JPH02239787A - Picture coding control system - Google Patents

Picture coding control system

Info

Publication number
JPH02239787A
JPH02239787A JP1059761A JP5976189A JPH02239787A JP H02239787 A JPH02239787 A JP H02239787A JP 1059761 A JP1059761 A JP 1059761A JP 5976189 A JP5976189 A JP 5976189A JP H02239787 A JPH02239787 A JP H02239787A
Authority
JP
Japan
Prior art keywords
signal
prediction
error
encoding
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1059761A
Other languages
Japanese (ja)
Other versions
JP2862555B2 (en
Inventor
Masahiro Wada
正裕 和田
Yasuhiro Takishima
康弘 滝嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP5976189A priority Critical patent/JP2862555B2/en
Publication of JPH02239787A publication Critical patent/JPH02239787A/en
Application granted granted Critical
Publication of JP2862555B2 publication Critical patent/JP2862555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To realize coding control with less deterioration in coding picture quality by calculating a code error power, coding a relevant picture element or a prediction error of a picture element block with less information quantity when the power is large and coding the prediction error with large information quantity when the power is small through the control of coding. CONSTITUTION:A prediction signal VP selected by a prediction device 5 from a local decoding signal VL is subtracted by the input original signal VI at a subtractor 1 and the resulting signal is inputted to a coder 2 as a prediction error VE. A coded output signal VC is sent and a difference with an input original signal VI' via a variable delay device 3 simultaneously is calculated by a subtractor 7. The input original signal VI' is an original picture signal corresponding to the prediction signal VP and the calculated difference is a prediction signal error ep of the prediction signal VP. The prediction signal error ep is converted into an error power by a power calculator 8 and the coder 2 and the decoder 4 code the picture element with less information when the error power is large and when the value is small, the relevant picture element is coded with larger information quantity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、テレビ会議、テレビ電話、デジタルテレビジ
ョン伝送など、画像信号を符号化し、ビットレートを低
減してデジタル伝送する方式に係わり、特に画像信号を
予測符号化し、予測誤差信号を符号化伝送する方式に関
わる。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method of encoding an image signal, reducing the bit rate, and transmitting it digitally, such as in a video conference, a video telephone, and a digital television transmission. It is concerned with the method of predictively encoding image signals and encoding and transmitting prediction error signals.

(従来の技術) テレビ電話、テレビ会議など、動画像信号を符号化し、
ビットレートを低減してデジタル伝送する画像通信サー
ビスは多い。このような動画像伝送方式では、ビットレ
ートを低減するために、当該画素ないし画素ブロックを
符号化するに際して、既に符号化伝送され復号化された
画素を用いて予測を行い、その予測誤差のみを符号化伝
送する予測符号化が多く用いられる。
(Conventional technology) Encoding video signals such as video calls and video conferences,
There are many image communication services that reduce the bit rate and transmit digitally. In such a video transmission method, in order to reduce the bit rate, when encoding the relevant pixel or pixel block, prediction is performed using pixels that have already been encoded and transmitted and decoded, and only the prediction error is calculated. Predictive coding for coded transmission is often used.

予測符号化には、予測に使用する画素の位置により、大
別して同一フレーム内の既に符号化伝送された復号化画
素を用いて予測を行うフレーム内予測と、1フレーム前
のフレーム内の既に符号化伝送された復号化画素を用い
て予測を行うフレーム間予測があり、動きの少ない画像
に対しては、後者の方が効率の高いことが知られている
。また、さらにビットレートを低減する技術として、動
画像信号から動きを検出し、この動ベクトルを用いて予
測に用いる画素を前フレームから選択する動き補償フレ
ーム間予測も用いられている。
Predictive coding can be roughly divided into two types, depending on the position of the pixels used for prediction: intra-frame prediction, which uses decoded pixels that have already been coded and transmitted in the same frame, and intra-frame prediction, which uses already encoded pixels in the previous frame. There is inter-frame prediction in which prediction is performed using decoded pixels that have been transmitted as data, and it is known that the latter is more efficient for images with little movement. Furthermore, as a technique for further reducing the bit rate, motion compensated interframe prediction is also used, in which motion is detected from a video signal and pixels used for prediction are selected from the previous frame using this motion vector.

