結過程を経ずに金属窒
化物と合金粉との混合粉末を金属容器内に充填し、脱気
、密封した後、そのまま熱間加工をすること、および前
記熱間加工の条件を適切に設定することにより窒素ガス
の発生もなく健全な合金組織が得られることを見い出し
た。
Here, the inventors of the present invention filled a mixed powder of metal nitride and alloy powder into a metal container instead of holding it under high temperature and high pressure conditions as described above, that is, without going through the sintering process. However, it has been found that a sound alloy structure can be obtained without generating nitrogen gas by hot working the alloy after it has been degassed and sealed, and by appropriately setting the hot working conditions.

つまり、上記混合粉末に900℃以上融点以下の温度で
断面圧下比5以上の熱間加工を施こすことにより金属窒
化物はより微細に粉砕された形で合金粉内および合金粉
間に分散されるとともに各合金粉同士は互いに密着して
合金化することを知見して、本発明牽完成した。
In other words, by hot working the above mixed powder at a temperature of 900°C or higher and lower than the melting point with a cross-sectional reduction ratio of 5 or more, the metal nitrides are dispersed within and between the alloy powder in a more finely pulverized form. The present invention was completed based on the finding that the alloy powders adhere to each other and form an alloy.

ここに本発明の要旨とするところは、金属窒化物微粉と
合金粉との未焼結混合体を金属容器内に充填し、脱気、
密閉した後、900℃以上融点以下の温度で断面圧下比
5以上の熱間加工を行う工程を含む高窒素含有オーステ
ナイト系合金の製造方法である。
The gist of the present invention is to fill a metal container with an unsintered mixture of metal nitride fine powder and alloy powder, deaerate it,
This is a method for producing a high nitrogen-containing austenitic alloy, which includes a step of hot working at a cross-sectional reduction ratio of 5 or more at a temperature of 900° C. or higher and lower than the melting point after sealing.

本発明において「断面圧下比」とは、(加工前の断面積
)/(加工後の断面積)をいい、「充填」とは、必要に
応じて震動等を利用しながら、金属窒化物微粉と合金粉
との未焼結混合体を金属容器内に装入して一杯にした状
態をいう。
In the present invention, the "cross-sectional reduction ratio" refers to (cross-sectional area before processing)/(cross-sectional area after processing), and "filling" means to fill the metal nitride fine powder by using vibration etc. as necessary. This refers to the state in which an unsintered mixture of powder and alloy powder is charged into a metal container and filled to capacity.

また本発明において「熱間加工」とは、粉末冶金法によ
り製品を製造する際に用いる加工法をいい、具体的には
、鍛造、圧延もしくは押し出しまたはこれらの結合が例
示される。
Further, in the present invention, "hot working" refers to a processing method used when manufacturing a product by a powder metallurgy method, and specifically includes forging, rolling, extrusion, or combination thereof.

なお、「融点」とは合金粉の融点である。Note that the "melting point" is the melting point of the alloy powder.

(作用) 次に、本発明における製造工程について詳細に説明する
。なお以下の本発明の説明においては、合金粉としてス
テンレス鋼粉を、また金属容器として鋼製カプセルを用
いる。
(Function) Next, the manufacturing process in the present invention will be explained in detail. In the following description of the present invention, stainless steel powder is used as the alloy powder, and a steel capsule is used as the metal container.

まず、本発明によれば、ステンレス鋼粉と金属窒化物粉
末とを均一に混合した後、jil!!カプセルに充填し
、常温または加熱しながら真空に引いて内部を脱気し、
または脱気後、鋼製カプセル内にN8ガスを充填し密閉
する。
First, according to the present invention, after uniformly mixing stainless steel powder and metal nitride powder, jil! ! Fill the capsule and degas the inside by vacuuming at room temperature or while heating.
Alternatively, after degassing, the steel capsule is filled with N8 gas and sealed.

ステンレス銅粉はアトマイズ法、粉砕法、粒界腐食法な
どにより製造されるが、酸素含有量が少ないという観点
から、非酸化性噴霧媒、例えばN8ガス、^rガス、H
eガス等によるガスアトマイズ法により製造されたもの
を用いるが好ましい。このようなアトマイズ銅粉のうち
、平均粒径20〇−以下、好ましくは100−以下のア
トマイズ銅粉が望ましく、また、鋼粉中の酸素濃度は低
いほど良い。
Stainless steel copper powder is manufactured by atomization, pulverization, intergranular corrosion, etc., but from the viewpoint of low oxygen content, non-oxidizing spray media such as N8 gas, ^r gas, H
It is preferable to use one manufactured by a gas atomization method using e-gas or the like. Among such atomized copper powders, atomized copper powders with an average particle size of 200 mm or less, preferably 100 mm or less are desirable, and the lower the oxygen concentration in the steel powder, the better.

