JPH02240164A - Polyelectrolyte - Google Patents

Polyelectrolyte

Info

Publication number
JPH02240164A
JPH02240164A JP6052989A JP6052989A JPH02240164A JP H02240164 A JPH02240164 A JP H02240164A JP 6052989 A JP6052989 A JP 6052989A JP 6052989 A JP6052989 A JP 6052989A JP H02240164 A JPH02240164 A JP H02240164A
Authority
JP
Japan
Prior art keywords
group
polymer
compound
ionic conductivity
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6052989A
Other languages
Japanese (ja)
Inventor
Shoichiro Yasunami
昭一郎 安波
Tadahiko Kubota
忠彦 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP6052989A priority Critical patent/JPH02240164A/en
Publication of JPH02240164A publication Critical patent/JPH02240164A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To obtain a polyelectrolyte with excellent ionic conductivity around room temp. and stability by incorporating a specified polymer compd. contg. an alkylene oxide group and a dialkylsiloxane group and a salt of a metal ion of group Ia or IIa of the periodic table. CONSTITUTION:A polymer compd. contg. repeating units of the formula (wherein R is H or an alkyl; p is 1 or larger), namely contg. an alkylene oxide group and a dialkylsiloxane group and having a wt.-average MW (in terms of PS) of 2,000-5,000 and a salt of a metal ion of group Ia or IIa of the periodic table (e.g. LiCF3SO3) are incorporated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高分子電解賞に係り、特に、巾広い温度域での
使用に耐え、化学的に安定な高分子電解賞に関するもの
である. 〔従来の技術〕 高分子電解質をプラスチックの静電気防止や電池や電気
化学的デバイスに応用していくためには低温から高温ま
で巾広い温度域にわたって良好なイオン伝導性を示すこ
と、保存安定性が良好であること、材料の製造が容易で
あることが必要である.しかしながら、このような必要
性能を総合的に満足する高分子電解質はこれまで全く間
発されていなかった。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to polymer electrolysis, and particularly to polymer electrolysis that can withstand use in a wide temperature range and is chemically stable. [Prior art] In order to apply polymer electrolytes to static electricity prevention in plastics, batteries, and electrochemical devices, they must exhibit good ionic conductivity over a wide temperature range from low to high temperatures, and must have storage stability. It needs to be of good quality and the material should be easy to manufacture. However, no polymer electrolyte that comprehensively satisfies these required performances has been developed so far.

たとえば、従来は1.2−ジメトキシエタン、ブロビレ
ンカーボネートなどの有機溶剤が巾広く用いられている
が、これらは沸点と蒸気圧の関係で一般的に60〜80
℃が高温域の使用限界(t池の破壊等)となっている.
最近は、これら有機溶剤の短所を改良する方法として、
ボリエチ【ノンオキシド(以下PEOと略す)を中心と
して高分子電解賞の研究が活発である。
For example, conventionally, organic solvents such as 1,2-dimethoxyethane and brobylene carbonate have been widely used;
℃ is the limit for use in the high temperature range (damage to the T-pond, etc.).
Recently, as a method to improve the disadvantages of these organic solvents,
Research on the Polymer Electrolyte Prize is active, centering on polyethylene (non-oxide) (hereinafter abbreviated as PEO).