(発明が解決しようとする課題) しかしながら、伝送ビットレートが極めて低い場合には
、有意な情報をすべて伝送することができず、符号化画
質の劣化が起こる。この状態では、予測に用いる復号化
画素に大きな雑音が含まれているため、予測精度自体が
劣化して予測誤差信号の電力が増大し、これを符号化す
るために必要な情報量が増大する。このような場合には
、符号化されるのは殆どすべて雑音であるから、符号化
に要する情報量が多いにもかかわらず符号化画質が向上
せず、無意味なビットを消費してしまい、他の符号化す
べき部分に有効な情報量を割り当てられないという悪循
環の発生する問題があった。
(Problems to be Solved by the Invention) However, when the transmission bit rate is extremely low, all of the significant information cannot be transmitted, resulting in deterioration of encoded image quality. In this state, the decoded pixels used for prediction contain large noise, so the prediction accuracy itself deteriorates, the power of the prediction error signal increases, and the amount of information required to encode it increases. . In such a case, what is encoded is almost all noise, so even though the amount of information required for encoding is large, the encoded image quality does not improve, and meaningless bits are consumed. There is a problem in that a vicious cycle occurs in which an effective amount of information cannot be allocated to other parts to be encoded.

本発明は、上述した従来技術の問題点を解決するための
もので、符号化画質の劣化の少ない符号化制御を実現す
る画像符号化制御方式である。
The present invention is intended to solve the problems of the prior art described above, and is an image encoding control method that realizes encoding control with little deterioration in encoded image quality.

(課題を解決するための手段) 本発明の第1の特徴は、該当画素ないし画素ブロックの
予測に用いる局部復号化された画素を原信号と比較して
、その符号化誤差電力を計算し、この値が大きい場合に
は該当画素ないし画素ブロックの予測誤差をより少ない
情報量で符号化し、この値が小さい場合には予測誤差を
より大きな情報量で符号化するように、符号化を制則す
ることにある. 本発明の第2の特徴は、予測誤差を画素プロック単位に
直交変換符号化する方式において、該当画素ブロックの
予測に用いる局部復号化された画素を原信号と比較して
、その符号化誤差電力を計算し、この値が大きい場合に
は該当画素ブロックの予測誤差の変換係数のうち、低次
の変換係数のみを符号化伝送し、この値が小さい場合に
は高次の変換係数まで符号化伝送するように、符号化を
制御することにある。
(Means for Solving the Problems) The first feature of the present invention is to compare the locally decoded pixels used for prediction of the corresponding pixel or pixel block with the original signal and calculate the encoding error power thereof, When this value is large, the prediction error of the corresponding pixel or pixel block is encoded with a smaller amount of information, and when this value is small, the encoding is restricted so that the prediction error is encoded with a larger amount of information. It's about doing. The second feature of the present invention is that in a method of orthogonal transformation coding of prediction errors in units of pixel blocks, the locally decoded pixels used for prediction of the corresponding pixel block are compared with the original signal, and the encoding error power is If this value is large, only the low-order transform coefficients of the prediction error of the corresponding pixel block are encoded and transmitted, and if this value is small, even the high-order transform coefficients are encoded. The purpose is to control the encoding for transmission.

(発明の原理) 第1図を用いて本発明の原理を説明する。第1図は本発
明による予測符号化装置のブロック図である。局部復号
化信号VLから予測器5により選択された予測信号■P
は、減算器1により入力原信号VIとの差分なとって予
測誤差VEとして符号器2へ入力され、符号化出力信号
VCが符号化伝送されるが、同時に可変遅延器3を経て
きた入力原信号VI’との差分も減算器7で計算される
。この入力源信号VI’は、予測信号VPに相当する原
画像信号であり、計算された差分値は予測信号■Pの予
測信号誤差epである。予測信号誤差epは電力計算器
8によって誤差電力に変換され、これにより符号器2お
よび復号器4が、誤差電力が大きい場合には該当画素を
より少ない情報量で符号化し、この値が小さい場合には
該当画素をより大きな情報量で符号化するように制御さ
れる。
(Principle of the invention) The principle of the invention will be explained using FIG. FIG. 1 is a block diagram of a predictive encoding device according to the present invention. Prediction signal ■P selected by predictor 5 from locally decoded signal VL
The subtracter 1 calculates the difference between the input original signal VI and inputs it to the encoder 2 as the prediction error VE, and the encoded output signal VC is encoded and transmitted. The difference with the signal VI' is also calculated by the subtracter 7. This input source signal VI' is an original image signal corresponding to the prediction signal VP, and the calculated difference value is the prediction signal error ep of the prediction signal ■P. The predicted signal error ep is converted into error power by the power calculator 8, which causes the encoder 2 and decoder 4 to encode the corresponding pixel with a smaller amount of information when the error power is large, and to encode the corresponding pixel with a smaller amount of information when this value is small. control is performed so that the corresponding pixel is encoded with a larger amount of information.

