JPH02239209A - Optical wavelength filter and photodetector - Google Patents

Optical wavelength filter and photodetector

Info

Publication number
JPH02239209A
JPH02239209A JP5982589A JP5982589A JPH02239209A JP H02239209 A JPH02239209 A JP H02239209A JP 5982589 A JP5982589 A JP 5982589A JP 5982589 A JP5982589 A JP 5982589A JP H02239209 A JPH02239209 A JP H02239209A
Authority
JP
Japan
Prior art keywords
waveguide
layer
waveguide layer
wavelength
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5982589A
Other languages
Japanese (ja)
Inventor
Hajime Sakata
肇 坂田
Hideaki Nojiri
英章 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5982589A priority Critical patent/JPH02239209A/en
Priority to DE69030831T priority patent/DE69030831T2/en
Priority to EP90104675A priority patent/EP0386797B1/en
Publication of JPH02239209A publication Critical patent/JPH02239209A/en
Priority to US07/795,966 priority patent/US5220573A/en
Priority to US07/796,929 priority patent/US5140149A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the small-sized optical wavelength filter having a sharp wavelength selecting characteristic and good coupling efficiency by forming a diffraction grating in a region where the respective waveguide modes centering at 1st and 2nd waveguide layers overlap on each other. CONSTITUTION:The optical wavelength filter is laminated with two layers of the waveguide layers (1st waveguide layer 101 and 2nd waveguide layer 102) in the layer direction and a directional coupler by these layers is constituted. Since the respective waveguide layers 101, 102 are so formed as to vary in thickness and compsn., the propagation constants of the respective guided light rays vary. The diffraction grating 107 formed in the 2nd waveguide layer 102 is for selection of the wavelength to be optically coupled and the wavelength region to be selected is determined by the pitch thereof. The shift of the light power generated between the two waveguide layers 101 and 102 by the diffraction grating 107 becomes dominant so that the sharp wavelength selectivity is obtd. Since the shift of the light power is executed in the direction perpendicular to a substrate 103, the coupling length is shortened and the element is miniaturized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、波長多重光情報伝送システム等において、光
波の分波もしくは合波を行なうための光波長フィルター
に関し、特に方向性結合器型光導波路を用いた光波長フ
ィルタおよび光検出器に関するものである. [従来の技術] 従来の方向性結合器型光導波路による光波長フィルタは
、例えば、R. C. Al ferness他: A
ppliedPhysics Letters,33,
P16t(t978) ,特開昭61− 250607
あるいは三木他、電子通信学会研究報告OQE81−1
29に記載されているもののように方向性結合器を構成
する2つの光導波路が同一基板上に形成されていた. 第8図はこのような従来の光波長フィルタの構成を示す
図である。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an optical wavelength filter for demultiplexing or multiplexing light waves in a wavelength multiplexing optical information transmission system, etc., and in particular to a directional coupler type optical guide. This paper concerns optical wavelength filters and photodetectors using wave paths. [Prior Art] A conventional optical wavelength filter using a directional coupler type optical waveguide is, for example, the R. C. Alferness et al.: A
ppliedPhysics Letters, 33,
P16t (t978), JP-A-61-250607
Or Miki et al., Institute of Electronics and Communication Engineers Research Report OQE81-1
Two optical waveguides constituting a directional coupler were formed on the same substrate, as described in 29. FIG. 8 is a diagram showing the configuration of such a conventional optical wavelength filter.

2つの光導波路81.82は、図に示すように線幅、高
さなどが、異なるように形成されているため、各々の光
導波路を伝搬する導波光の伝搬定数も異なっている。こ
のとき、2つの導波光の電界分布が存在する領域のいず
れかに伝搬定数の差を補償する回折格子83を形成して
おくことにより、特定の波長域の導波光に対して、2つ
の導波路間で光結合が生じる。つまり、特定の波長域の
光のみを選択して導波路間で光パワーを移行させること
ができる。
Since the two optical waveguides 81 and 82 are formed to have different line widths, heights, etc. as shown in the figure, the propagation constants of the guided light propagating through each optical waveguide are also different. At this time, by forming a diffraction grating 83 that compensates for the difference in propagation constant in one of the regions where the electric field distribution of the two guided lights exists, the two guided lights can be Optical coupling occurs between the wave paths. In other words, it is possible to select only light in a specific wavelength range and transfer optical power between waveguides.