望ましくは0.03%以下である。It is preferably 0.03% or less.

一方、金属窒化物としては、N濃度が高く、室温では安
定であるが、1000℃以上の温度では分解しやすいも
のが好ましい0本発明に用いられるそのような金属窒化
物としては、CrとNを主たる成分とする主としてCr
Jおよび/またはCrNよりなるCr系窒化物、Feと
Nを主たる成分とする主としてFe1Nおよび/または
Fe4NよりなるPa系窒化物、■系窒化物、si系窒
化物、M系窒化物、M、系窒化物などがあり、またはこ
れらの複合窒化物でも良い、複合窒化物の系としてFe
 −Cr系、Fe−V系、Fe −Mn系、Fe−Cr
−V系、Fe−Cr −V −Mn系等がある。この場
合に金属窒化物の系は、目的とする合金系成分、ならび
に製造性、経済性等により適宜選択されれば良い。
On the other hand, it is preferable that the metal nitride has a high N concentration and is stable at room temperature, but easily decomposed at temperatures of 1000°C or higher.As such metal nitrides used in the present invention, Cr and N Mainly Cr with main component
Cr-based nitride consisting of J and/or CrN, Pa-based nitride consisting mainly of Fe1N and/or Fe4N whose main components are Fe and N, ■-based nitride, Si-based nitride, M-based nitride, M, Fe-based nitrides may be used, or composite nitrides of these may be used.
-Cr system, Fe-V system, Fe-Mn system, Fe-Cr
-V system, Fe-Cr -V -Mn system, etc. In this case, the metal nitride system may be appropriately selected depending on the intended alloy system components, manufacturability, economic efficiency, etc.

なお、Cr□Nを用いた場合には、従来の溶製法による
高窒素鋼で問題となるCr1N析出に伴う耐食性劣化の
問題が本発明においては発生しないことから、金属窒化
物微粉としてはCrJの微粉が好ましい。
In addition, when Cr□N is used, the problem of corrosion resistance deterioration due to Cr1N precipitation, which is a problem with high nitrogen steel made by conventional melting methods, does not occur in the present invention, so CrJ is used as the metal nitride fine powder. Fine powder is preferred.

このように金属窒化物微粉はすでに良く知られた市販の
ものであれば充分であり、あるいは金属粉末の製造時あ
るいは金属容器への充填時に予めN2ガスとともに加熱
することにより処理して窒化物を生成させてもよい。
In this way, it is sufficient to use the metal nitride fine powder as long as it is a well-known commercially available powder, or it can be treated by heating with N2 gas in advance when producing the metal powder or filling it into a metal container to form the nitride. It may be generated.

本発明において使用される金属窒化物の平均粒径は小さ
い方が望ましく一般には80us以下が好ましく、さら
に望ましくは平均粒径1〇−以下が良い。
The average particle size of the metal nitride used in the present invention is desirably small, generally preferably 80 us or less, and more desirably an average particle size of 10 μm or less.

金属窒化物はその製造工程において酸化されやすいが、
金属窒化物中の酸素濃度は低ければ低いほど良い、望ま
しくは金属窒化物中の酸素濃度は0゜2%以下とする。
Metal nitrides are easily oxidized during the manufacturing process, but
The lower the oxygen concentration in the metal nitride, the better. Desirably, the oxygen concentration in the metal nitride is 0.2% or less.

各粉末の配合割合は、得られた合金中の未固溶窒化物に
よる靭性劣化によって制限され、例えばCrヨN粉末を
用いた場合、合金粉に対し20%以下、さらに望ましく
は10%以下とするのが良い。
The blending ratio of each powder is limited by the deterioration of toughness due to undissolved nitrides in the resulting alloy. For example, when using Cr-N powder, it should be 20% or less, more preferably 10% or less, based on the alloy powder. It's good to do that.