また本発明は以下のように説明される。いま、符号化し
ようとする入力原画像信号なVI、局部復号画像信号か
ら選択された予測信号を■P、予測信号として用いた画
素に相当する原画像信号をv工′とする。このとき、符
号化の情報量を制御する符号化制御信号Cnを次式(1
)により定義する。
Further, the present invention will be explained as follows. Now, it is assumed that VI is the input original image signal to be encoded, P is the prediction signal selected from the locally decoded image signal, and V is the original image signal corresponding to the pixel used as the prediction signal. At this time, the encoding control signal Cn that controls the amount of encoding information is expressed by the following formula (1
) is defined by

Cn− (VP−VI ”)”       (1)符
号化情報量制御の手段としては、予測誤差(VI−VP
)を量子化するステップ幅qを変化させることが多く行
われるが、一例として本発明をこの量子化器制御に適用
すると、qを次式(2)により制御すればよい。
Cn- (VP-VI ")" (1) As a means of controlling the amount of encoded information, the prediction error (VI-VP
) is often changed by changing the step width q for quantizing the quantizer, but if the present invention is applied to this quantizer control as an example, q may be controlled by the following equation (2).

q=f (Cn)            (2)ここ
でfは増加関数であり、一例を第2図に示す。
q=f (Cn) (2) Here, f is an increasing function, an example of which is shown in FIG.

さて、予測符号化では、第3図に示すような予測符号化
器9で生成された予測誤差信号をmXn画素ブロック単
位に直交変換符号化器10で直交変換し、情報量を大幅
に低減させるハイブリッド符号化が近年多く用いられる
。これにおいては、本発明は以下のように説明される。
Now, in predictive encoding, the prediction error signal generated by the predictive encoder 9 as shown in FIG. Hybrid encoding has been widely used in recent years. In this, the invention is explained as follows.

いま、符号化しようとする入力画像信号の画素ブロック
の各画素値を{VI}、予測に用いる局部復号化画像信
号の画素ブロックの各画素値を{VP}、これに相当す
る原画像信号の画素ブロックの各画素値を{VI’}と
する。このとき、符号化制御信号Cnは(1)式のよう
に定義され第4図に示すように、変換係数rtJ(1≦
i≦m、1≦j≦n)のうち、1≦i≦k,1≦j≦1
の係数の伝送を行う係数の範囲Rを次式(3)により定
義する。
Now, each pixel value of the pixel block of the input image signal to be encoded is {VI}, each pixel value of the pixel block of the locally decoded image signal used for prediction is {VP}, and the corresponding original image signal is Let each pixel value of a pixel block be {VI'}. At this time, the encoding control signal Cn is defined as shown in equation (1), and as shown in FIG.
i≦m, 1≦j≦n), 1≦i≦k, 1≦j≦1
The range R of coefficients for transmitting the coefficients is defined by the following equation (3).

R=f.(Cn)           (3)ここで
f+は誤差電力から伝送範囲を決める関数であり、符号
化制御信号Cnが大きくなると範囲Rが狭くなるように
定義される。すなわち、予測信号の誤差電力が増加する
と、より低次の伝送係数のみを伝送し、高次の係数は(
たとえ有意な値であっても)伝送せず切り捨てる。係数
の伝送範囲の決め方はい《つか考えられるが、8×8画
素のブロックを用いた場合のfの一例を第5図に示す。
R=f. (Cn) (3) Here, f+ is a function that determines the transmission range from the error power, and is defined such that the range R becomes narrower as the encoded control signal Cn becomes larger. That is, as the error power of the predicted signal increases, only lower-order transmission coefficients are transmitted, and higher-order coefficients (
(Even if the value is significant) it is truncated without being transmitted. How to determine the transmission range of coefficients? Although it may be possible, an example of f in the case of using an 8×8 pixel block is shown in FIG.