PEOは種々の周期律表1a族又はIla族に属する金
属イオンの塩、例えば、LICFzSOi、Lid,L
iClO4、Nal、NaCF= SOs、KCF,S
o.などと錯体を形成し、比較的良好なイオン伝導性を
示し(たとえばピー・バーシスク(P.Vashist
a) らによってファスト・イオン・トランスポート・
イン・ソリッド(past IonTransport
 in Solid) ,  1 3 1頁(1979
年)に報告されている)、また、保存安定性も良好であ
る.しかしながら、PEOのイオン伝導性は温度依存性
が大きく、60″C以上では良好なイオン伝導性を示す
ものの20゜C以下になるとイオン伝導性が著しく悪化
してしまい、広い温度領域でも使用できるような汎用性
のある商品に組込むことは困難であった。低分子量PE
Oを用いてイオン伝導性を向上させる方法として、ビニ
ル系ポリマーの側鎖に低分子量PEOを導入するという
方法が、デイ・ジエイ・バニスタ−(D,  J , 
Banister)らによって、ボリマー(Polym
er). 2 5巻、1600K(1984年)に、ま
た、ポリフオスファゼンの側鎖に低分子量PEOを導入
する方法がデイ・エフ・シュライバ−(D.  F. 
Shriver)らによってジャーナル・オブ・アメリ
カン・ケミカル・ソサエテイ(JourIIal or
 American ChemicalSociety
 ) 1 0 6@, 6 8 5 2頁(1984年
)に報告されている.しかしながら、この高分子材籾は
Li塩と錯体を形成するものの、20’C以下でのイオ
ン伝導性が不充分であった。さらに、ボリシロキサンの
一部に低分子IEtPEoを導入した材料が渡辺らによ
ってジャーナル・オブ・パヮーソース(JourIIa
l of  Power Sourse)  2 0巻
、327頁(1987年)に報告されているが、この材
料に於では低分子IPEOの導入率が低く、このため大
量の高分子材料を使用しなければ応用できないものであ
った.さらに、低分子量PEOとシリコン化合物を交互
に組合わせた高分子材料が長岡らによってジャーナル・
オブ・ボリマー・サイエンス;ボリマー・レター・エデ
ィション(JourIIal of  Polymer
 Science., Polymer Letter
 EdHion).22巻,752頁(1982年)や
、特開昭60−216462号に報告されており、又、
同じ《シリコーン系の材料としてビージーホール (P
.G.Hall)らによってボリマー・コミュニケーシ
ョン(Polmer CoaImunication)
 2 7巻、98頁(1986年)に報告されている.
これらの高分子材料は20゜C以下の低温から60゜C
以上の高温まで巾広い温度域にわたって高いイオン伝導
性を与えている.しかし、これらの高分子材料に於では
、高分子材料の保存時や、電子機器中で長期にわたって
使用する場合に分解による劣化を免れることができず、
実用化していく上で著るしく不利な材料であった. 〔発明が解決しようとする課題] 本発明の第1の目的は、保存時あるいは長期にわたる使
用に於でも劣化せず化学的に安定で、かつ室温以下の低
温域でも高いイオン伝導度を有する新規な高分子電解質
を提供することにある。
PEO is a salt of various metal ions belonging to group Ia or group Ila of the periodic table, such as LICFzSOi, Lid, L
iClO4, Nal, NaCF= SOs, KCF, S
o. etc., and exhibits relatively good ionic conductivity (for example, P. Vashist
a) Fast ion transport by et al.
In Solid (past IonTransport
in Solid), 1 3 1 pages (1979
), and has good storage stability. However, the ionic conductivity of PEO is highly temperature dependent, and although it shows good ionic conductivity above 60°C, the ionic conductivity deteriorates significantly below 20°C, making it difficult to use it in a wide temperature range. It was difficult to incorporate low molecular weight PE into versatile products.
As a method of improving ionic conductivity using O, a method of introducing low molecular weight PEO into the side chain of a vinyl polymer was proposed by D.G. Bannister (D, J.
Bannister et al.
er). 2 5, 1600K (1984), and D.F. Schreiber (1984) describes a method of introducing low molecular weight PEO into the side chain of polyphosphazene.
Journal of the American Chemical Society (JourIIal or
American Chemical Society
) 106@, page 6852 (1984). However, although this polymeric rice grain forms a complex with Li salt, its ionic conductivity at temperatures below 20'C was insufficient. Furthermore, a material in which low-molecular IEtPEo is introduced into a part of polysiloxane was published in the Journal of Power Sources (JourIIa) by Watanabe et al.
20, p. 327 (1987), the introduction rate of low-molecular-weight IPEO is low in this material, and therefore it cannot be applied unless a large amount of polymeric material is used. It was something. Furthermore, a polymer material that alternately combines low molecular weight PEO and silicon compounds was published by Nagaoka et al.
JourIIal of Polymer Science; JourIIal of Polymer Letter Edition
Science. , Polymer Letter
EdHion). It has been reported in Volume 22, Page 752 (1982) and Japanese Patent Application Laid-Open No. 60-216462, and
Same《BeG Hole (P) as a silicone material
.. G. Polmer Coa Communication (Polmer Coa Communication) by Hall et al.
2 Vol. 7, p. 98 (1986).
These polymer materials can be used at low temperatures from below 20°C to 60°C.
It provides high ionic conductivity over a wide temperature range up to temperatures above However, these polymer materials cannot avoid deterioration due to decomposition when they are stored or used in electronic devices for long periods of time.
This material was extremely disadvantageous in terms of practical application. [Problems to be Solved by the Invention] The first object of the present invention is to develop a novel product that is chemically stable without deterioration even during storage or long-term use, and has high ionic conductivity even at low temperatures below room temperature. The purpose of this invention is to provide a polymer electrolyte that is highly effective.