従来、この光パワーの移行を利用して、信号光と特定波
長の光波との間での合波/分波を行なわせる光波長フィ
ルタや、特定波長の光波の受信を行なう光検出器が用い
られていた. [発明が解決しようとしている課題] しかしながら、上記従来例では、同一平面内に導波路が
形成されるため、2つの導波路間の伝搬定数差を導波路
の線幅、高さなどでしか、制御することができず、大き
な伝搬定数差を得ることができなかった。そのため、導
波路間の光パワー移行の動作が、回折格子に起因するも
のだけでなく、2つの導波光の干渉効果によるものも含
まれるため、鋭い波長選択特性を得ることが困難であっ
た. さらに、従来の光波長フィルターでは、パワー移行の生
ずる方向が導波光を強く閉じ込めている方向すなわち、
基板に垂直な方向でなく、比較的閉じ込めの緩い平面方
向に起こるため、結合領域の結合長を3〜15mmと長
く設定する必要があった.この結合長の長さは素子全体
が大きくなるという弊害があり、また、吸収が無視でき
ない材料からなる導波路を利用した素子の作成を困難な
ものにしていた. さらに、導波路の幅、高さを変化させるためには、フォ
トリソグラフィー技術を要するが、製作において、1μ
m以下の精度は極めて困難であり、素子作成の再現性が
悪く、素子の特性を劣化させる原因となっていた。
Conventionally, optical wavelength filters have been used that utilize this optical power shift to perform multiplexing/demultiplexing between signal light and light waves of specific wavelengths, and photodetectors that receive light waves of specific wavelengths. It was being done. [Problems to be Solved by the Invention] However, in the conventional example described above, since the waveguides are formed in the same plane, the difference in propagation constant between two waveguides can only be determined by the line width, height, etc. of the waveguides. This could not be controlled and a large difference in propagation constant could not be obtained. Therefore, the operation of optical power transfer between waveguides is not only caused by the diffraction grating, but also includes interference effects between the two waveguides, making it difficult to obtain sharp wavelength selection characteristics. Furthermore, in conventional optical wavelength filters, the direction in which power transition occurs is the direction that strongly confines the guided light, that is,
Since this occurs not in a direction perpendicular to the substrate but in a plane direction where confinement is relatively loose, it was necessary to set the bond length of the bond region as long as 3 to 15 mm. This long coupling length has the disadvantage of increasing the size of the entire device, and also makes it difficult to create devices using waveguides made of materials with non-negligible absorption. Furthermore, in order to change the width and height of the waveguide, photolithography technology is required;
It is extremely difficult to achieve an accuracy of less than m, which results in poor reproducibility of device fabrication and causes deterioration of device characteristics.