ここで、 R1はC n < T h +の場合の伝送係数範囲、
R2はC n < T h 2の場合の伝送係数範囲、
R3はCn<Th,の場合の伝送係数範囲、R4はC 
n < T h 4の場合の伝送係数範囲、R6はC 
n < T h sの場合の伝送係数範囲、R6はC 
n < T h aの場合の伝送係数範囲、Th+(1
≦i≦6)は閾値であり、’rh+ <T h 2 <
 T }1 s < T h 4 < T h s <
 T h eである。同図のように本発明では符号化制
御信号Cnに複数閾値Thを設け、符号化制御信号Cn
の大きさに応じて符号化する係数の範囲を変更するよう
に制御したものである。
Here, R1 is the transmission coefficient range when C n < T h +,
R2 is the transmission coefficient range when C n < T h 2;
R3 is the transmission coefficient range when Cn<Th, and R4 is C
Transmission coefficient range when n < T h 4, R6 is C
Transmission coefficient range when n < T h s, R6 is C
Transmission coefficient range when n < T h a, Th+(1
≦i≦6) is a threshold value, 'rh+ <T h 2 <
T }1 s < T h 4 < T h s <
It is T he. As shown in the figure, in the present invention, a plurality of threshold values Th are provided for the encoded control signal Cn, and the encoded control signal Cn
The range of coefficients to be encoded is controlled to be changed depending on the size of the coefficient.

以上述べたように、本発明は予測信号の誤差電力が大き
い場合に、符号化に割り当てる情報量を低減させること
により、符号化画質に寄与しない無意味なビットの消費
をなくし、その分を符号化画質の向上に寄与する部分に
割り当てることにより、全体の符号化画質を大幅に向上
させることができる。
As described above, the present invention eliminates the consumption of meaningless bits that do not contribute to the encoded image quality by reducing the amount of information allocated to encoding when the error power of the predicted signal is large, and the By allocating it to a portion that contributes to improving encoded image quality, the overall encoded image quality can be significantly improved.

(実施例) 第6図は動き補償ハイブリッド符号化における本発明に
よる実施例であり、このうち、一点鎖線で囲まれた部分
が、本発明によって追加された特徴部分である。局部復
号化信号VLは、予測のためにフレームメモリ24に書
き込まれるが、同時にフレームメモリ15によって遅延
された原画像信号v工′との差分が減算器23でとられ
2乗器22によって電力に換算された後、蓄積器2lへ
入力され、蓄積器2lに1画素ブロック分加算される。
(Embodiment) FIG. 6 shows an embodiment of motion compensated hybrid coding according to the present invention, in which the portion surrounded by a dashed line is a characteristic portion added according to the present invention. The local decoded signal VL is written into the frame memory 24 for prediction, but at the same time, the difference between the local decoded signal VL and the original image signal v' delayed by the frame memory 15 is taken by the subtracter 23 and converted into power by the squarer 22. After being converted, it is input to the accumulator 2l, and one pixel block is added to the accumulator 2l.