本発明の第2の目的は高温に於でも蒸気圧の低い新規な
高分子電解質を提供することにある.〔課題を解決する
ための手段〕 前記の目的は、少なくとも、下記一般式(1)で表わさ
れる繰り返し単位を含有する高分子化合物と周期律表!
a又はIIa族に属する金属イオンの塩を含有すること
を特徴とする高分子電解賞によって達成された. (式中、Rは水素原子又はアルキル基を表わす。
A second object of the present invention is to provide a new polymer electrolyte that has a low vapor pressure even at high temperatures. [Means for Solving the Problems] The above object is to provide at least a polymer compound containing a repeating unit represented by the following general formula (1) and the periodic table!
This was achieved by a polymer electrolyte containing a salt of a metal ion belonging to Group A or Group IIa. (In the formula, R represents a hydrogen atom or an alkyl group.

pは1以上の整数である.) 本発明の高分子材料は主鎖中にアルキレンオキシド基を
有することから誘電率が高く、支持電解質を溶解、解離
する能力に優れ、また、主鎖中にジアルキルシロキサン
基を有していることからガラス転移点(Tg)が低《、
イオンの移動を容易にしていると考えられるや また、高分子化合物であることから沸点をもたず、高温
における安定性も高いと考えられる.C* Hs 更に、一31一  基を導入することにより、C*Hs
   CHs 従来知られている  ーSi−771を有する高分子こ
とは驚くべきことで、従来の高分子電解譬では達成でき
なかった高温での劣化防止、低温での高イオン伝導性の
確保、化学的な安定性確保が本発明によって根本的に解
決出来た. 次に本発明を詳しく説明する.一般式(1)に於て、R
は水素・原子又はアルキル基であり、好ましくは水素原
子又は、メチル基である.pは1以上の整数であり、好
ましくは2〜20の整数であり、特に好ましくは2〜1
2の整数である.本発明の高分子化合物は、一般式(!
)の繰り返し単位を複数もっても良い。
p is an integer greater than or equal to 1. ) The polymer material of the present invention has an alkylene oxide group in the main chain, so it has a high dielectric constant, has an excellent ability to dissolve and dissociate the supporting electrolyte, and also has a dialkylsiloxane group in the main chain. The glass transition point (Tg) is low《,
It is thought that it facilitates the movement of ions, and since it is a polymer compound, it has no boiling point and is thought to be highly stable at high temperatures. C* Hs Furthermore, by introducing -311 group, C*Hs
CHs Conventionally known - It is surprising that the polymer has Si-771, which has been unable to achieve with conventional polymer electrolysis, such as preventing deterioration at high temperatures, ensuring high ionic conductivity at low temperatures, and chemical This invention has fundamentally solved the issue of ensuring stability. Next, the present invention will be explained in detail. In general formula (1), R
is a hydrogen atom or an alkyl group, preferably a hydrogen atom or a methyl group. p is an integer of 1 or more, preferably an integer of 2 to 20, particularly preferably 2 to 1
It is an integer of 2. The polymer compound of the present invention has the general formula (!
) may have multiple repeating units.