粉末混合体を充填する金属容器としての鋼製カプセルは
炭素鋼製、ステンレス鋼製いずれでも良いが、この容器
を構成する鋼中の炭素含有量は低い方がより好ましい、
加熱処理時に容器からの浸炭を防止するためである。こ
の炭素含有量は炭素鋼の場合、0.03%以下、ステン
レス鋼の場合0.02%以下がもっとも望ましい、真空
引きの際の保持温度は室温でも良いが、内部の水分を除
去する目的から加熱する方がより効果的である。
The steel capsule serving as a metal container filled with the powder mixture may be made of either carbon steel or stainless steel, but it is more preferable that the steel constituting this container has a low carbon content.
This is to prevent carburization from the container during heat treatment. The carbon content is most preferably 0.03% or less for carbon steel, and 0.02% or less for stainless steel.The holding temperature during vacuuming may be room temperature, but for the purpose of removing internal moisture, Heating is more effective.

真空脱気の程度は10−S〜10” ”Torr程度が
望ましい、これは表面付着ガス分を除去するためであり
、その限りで特に制限されない、脱気完了後はシーム溶
接などを行つて金属容器を密閉する。
The degree of vacuum degassing is preferably about 10-S to 10" Torr. This is to remove gas adhering to the surface, and there is no particular restriction as far as that. After the degassing is completed, seam welding etc. is performed to bond the metal. Seal the container.

また、金属窒化物が分解しない温度範囲内で、より高温
において真空引きすることが望ましい。
Further, it is desirable to perform evacuation at a higher temperature within a temperature range in which the metal nitride does not decompose.

脱気後N□ガスをカプセル内に充填すると加熱時の熱伝
達がより改善される効果があり、好適である。
Filling the capsule with N□ gas after degassing has the effect of further improving heat transfer during heating, which is preferable.

次いでこの金属容器内に充填された未焼結混合体を90
0℃以上融点以下の温度で熱間加工し、金属窒化物の微
細化、合金相の形成を行う、900℃未満では合金粉の
変形が小さいため合金化が十分でない、この熱間加工の
方法としては例えば鍛造、圧延、押し出しおよびそれら
の組合せでよく、これらの方法によればそれぞれ板材、
管材、棒材への成形が可能である。熱間での加工度は断
面圧下比として5以上が必要である。ここに断面圧下比
とは、前述したように(加工前の断面積)/(加工後の
断面積)をいう、この断面圧下比が5未満では金属窒化
物の微細化、合金粉同士の密着が不完全となって、健全
な合金!k11織が得られないからである。
Next, the unsintered mixture filled in this metal container was
This hot working method involves hot working at a temperature above 0°C and below the melting point to refine the metal nitride and form an alloy phase. Below 900°C, alloying is not sufficient because the deformation of the alloy powder is small. For example, forging, rolling, extrusion, and combinations thereof may be used, and according to these methods, plate material,
Can be formed into pipes and rods. The degree of hot working requires a cross-sectional reduction ratio of 5 or more. As mentioned above, the cross-sectional reduction ratio here refers to (cross-sectional area before processing)/(cross-sectional area after processing).If this cross-sectional reduction ratio is less than 5, metal nitrides become finer and alloy powders adhere to each other. But it becomes an imperfect, healthy alloy! This is because a k11 weave cannot be obtained.

かくして、本発明方法により、高窒素含有オーステナイ
ト系合金を容易に、かつ高温・高圧下での数時間にわた
る焼結工程が不要となり、効率的に製造することが可能
である。もちろん、得られるオーステナイト系合金、例
えばオーステナイト系ステンレス鋼の具体的組織は最初
の出発粉末の配合を変えることにより自由に変えること
ができる。特に本発明によればN含有量は0.01〜2
.0%とすることができる。
Thus, according to the method of the present invention, a high nitrogen-containing austenitic alloy can be produced easily and efficiently without the need for a sintering process lasting several hours at high temperature and high pressure. Of course, the specific structure of the resulting austenitic alloy, such as austenitic stainless steel, can be freely changed by changing the composition of the initial starting powder. In particular, according to the invention, the N content is between 0.01 and 2.
.. It can be set to 0%.

さらに本発明をその実施例とともに詳述する。Further, the present invention will be explained in detail along with examples thereof.

なお、これはあくまでも本発明の例示であり、これによ
り本発明が不当に制限されるものではない。
Note that this is merely an example of the present invention, and the present invention is not unduly limited thereby.