■画素ブロック分の処理が終了すると、蓄積器2lの内
容が誤差電力メモリ20に記憶される。すなわち、誤差
電力メモリ20には、画素ブロック単位に1フレーム分
の局部復号化画像信号の誤差電力が記憶される。いま、
動き量検出器26により動ベクト、ルMVが検出され、
これにより予測信号VPが選択されると、同時にこれに
相当する誤差電力が誤差電力メモリ20より読み出され
、ブロック境界の補正が補正器l7により行われ、誤差
電力と伝送係数範囲の関係が書き込まれたメモリ18に
入力される。これにより、メモリl8から伝送範囲パタ
ーンが出力され、マスク回路13により変換係数と伝送
範囲パターンの論理積が計算され、伝送範囲内の変換係
数のみが量子化器l4に入力され符号化出力信号VCが
伝送される。
(2) When the processing for the pixel block is completed, the contents of the accumulator 2l are stored in the error power memory 20. That is, the error power memory 20 stores the error power of the locally decoded image signal for one frame in units of pixel blocks. now,
A motion vector, MV, is detected by the motion amount detector 26,
When the predicted signal VP is selected by this, the error power corresponding to this is simultaneously read out from the error power memory 20, block boundary correction is performed by the corrector l7, and the relationship between the error power and the transmission coefficient range is written. The data is inputted into the memory 18 that contains the data. As a result, the transmission range pattern is output from the memory l8, the mask circuit 13 calculates the logical product of the transform coefficient and the transmission range pattern, and only the transform coefficients within the transmission range are input to the quantizer l4, and the encoded output signal VC is transmitted.

またブロック境界の補正は、第7図に示すように予測部
分Bpがブロック境界に面積比a:b+c:dでまたが
った場合、それぞれのブロックの誤差電力Ea,Eb,
Ec,Edから次式(4)によって補正誤差電力Eeが
計算される。
In addition, when the predicted portion Bp straddles the block boundary at an area ratio a:b+c:d as shown in FIG. 7, the block boundary correction is performed by
Corrected error power Ee is calculated from Ec and Ed using the following equation (4).

Ee = (aEa +bEb +cEc +dEd 
)/(a+b+c+d)      (4)(発明の効
果) 以上のように、本発明は、該当画素ないし画素ブロック
の予測に用いる局部復号化された画素を原信号と比較し
て、その符号化誤差電力を計算し、この値が大きい場合
には該当画素ないし画素ブロックの予測誤差をより少な
い情報量で符号化し、この値が小さい場合には予測誤差
をより大きな情報量で符号化するように、符号化を制御
することにより、符号化画質に寄与しない無意味なビッ
トの消費をなくし、その分を符号化画質の向上に寄与す
る部分に割り当てることにより、全体の符号化画質を大
幅に向上させることができる。また、本発明は、第6図
に示すような構成により、従来の符号化装置に比べて、
誤差電力を計算する回路と誤差電力を記憶するメモリと
係数の伝送範囲のパターンを記憶したROMなどの記憶
手段の追加だけで実現することができる。
Ee = (aEa +bEb +cEc +dEd
)/(a+b+c+d) (4) (Effects of the Invention) As described above, the present invention compares locally decoded pixels used for prediction of the corresponding pixel or pixel block with the original signal, and calculates the encoding error power. is calculated, and when this value is large, the prediction error of the corresponding pixel or pixel block is encoded with a smaller amount of information, and when this value is small, the prediction error is encoded with a larger amount of information. By controlling the encoding, the consumption of meaningless bits that do not contribute to the encoded image quality is eliminated, and by allocating that bit to parts that contribute to improving the encoded image quality, the overall encoded image quality can be significantly improved. I can do it. Furthermore, the present invention has a configuration as shown in FIG.
This can be realized by simply adding a circuit for calculating the error power, a memory for storing the error power, and a storage means such as a ROM for storing the pattern of the coefficient transmission range.