本発明の高分子化合物における残りの繰り返し単位とし
ては、ジアルキルボリシロキサン(例えばジメチルボリ
シロキサンなど)やポリアルキレンオキシドなどがあげ
られ、製膜性などを向上させることができる. 一般式(1)で表わされる繰り返し単位は高分子中50
モル%以上含有されるのが好ましい.さらに好ましくは
、80モル%以上であり、特に好ましくは100モル%
である。
Examples of the remaining repeating units in the polymer compound of the present invention include dialkylbolysiloxanes (eg, dimethylbolysiloxane) and polyalkylene oxides, which can improve film-forming properties. The repeating unit represented by general formula (1) is 50 in the polymer.
It is preferable that the content is mol% or more. More preferably 80 mol% or more, particularly preferably 100 mol%
It is.

以下に一般式(!)で表わされる繰り返し単位の代表例
を示すが、無論これらに限定されるものではない。
Representative examples of the repeating unit represented by the general formula (!) are shown below, but of course the repeating unit is not limited to these.

CzHs Ct  Hs CtHs C怠 Hs Ct  Hs CtHs 本発明の高分子化合物の重量平均分子IMW(ボリスチ
レン換算)は2000〜5000が好ましい。
CzHs Ct Hs CtHs C Hs Ct Hs CtHs The weight average molecule IMW (in terms of boristyrene) of the polymer compound of the present invention is preferably 2000 to 5000.

周期律表1a族又は■a族に属する金属イオンとしては
、リチウム、ナトリウム、カリウムのイオンが好ましく
、代表的な金属イオンの塩としては、L IcFs S
O3 、L tPFb 、L i LLiClOa、L
iBF4、LiCFi Co!、L iSCN,NaC
F* SOs 、Na I,Na Ci!Oa 、Na
 BF4 、NaAs F&、KCFs So! 、K
SCN,KPFh ..Kcgo4、KAsF*などが
挙げられる。更に好ましくは上記のLi塩である.これ
らは1種又は2種以上を混合してもよく、またNBua
 BF4等のような他の電解質と混合して使用してもよ
い.本発明の高分子化合物と金属イオンの塩の比率はポ
リアルキレンオキシド単位が金属イオンの塩の2〜50
倍の比率で含有されるのが好ましい.さらに好まし《は
6〜30倍である.比率が高すぎるとTgが上りイオン
伝導性が低下し、比率が低くすぎると有効イオン濃度が
低下し、イオン伝導性も低下してしまう。
As metal ions belonging to Group 1a or Group IIa of the periodic table, lithium, sodium, and potassium ions are preferable, and representative metal ion salts include L IcFs S
O3 , L tPFb , L i LLiClOa, L
iBF4, LiCFi Co! , L iSCN, NaC
F* SOs, Na I, Na Ci! Oa, Na
BF4, NaAs F&, KCFs So! ,K
SCN, KPFh. .. Examples include Kcgo4 and KAsF*. More preferred is the above Li salt. These may be used alone or in combination of two or more, and NBua
It may be used in combination with other electrolytes such as BF4. The ratio of the polymer compound of the present invention to the metal ion salt is such that the polyalkylene oxide units are 2 to 50% of the metal ion salt.
It is preferable to contain the same amount. More preferably 《 is 6 to 30 times. If the ratio is too high, the Tg will increase and the ionic conductivity will decrease; if the ratio is too low, the effective ion concentration will decrease and the ionic conductivity will also decrease.