実施例 それぞれ第1表および第2表に示した組織、粒径を有す
る各ステンレス鋼粉(融点: 1390〜1468℃)
にCr系窒化物粉末を3.4〜6.3%の割合で種々混
合した後、鋼中炭素濃度が0.018%である直径80
mm、高さ180m−の炭素鋼製カプセルに充填し加熱
しながら真空に引いて内部を脱気し密閉した。
Examples Each stainless steel powder (melting point: 1390-1468°C) having the structure and particle size shown in Tables 1 and 2, respectively.
After mixing various Cr-based nitride powders at a ratio of 3.4 to 6.3%, steel with a diameter of 80 mm and a carbon concentration of 0.018% was prepared.
The mixture was filled into a carbon steel capsule with a diameter of 180 m and a height of 180 m, and the inside was evacuated and sealed while heating.

真空引きの条件はlXl0−’−−〇、であり、その際
の加熱条件は550℃×1h「であった。
The conditions for evacuation were lXl0-'--〇, and the heating conditions at that time were 550°C x 1h''.

次いでこれを1200℃で1時間加熱後、直径301I
llの棒材に熱間押し出しした。
Next, after heating this at 1200°C for 1 hour, the diameter was 301I.
It was hot extruded into a 1 liter bar.

またAg3については押し出し直径を30mmから75
1まで変化させ、さらにそのうちの一部には、熱間加工
に代えて1300℃、2000気圧、4時間の条件で旧
Pを行った。
Also, for Ag3, the extrusion diameter was changed from 30mm to 75mm.
1, and some of them were subjected to old P under conditions of 1300° C., 2000 atm, and 4 hours instead of hot working.

このようにして得た高窒素含有オーステナイト系ステン
レス鋼から試料猶1ないし試料部9を切り出して引張試
験、シャルピー衝撃試験および人工海水中での孔食電位
測定をそれぞれ実施した。
Samples 1 to 9 were cut out from the high nitrogen-containing austenitic stainless steel thus obtained and subjected to a tensile test, a Charpy impact test, and a pitting potential measurement in artificial seawater.

各試験結果をまとめて第3表に示す。The results of each test are summarized in Table 3.

(以下余白) なお引張試験は平行部が直径5−鋤、長さ30+uiの
丸棒引張試験片で行った。シャルピー衝撃試験は2鶴−
■ノツチ付JIS 4号ハーフサイズ(厚さ5 an)
を用い一20℃で実施した。また孔食電位測定はAr脱
気した人工海水80℃中で行い電流密度が100μA/
cm”となる電位Vcにより評価した。
(The following is a margin) The tensile test was conducted using a round bar tensile test piece whose parallel portion had a diameter of 5 mm and a length of 30+ ui. Charpy impact test is 2 Tsuru-
■JIS No. 4 half size with notch (thickness 5 an)
The test was carried out at -20°C. The pitting potential was measured in artificial seawater at 80°C degassed with Ar at a current density of 100μA/
The evaluation was made based on the potential Vc at which the temperature was 100 cm.

第3表から明らかなように、本発明にかかる方法により
得られた試料患1ないし試料嵐4は、シャルピー衝撃吸
収エネルギー、孔食電位とも従来から得られている高窒
素含有ステンレス鋼と同程度に優れていることがわかる
As is clear from Table 3, the Charpy impact absorption energy and pitting corrosion potential of Samples 1 to 4 obtained by the method of the present invention are comparable to those of conventionally obtained high nitrogen content stainless steels. It can be seen that it is excellent.

これに対して、試料−5ないし試料患9は、比較例の試
料である。
On the other hand, Sample-5 to Sample-9 are comparative samples.

試料陳5ないし隘8は、断面圧下比が4.5〜1.8と
本発明の範囲より小さいため、健全な合金組織が得られ
ず、シャルピー衝撃吸収エネルギーおよび孔食電位が著
しく小さくなってしまっている。
Samples No. 5 to No. 8 had a cross-sectional reduction ratio of 4.5 to 1.8, which was smaller than the range of the present invention, so a healthy alloy structure could not be obtained, and the Charpy impact absorption energy and pitting corrosion potential were significantly reduced. It's stored away.

また試料隠9は、断面圧下比が5以上の熱間加工を行な
わす旧Pを行つたままの試料であり、機械的特性は優れ
るが、この後にさらに加工を行う必要があり、本発明に
かかる方法に比較して、生産性の低下が著しいことがわ
かる。
In addition, sample Hidden 9 is a sample that has been subjected to the old P in which hot working is performed with a cross-sectional reduction ratio of 5 or more, and although it has excellent mechanical properties, it is necessary to perform further processing after this. It can be seen that the productivity is significantly reduced compared to this method.