従って、本発明はテレビ会議、テレビ電話、デジタルテ
レビジョン伝送など、動画像信号を符号化し、ビットレ
ートを低減してデジタル伝送する画像通信サービスにお
いて、動画像の符号化画質を大幅に改善することができ
、その効果は大である。
Therefore, the present invention aims to significantly improve the encoded image quality of moving images in image communication services such as video conferences, video telephones, and digital television transmission in which moving image signals are encoded and digitally transmitted with a reduced bit rate. can be done, and the effect is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は予測符号化に本発明を適用した予測符号化装置
のブロック図である。第2図は、符号化情報量制御にお
ける量子化ステップ幅qと符号化の情報量を制御する符
号化制御信号Cnとの関係の一例を示す図である。第3
図は、ハイブリッド符号化のブロック図である。第4図
は、ハイブリッド符号化における伝送する係数の範囲の
例を示す図である。第5図は、例として8×8画素のブ
ロックを用いたハイブリッド符号化における符号化制御
信号Cnと伝送する範囲を示す図である。 第6図は、動き補償ハイブリッド符号化に本発明を適用
した場合の装置ブロック図である。第7図は、動き補償
ハイブリッド符号化における本発明でのブロック境界補
正に関する例を示す図である。 1・・・減算器、2・・・符号器、3・・・可変遅延器
、4・・・復号器、5・・・予測器、6・・・減算器、
7・・・減算器、8・・・電力計算器、9・・・予測符
号器、lO・・・直交変換符号化器、l1・・・減算器
、l2・・・直交変換器、13・・・マスク回路、14
・・・量子化器、l5・・・フレームメモリ、16・・
・逆量子化器、l7・・・補正器、l8・・・メモリ、
19・・・逆直交変換器、20・・・誤差電力メモリ、
2l・・・蓄積器、22・・・2乗器、23・・・減算
器、24・・・フレームメモリ、25・・・減算器、2
6・・・動き量検出器。
FIG. 1 is a block diagram of a predictive encoding device to which the present invention is applied to predictive encoding. FIG. 2 is a diagram showing an example of the relationship between the quantization step width q in encoding information amount control and the encoding control signal Cn that controls the encoding information amount. Third
The figure is a block diagram of hybrid encoding. FIG. 4 is a diagram showing an example of the range of coefficients to be transmitted in hybrid encoding. FIG. 5 is a diagram showing a coding control signal Cn and a transmission range in hybrid coding using an 8×8 pixel block as an example. FIG. 6 is a block diagram of a device when the present invention is applied to motion compensated hybrid coding. FIG. 7 is a diagram showing an example of block boundary correction according to the present invention in motion compensated hybrid coding. DESCRIPTION OF SYMBOLS 1... Subtractor, 2... Encoder, 3... Variable delay device, 4... Decoder, 5... Predictor, 6... Subtractor,
7... Subtractor, 8... Power calculator, 9... Prediction encoder, lO... Orthogonal transform encoder, l1... Subtractor, l2... Orthogonal transformer, 13. ...Mask circuit, 14
...Quantizer, l5...Frame memory, 16...
・Inverse quantizer, l7...corrector, l8...memory,
19... Inverse orthogonal transformer, 20... Error power memory,
2l...Accumulator, 22...Squaring device, 23...Subtractor, 24...Frame memory, 25...Subtractor, 2
6...Motion amount detector.

Claims (3)

【特許請求の範囲】[Claims] (1)デジタル画像信号を予測符号化し、その予測誤差
を符号化伝送する方式において、 該当画素ないし画素ブロックの予測に用いる局部復号化
された画素を原信号と比較して、符号化誤差電力を計算
し、 該計算された符号化誤差電力の値を予め定められた一つ
もしくは複数の閾値と比較し、 該閾値に応じて符号化する前記予測誤差の符号化情報量
を制御することを特徴とする画像符号化制御方式。
(1) In a method that predictively encodes a digital image signal and encodes and transmits the prediction error, the locally decoded pixels used for predicting the corresponding pixel or pixel block are compared with the original signal to calculate the encoding error power. and comparing the calculated value of the encoding error power with one or more predetermined thresholds, and controlling the encoding information amount of the prediction error to be encoded according to the threshold. Image encoding control method.
(2)前記符号化誤差電力の値が大きくなるに従って小
なる情報量で前記予測誤差を符号化することを特徴とす
る請求項1記載の画像符号化制御方式。
(2) The image encoding control system according to claim 1, wherein the prediction error is encoded with a smaller amount of information as the value of the encoding error power increases.
(3)デジタル画像信号を予測符号化し、その予測誤差
を直交変換符号化する方式において、前記符号化誤差電
力の値が大きくなるに従って前記予測誤差の変換係数の
うち低次の変換係数だけを符号化し、 誤差電力が小さいときは高次までの係数を符号化するこ
とを特徴とする請求項1記載の画像符号化制御方式。
(3) In a method of predictively encoding a digital image signal and orthogonally transform encoding the prediction error, as the value of the encoding error power increases, only the lower-order transform coefficients of the prediction error transform coefficients are encoded. 2. The image encoding control method according to claim 1, wherein: the image encoding control method encodes the coefficients up to a higher order when the error power is small.
JP5976189A 1989-03-14 1989-03-14 Image coding control method Expired - Lifetime JP2862555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5976189A JP2862555B2 (en) 1989-03-14 1989-03-14 Image coding control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5976189A JP2862555B2 (en) 1989-03-14 1989-03-14 Image coding control method