本発明の高分子電解質はさらに架橋剤、高分子化合物、
他の両親媒性化合物などを添加してもよい. 添加してもよい架橋剤としては架橋基として、エポキシ
基、イソシアナート基、酸クロリド基、酸無水物基、活
性エステル基を存するものを用いることができる.以下
に架橋剤の化合物例を示すがこれらに限定されるわけで
はない. (1)架橋剤化合物例 化合物例C−1 CH.coNti+cHz +−S−NCOC H s
 C H x C C O N H+C I4 t +
TN C OC H z C O N H−+C H 
t +−r−N C 0化合物例C−2 化合物例C−3 NGO OCN−+CH.  ヒ.CH C O +C H t F”’r N C O]I 添加してもよい高分子化合物としては以下に代表例を示
すものが用いられるが、これらに限定されるわけではな
く、本発明の高分子化合物と相溶しうるものを好ましく
用いることができる。
The polymer electrolyte of the present invention further includes a crosslinking agent, a polymer compound,
Other amphipathic compounds may also be added. As the crosslinking agent that may be added, those having a crosslinking group such as an epoxy group, an isocyanate group, an acid chloride group, an acid anhydride group, or an active ester group can be used. Examples of crosslinking agent compounds are shown below, but the invention is not limited to these. (1) Crosslinking agent compound example Compound example C-1 CH. coNti+cHz +-S-NCOC H s
C H x C C O N H + C I4 t +
TN C OC H z C O N H-+C H
t +-r-N C 0 Compound Example C-2 Compound Example C-3 NGO OCN-+CH. H. CH C O + C H t F"'r N CO] I Typical examples of the polymer compounds that may be added are shown below, but the invention is not limited to these. Those that are compatible with the molecular compound can be preferably used.

化合物例C−4 →CHt −CH←τ OCOCHff 化合物例C−5 +CH1一C旧ゴ Cj2 化合物例C−6 −{CH よ CH20 ヒ、 化合物例C−7 千CH−CH!Oヒ, CH, 化合物例C−8 CH. 十CH.−Cヒ1 COOCH. また、添加しうる両親媒性化合物としては、公知の両親
媒性化合物なら添加することができる。
Compound Example C-4 →CHt -CH←τ OCOCHff Compound Example C-5 +CH11C Old Go Cj2 Compound Example C-6 -{CH yo CH20 Hi, Compound Example C-7 Thousand CH-CH! Ohi, CH, Compound Example C-8 CH. 10CH. -Chi1 COOCH. Further, as the amphipathic compound that can be added, any known amphipathic compound can be added.

代表例として以下に示すものがあげられるが、もちるん
これらに限定されるわけではない。
Representative examples include those shown below, but are not limited to these.