本発明は、鋭い波長選択特性を有し、かつ、結合効率の
良い小型の光波長フィルタおよび光検出器を提供するこ
とを目的とする. [課題を解決するための手段] 本発明の光波長フィルタは、 波長多重化された光信号の中より特定の光波を分波し、
また、この逆の動作である合波な行なうための半導体層
が積層された形態の光波長フィルタであって、 光信号が入射される第1の導波層と、 分波を行なう場合には、分波された特定の光波を出射し
、また、合波を行なう場合には、合波する特定の光波が
入射される第2の導波層と、光信号と特定の光波とを選
択的に分離または結合させるための回折格子とを具備し
、 第1の導波層および第2の導波層は、各々を中心とする
導波モードが異なるように、その屈折率や膜厚等が異な
るものとされ、 回折格子は、第1および第2の導波層を中心とする各導
波モードが重なり合う領域に形成されている. また、光検出器は、 波長多重化された光信号の中より特定の光波を分波して
検出する光検出器であって、 光信号が入射される第1の導波層と、 分波された前記特定の光波を導波させる第2の導波層と
、 光信号と特定の光波とを選択的に分離させるための回折
格子と、 第2の導波層の伝搬光の光電変換を行なう光検出部とを
具備し、 第1の導波層および第2の導波層は、各々を中心とする
導波モードか異なるように、その屈折率や膜厚等が異な
るものとされ、 回折格子は、第1および第2の導波層を中心とする各導
波モードが重なり合う領域に形成されている。
An object of the present invention is to provide a compact optical wavelength filter and photodetector that have sharp wavelength selection characteristics and good coupling efficiency. [Means for Solving the Problems] The optical wavelength filter of the present invention demultiplexes a specific light wave from a wavelength-multiplexed optical signal,
In addition, there is an optical wavelength filter in which semiconductor layers are laminated to perform multiplexing, which is the opposite operation, and a first waveguide layer into which an optical signal is incident, and a first waveguide layer for performing demultiplexing. , outputs the demultiplexed specific light waves, and when performing multiplexing, selectively separates the optical signal and the specific light waves into a second waveguide layer into which the specific light waves to be multiplexed are input. The first waveguide layer and the second waveguide layer have different refractive indexes, film thicknesses, etc. so that the waveguide modes centered on each layer are different. The diffraction grating is formed in a region where each waveguide mode centered on the first and second waveguide layers overlaps. The photodetector is a photodetector that demultiplexes and detects a specific light wave from a wavelength-multiplexed optical signal, and includes a first waveguide layer into which the optical signal is incident, and a demultiplexer. a second waveguide layer for guiding the specific light wave; a diffraction grating for selectively separating the optical signal and the specific light wave; and a photoelectric conversion of the propagating light in the second waveguide layer. The first waveguide layer and the second waveguide layer have different refractive indexes, film thicknesses, etc. so that the waveguide modes centered on each layer are different; The diffraction grating is formed in a region where each waveguide mode centered on the first and second waveguide layers overlaps.

[作用] 第1および第2の導波層は積層された形態のものとなる
ので、それらの材料によっても伝搬定数を異ならせるこ
とができ、この間に生じる伝搬定数差を大きなものとす
ることができる。このため、該2つの導波層間に生じる
光パワーの移行は回折格子によるものが支配的となり、
鋭い波長選択性が得られる。この製造プロセスは一般の
半導体素子とほぼ同様であり、その再現性も良い。また
、光パワーの移行は第1および第2の導波層内を伝搬す
る光が強く閉じ込められている方向、すなわち基板に垂
直な方向にて行なわれるので、結合長な短いものとする
ことができ、素子を小型化することができる。
[Function] Since the first and second waveguide layers are in a laminated form, their propagation constants can be made to differ depending on their materials, and the difference in propagation constants that occurs between them can be made large. can. Therefore, the optical power transfer occurring between the two waveguide layers is dominated by the diffraction grating,
Sharp wavelength selectivity can be obtained. This manufacturing process is almost the same as that for general semiconductor devices, and its reproducibility is also good. Furthermore, since the optical power transfer occurs in the direction in which the light propagating in the first and second waveguide layers is strongly confined, that is, in the direction perpendicular to the substrate, the coupling length can be shortened. This allows the device to be made smaller.

[実施例] 第1図は本発明の第1の実施例の構成を示す図である。[Example] FIG. 1 is a diagram showing the configuration of a first embodiment of the present invention.

まず、本実施例の構造について説明する。First, the structure of this embodiment will be explained.