Publications (2)

Publication Number Publication Date
JPH02239787A true JPH02239787A (en) 1990-09-21
JP2862555B2 JP2862555B2 (en) 1999-03-03

Family

ID=13122574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5976189A Expired - Lifetime JP2862555B2 (en) 1989-03-14 1989-03-14 Image coding control method

Country Status (1)

Country Link
JP (1) JP2862555B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292189A (en) * 1992-06-01 1994-10-18 Matsushita Electric Ind Co Ltd Method and device for coding image
JPH08162965A (en) * 1994-12-12 1996-06-21 Nec Corp Digital image compressor
JP2014158076A (en) * 2013-02-14 2014-08-28 Kddi Corp Scanning order generator, video image encoder, video image decoder, scanning order generation method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219887A (en) * 1986-03-20 1987-09-28 Fujitsu Ltd Encoding device between movement compensation frame
JPS63177672A (en) * 1987-01-19 1988-07-21 Mitsubishi Electric Corp Picture encoding transmission system
JPS63274275A (en) * 1987-04-30 1988-11-11 Nec Corp Compression recording system for picture
JPS6462093A (en) * 1987-09-01 1989-03-08 Matsushita Electric Ind Co Ltd Inter-frame compressing device for video signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219887A (en) * 1986-03-20 1987-09-28 Fujitsu Ltd Encoding device between movement compensation frame
JPS63177672A (en) * 1987-01-19 1988-07-21 Mitsubishi Electric Corp Picture encoding transmission system
JPS63274275A (en) * 1987-04-30 1988-11-11 Nec Corp Compression recording system for picture
JPS6462093A (en) * 1987-09-01 1989-03-08 Matsushita Electric Ind Co Ltd Inter-frame compressing device for video signal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292189A (en) * 1992-06-01 1994-10-18 Matsushita Electric Ind Co Ltd Method and device for coding image
JPH08162965A (en) * 1994-12-12 1996-06-21 Nec Corp Digital image compressor
JP2014158076A (en) * 2013-02-14 2014-08-28 Kddi Corp Scanning order generator, video image encoder, video image decoder, scanning order generation method, and program

Also Published As

Publication number Publication date
JP2862555B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
JPH0537915A (en) Method and device for coding image signal
JPH09331533A (en) Animation image coder
US7826529B2 (en) H.263/MPEG video encoder for efficiently controlling bit rates and method of controlling the same
JPH04262694A (en) Encoding device for picture signal
JP3210082B2 (en) Encoding device and method
JP2000333163A (en) Decoder, its method, coder, its method, image processing system and image processing method
JPH04219074A (en) Picture coder
JP2894137B2 (en) Prefilter control method and apparatus in video coding
JPH0468988A (en) High efficient coder for moving picture signal
JP3090763B2 (en) Video encoding device
JPH02239787A (en) Picture coding control system
JP3128393B2 (en) Compressed video playback device
KR970004924B1 (en) Improved motion vector transmission apparatus and method using layered coding
JP2892701B2 (en) Video signal encoding device
JPS61164390A (en) Adaptive forecast coding device of inter-frame and between frames of animation picture signal
JP2553712B2 (en) Video coding device
JP2512165B2 (en) Video signal encoder
KR100207419B1 (en) Method and apparatus for controlling generation of bit rate in video encoding
KR100778473B1 (en) Bit rate control method
KR100207418B1 (en) Method and apparatus for controlling generation of bit rate in video encoding
JP2962566B2 (en) Variable-rate video layer coding device
KR100774455B1 (en) Bit rate operation apparatus for realtime video transmit application
KR100228542B1 (en) Adaptive bit allocation method for controlling bit generation in video encoder
KR100207417B1 (en) Method and apparatus for controlling generation of bit rate in video encoding
JPH0364186A (en) Inter-frame encoder for compensating movement

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11