化合物例C−9 C+hHss−0÷cHz CH.OヒicHク化合物
例C−10 C+tH*s−0{CHz CH* OhoC+zHz
s化合物例C−11 本発明の高分子化合物と金属イオンの塩を溶解する溶媒
としては、一般的に非水溶媒系電池に用いうる溶媒が用
いられるが、代表例としてはアセトニトリル、ペンゾニ
トリル等のニトリル頬:ブロビレンカーボネート、エチ
レンカーボネート等のカーボネート類:テトラヒド口フ
ラン、3−メチルーテトラヒド口フラン、2−メチルー
テトラヒド口フラン、テトラハイドロビラン、1,3ジ
オキサン、1.4−ジオキソラン、l,2−ジメトキシ
エタン等のエーテル類:T−プチロラクトン、δ−プチ
ロラクトン等のラクト/類:ジメチルスルホキシド、テ
トラメチレンサルフオン、ジメチルホルムアミド等があ
げられるが、必ずしもこれらに限定されるものではない
.これらの溶媒は、1種または2種以上を混合して使用
してもよい. 本発明の高分子電解質はプラスチック材料の静電気防止
や電池をはじめ、エレクトロクロミツク表示装置、コン
デンサーなど各種電気化学デバイス用の材料としても利
用できる。
Compound Example C-9 C+hHss-0÷cHz CH. OhiicH compound example C-10 C+tH*s-0{CHHz CH* OhoC+zHz
s Compound Example C-11 As a solvent for dissolving the polymer compound of the present invention and a salt of a metal ion, a solvent that can be used in a non-aqueous battery is generally used, and representative examples include acetonitrile, penzonitrile, etc. Nitrile: Carbonates such as brobylene carbonate and ethylene carbonate: Tetrahydrofuran, 3-methyl-tetrahydrofuran, 2-methyl-tetrahydrofuran, tetrahydrobyran, 1,3 dioxane, 1,4-dioxolane , l,2-dimethoxyethane and other ethers: T-butyrolactone, δ-butyrolactone and other lactoses: dimethyl sulfoxide, tetramethylene sulfone, dimethylformamide, etc., but are not necessarily limited to these. .. These solvents may be used alone or in combination of two or more. The polymer electrolyte of the present invention can be used as a material for preventing static electricity in plastic materials, batteries, electrochromic displays, capacitors, and various other electrochemical devices.

本発明の一般式(1)で表わされる繰り返し単位を含有
する高分子化合物の代表的な合成例を次に示す. 合成例I Plで表わされる繰り返し単位を100%含
有する化合物の合成 テトラエチレングリコール10g (0.05陶of)
とビリジン1. 9g (0.  1moffi)をト
ルエン30mj!に溶解し、窒素ガスフロー中、室温に
てジエチルジク口ロシラン7.  8g (0.  0
5mol)のトルエン溶液を滴下した。その後50〜6
0″Cで4時間反応した.反応後、析出したビリジンの
塩酸塩を除き、溶媒及び未反応の原料を真空留去して目
的物を得た。(無色、やや粘稠オイル) 収111.5g(収率86%) Mwζ4500 NMR,元素分析にて構造を確認した.〔実施例] 以下、本発明を実施例を用いて詳細に説明するがこれら
に限定されるものではない. 実施例l Piで表わされる繰り返し単位を100%含有する化合
物(Piボリマーとする)とLiCFsSO,を表1に
示した組成比になるように、アセト二トリルに40’C
で溶解させた.このときP1ボリマーの濃度は10%で
あった。その後溶媒を真空下( l O−”〜1 0−
’torr)で室温24時間、60゜Cで24時間処理
し、溶媒を完全に除去して透明な均一粘稠溶液を得た. (■■■) 更に、P1ポリマーかわりにP2で表わされる繰り返し
単位を100%含有する化合物(P2ボリマーとする)
、LiCF3 So,のかわりにLiCj!04におき
かえた以外は同一である溶液を得た。    (■■■
) 更に、PIボリマーのかわりにP4で表わされる繰り返
し単位を100%含有する化合物(P4ボリマーとする
)におきかえた以外は同一である溶液を得た.   (
■■■) 比較として、実施例1のPIポリマーのかわりに特開昭
60−216462号に記載された下記の化合物(D−
1)におきかえた以外は実施例1と同一である溶液■■
○を作成した. CH. このようにして得た粘稠液体に対してpt電極を1.8
cmの距離となるようにセットして浸漬し、0.1Hz
〜10万Hzでインピーダンスを測定(測定温度25℃
)し、Coj!e−Coffieプロットからイオン伝
導度を求めた. また、高分子の安定性を以下の方法で評価した。
A typical synthesis example of a polymer compound containing a repeating unit represented by general formula (1) of the present invention is shown below. Synthesis Example I Synthesis of a compound containing 100% of repeating units represented by Pl Tetraethylene glycol 10g (0.05g of)
and viridin 1. 9g (0.1 moffi) to 30mj of toluene! 7. Diethyl dichlorosilane was dissolved in a nitrogen gas flow at room temperature. 8g (0.0
A toluene solution of 5 mol) was added dropwise. then 50-6
The reaction was carried out at 0''C for 4 hours. After the reaction, the precipitated pyridine hydrochloride was removed, and the solvent and unreacted raw materials were distilled off under vacuum to obtain the desired product (colorless, slightly viscous oil). Yield 111. 5g (Yield 86%) Mwζ4500 The structure was confirmed by NMR and elemental analysis. [Example] The present invention will be explained in detail below using Examples, but is not limited to these. Example 1 A compound containing 100% of repeating units represented by Pi (Pi polymer) and LiCFsSO were added to acetonitrile at 40'C so that the composition ratio was as shown in Table 1.
It was dissolved in At this time, the concentration of P1 polymer was 10%. Thereafter, the solvent was removed under vacuum (lO-"~10-
'torr) at room temperature for 24 hours and at 60°C for 24 hours to completely remove the solvent and obtain a clear homogeneous viscous solution. (■■■) Furthermore, a compound containing 100% of repeating units represented by P2 instead of P1 polymer (referred to as P2 polymer)
, LiCj! instead of LiCF3 So, An identical solution was obtained except that 04 was substituted. (■■■
) Furthermore, an identical solution was obtained except that the PI polymer was replaced with a compound containing 100% of the repeating unit represented by P4 (referred to as P4 polymer). (
■■■) For comparison, the following compound (D-
Solution that is the same as Example 1 except that 1) was replaced.■■
○ was created. CH. For the viscous liquid thus obtained, a PT electrode of 1.8
Set at a distance of 0.1 Hz and immerse
Measure impedance at ~100,000 Hz (measurement temperature 25℃)
), Coj! Ionic conductivity was determined from the e-Coffie plot. In addition, the stability of the polymer was evaluated by the following method.