(発明の効果) 以上の説明からも明らかなように、本発明によって高温
、高圧下の焼結工程を経ずに、・900℃以上の高温で
断面圧下比5以上の熱間加工を行うことにより、高効率
的に、すなわち短時間での高窒素オーステナイト系合金
の製造が可能である。
(Effects of the Invention) As is clear from the above explanation, the present invention allows hot working to be performed at a high temperature of 900°C or higher and with a cross-sectional reduction ratio of 5 or more, without going through a sintering process at high temperature and high pressure. This makes it possible to produce a high-nitrogen austenitic alloy with high efficiency, that is, in a short period of time.

かかる効果を有する本発明の実用上の意義は著しい。The practical significance of the present invention having such effects is remarkable.

Claims (1)

【特許請求の範囲】[Claims] 金属窒化物微粉と合金粉との未焼結混合体を金属容器内
に充填し、脱気、密閉した後、900℃以上融点以下の
温度で断面圧下比5以上の熱間加工を行う工程を含む高
窒素含有オーステナイト系合金の製造方法。
A process of filling an unsintered mixture of fine metal nitride powder and alloy powder into a metal container, degassing it, sealing it, and then hot working it at a temperature of 900°C or more and less than the melting point and with a cross-sectional reduction ratio of 5 or more. A method for producing a high nitrogen content austenitic alloy comprising:
JP6019189A 1989-03-13 1989-03-13 Manufacture of high nitrogen-containing austenitic alloy Pending JPH02240235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6019189A JPH02240235A (en) 1989-03-13 1989-03-13 Manufacture of high nitrogen-containing austenitic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6019189A JPH02240235A (en) 1989-03-13 1989-03-13 Manufacture of high nitrogen-containing austenitic alloy

Publications (1)

Publication Number Publication Date
JPH02240235A true JPH02240235A (en) 1990-09-25

Family

ID=13135021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6019189A Pending JPH02240235A (en) 1989-03-13 1989-03-13 Manufacture of high nitrogen-containing austenitic alloy

Country Status (1)

Country Link
JP (1) JPH02240235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115896601A (en) * 2022-11-10 2023-04-04 上海相济新材料科技有限公司 Manufacturing method of high-purity high-nitrogen austenitic stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115896601A (en) * 2022-11-10 2023-04-04 上海相济新材料科技有限公司 Manufacturing method of high-purity high-nitrogen austenitic stainless steel

Similar Documents

Publication Publication Date Title
US5856625A (en) Stainless steel powders and articles produced therefrom by powder metallurgy
EP0331679B1 (en) High density sintered ferrous alloys
RU2753717C2 (en) Stainless steel powder for duplex sintered stainless steel
EP2285996B1 (en) Iron- based pre-alloyed powder
EP0534864A1 (en) Duplex stainless steel having improved corrosion resistance and process for the production thereof
EP1768803B1 (en) Sintered part made of stainless steel powder
EP0810296A1 (en) High strength, corrosion resistant austenitic stainless steel and consolidated article
US6168755B1 (en) High nitrogen stainless steel
JP2011094187A (en) Method for producing high strength iron based sintered compact
JP2013542316A (en) Processable high thermal neutron absorbing Fe-based alloy
JPH0713243B2 (en) Method for producing highly corrosion resistant Ni-based alloy tube
Preusse et al. Use of phosphide phase additions to promote liquid phase sintering in 316L stainless steels
JPH02240235A (en) Manufacture of high nitrogen-containing austenitic alloy
EP0946324B1 (en) Production of nickel-containing strengthened sintered ferritic stainless steels
CN115287540A (en) Powder metallurgy duplex stainless steel suitable for welding and preparation method and welding part thereof
JPS61227153A (en) High nitrogen bearing austenitic sintered alloy and its manufacture
JP3383099B2 (en) High corrosion resistant sintered products
JPH06248378A (en) Ultrahigh corrosion resistant ni base alloy
SU1740481A1 (en) Powder material on ferrous base for caked articles production
JPH06306553A (en) Stainless steel excellent in pitting corrosion resistance
JPH01259103A (en) Method for sintering fe-c-cu series multi-component alloy powder
JPS6237346A (en) Austenitic sintered alloy containing high nitrogen and its manufacture
JPS61243149A (en) Production of sintered two-phase stainless steel having high corrosion resistance
JPS61201706A (en) Seamless sintered steel pipe and its production
Dovydenkov et al. Methods of production and properties of sintered stainless steels for machine components—a review