25℃にてpH4.2のアセトニトリルー水系の緩衝液
にそれぞれの化合物を溶解し、(濃度は5wt%)、ゲ
ルバーミエーションク口マトグラフイ−(cpc)にて
七ノマーへの分解を追跡した。
Each compound was dissolved in an acetonitrile-aqueous buffer solution with a pH of 4.2 at 25° C. (concentration: 5 wt%), and the decomposition into heptanomers was monitored using gel permeation chromatography (CPC).

これらの測定結果を表1及び図1に示した.表1 表1からわかるように本発明の実施例 ■〜のは、室温
付近でのイオン伝導性が良好であることが 明らかであ
る.又、図1から本発明の高分子化合物は比較例(D−
1)に比べてモノマーへの分解が抑えられ安定性が著る
しく改善されていることが明らかであろう. 〔発明の効果〕 本発明によると、室温付近でのイオン伝導性に優れ、か
つ安定性が良好な高分子電解質を得ることができる.
The results of these measurements are shown in Table 1 and Figure 1. Table 1 As can be seen from Table 1, it is clear that Examples 1 to 1 of the present invention have good ionic conductivity near room temperature. Moreover, from FIG. 1, the polymer compound of the present invention is compared to the comparative example (D-
It is clear that the decomposition into monomers is suppressed and the stability is significantly improved compared to 1). [Effects of the Invention] According to the present invention, a polymer electrolyte having excellent ionic conductivity near room temperature and good stability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1におけるPIポリマー、P2ポリマ
ー及びD−1の化合物の七ノマーへの分解性を示したも
のである. 特許出願人 富士写真フイルム株式会社PI藺(hr) 手続補正書 平成/ 年,i&一よ2日
FIG. 1 shows the decomposition properties of the PI polymer, P2 polymer, and compound D-1 in Example 1 into heptanomers. Patent Applicant Fuji Photo Film Co., Ltd. PI (hr) Procedural Amendment Heisei/2015, I & 1-2

Claims (1)

【特許請求の範囲】 少なくとも、下記一般式( I )で表わされる繰り返し
単位を含有する高分子化合物と周期律表 I a又はIIa
族に属する金属イオンの塩を含有することを特徴とする
高分子電解質。 ▲数式、化学式、表等があります▼( I ) (式中、Rは水素原子又はアルキル基を表わす。pは1
以上の整数である。)
[Scope of Claims] A polymer compound containing at least a repeating unit represented by the following general formula (I) and a member of the periodic table Ia or IIa
A polymer electrolyte characterized by containing a salt of a metal ion belonging to the group A. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, R represents a hydrogen atom or an alkyl group. p is 1
is an integer greater than or equal to )
JP6052989A 1989-03-13 1989-03-13 Polyelectrolyte Pending JPH02240164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6052989A JPH02240164A (en) 1989-03-13 1989-03-13 Polyelectrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6052989A JPH02240164A (en) 1989-03-13 1989-03-13 Polyelectrolyte

Publications (1)

Publication Number Publication Date
JPH02240164A true JPH02240164A (en) 1990-09-25

Family

ID=13144928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6052989A Pending JPH02240164A (en) 1989-03-13 1989-03-13 Polyelectrolyte

Country Status (1)

Country Link
JP (1) JPH02240164A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080994A1 (en) * 2022-10-14 2024-04-18 Momentive Performance Materials Inc. Electrolyte composition comprising organosilicon compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080994A1 (en) * 2022-10-14 2024-04-18 Momentive Performance Materials Inc. Electrolyte composition comprising organosilicon compounds

Similar Documents

Publication Publication Date Title
US5548055A (en) Single-ion conducting solid polymer electrolytes
JP3301378B2 (en) Polyether copolymer and crosslinked polymer solid electrolyte
Johansson et al. The influence of inert oxide fillers on poly (ethylene oxide) and amorphous poly (ethylene oxide) based polymer electrolytes
US7695860B2 (en) Nonaqueous liquid electrolyte
Le et al. Mixing ionic liquids and ethylene carbonate as safe electrolytes for lithium-ion batteries
US8124283B2 (en) Cyclic siloxane-based compounds and solid polymer electrolyte composition containing the same as a crosslinking agent
JPS63187578A (en) Ion conductive material
EP0699349A1 (en) Ionic conducting material having good anticorrosive properties
US11094963B2 (en) Alkali ion conducting plastic crystals
Xu et al. Ionic conductivity and electrochemical stability of poly [oligo (ethylene glycol) oxalate]− lithium salt complexes
JPH01307103A (en) Macromolecular solid electrolyte
US20150270574A1 (en) Halogenosilane functionalized carbonate electrolyte material, preparation method thereof and use in electrolyte for lithium ion battery
Tsuda et al. A highly conductive composite electrolyte consisting of polymer and room temperature molten fluorohydrogenates
JP3407363B2 (en) Polymer solid electrolyte
US6727343B2 (en) Heteroatomic polymer for more efficient solid polymer electrolytes for lithium batteries
US8841406B2 (en) Branched rod-coil polyimide—poly( alkylene oxide) copolymers and electrolyte compositions
Itoh et al. Polymer electrolytes based on hyperbranched polymers
KR20000029157A (en) Gel Electrolyte, Cell and Electrochromic Element
Celik-Kucuk et al. Lithium trifluorosulfonimide salt containing siloxane-based electrolytes for lithium-ion batteries: Aluminum corrosion behaviors and electrochemical properties
JPH06187822A (en) Polymeric solid electrolyte
JPH02240164A (en) Polyelectrolyte
JPS6230147A (en) Ion conductive high polymer complex
JPH0826161B2 (en) Polyelectrolyte
JPH02215836A (en) Polyelectrolyte
US20240088437A1 (en) Linear superionic polymer electrolyte