本実施例は、GaAsである基板1上に、厚さ0.5μ
mのGaAsであるバッファ暦104、厚さ1.5μm
のAla. sGao. aAsであるクラッドM10
5、GaAsとAlo. aGao. sAsとが交互
に積層されて多重量子井戸(MQW)とされた厚さ0.
2μmの第1導波N101、厚さ0.7μmのAlo.
 sGao. sAsであるクラッド[1 06、Ga
AsとAio4Gao. aAsとが交互に積層されて
MQWとされた厚さ0.45μmの第2導波層102を
分子線エビタキシャル(MBE)法により順に成長させ
ている。次に、フオトレジス[・を用いたフォトリソグ
ラフィー法によってレジストマスク作製後、反応性イオ
ンビームエッチング(RIBE)により第2導波路層1
02の上面の一部に深さ0.2μmのコルゲーションか
ら成る回折格子107を形成した.続いて、液相エビタ
キシャル(LPE)法によりAlo. @Gao. s
Asからなるクラッド層108を再成長させた.このよ
うに、本実施例の光波長フィルタは、導波層(第1導波
層101、第2導波層102)が層方向に2層積層され
、これらによる方向性結合器が構成されている。各導波
層101,102は、厚さや組成が異なるように形成さ
れているので、各々を導波する光の伝搬定数は異なるも
のとなる.第2導波層102に形成された回折格子10
7は、光結合される波長を選択するためのもので、その
ピッチにより選択される波長域が決定される。
In this example, a substrate 1 having a thickness of 0.5 μm is formed on a substrate 1 made of GaAs.
Buffer 104 made of GaAs, 1.5 μm thick
Ala. sGao. Clad M10 which is aAs
5. GaAs and Alo. aGao. sAs are alternately stacked to form a multiple quantum well (MQW) with a thickness of 0.
2 μm first waveguide N101, 0.7 μm thick Alo.
sGao. The cladding is sAs [1 06, Ga
As and Aio4Gao. A second waveguide layer 102 having a thickness of 0.45 .mu.m and having a thickness of 0.45 .mu.m formed by alternately laminating layers of aAs and MQW is sequentially grown by the molecular beam epitaxial (MBE) method. Next, after fabricating a resist mask by photolithography using photoresist, the second waveguide layer 1 is etched by reactive ion beam etching (RIBE).
A diffraction grating 107 consisting of corrugations with a depth of 0.2 μm was formed on a part of the upper surface of the 02. Subsequently, Alo. @Gao. s
The cladding layer 108 made of As was regrown. In this way, in the optical wavelength filter of this embodiment, two waveguide layers (first waveguide layer 101, second waveguide layer 102) are laminated in the layer direction, and a directional coupler is constructed by these layers. There is. Since the waveguide layers 101 and 102 are formed to have different thicknesses and compositions, the propagation constants of light guided through each layer will be different. Diffraction grating 10 formed on second waveguide layer 102
7 is for selecting a wavelength to be optically coupled, and the wavelength range to be selected is determined by the pitch thereof.

第2図は本実施例の導波モードの光電界分布を示す図で
ある.縦軸は光強度を示し、横軸は第1導波層101を
基準とした距離を示す。このように本実施例の導波モー
ドには、第l導波層l01を中心として成立する奇モー
ド32と第2導波層102を中心として成立する偶モー
ド31があり、回折格子107は、この、偶モード31
と奇モード32とが重なり合う部分に形成されている. このように2つの導波層が設けられた本実施例の動作に
ついて以下に説明する。
Figure 2 is a diagram showing the optical electric field distribution in the waveguide mode of this example. The vertical axis represents the light intensity, and the horizontal axis represents the distance with respect to the first waveguide layer 101. As described above, the waveguide modes of this embodiment include an odd mode 32 that is established around the first waveguide layer l01 and an even mode 31 that is established around the second waveguide layer 102, and the diffraction grating 107 is This even mode 31
and odd mode 32 overlap. The operation of this embodiment in which two waveguide layers are provided in this manner will be described below.

波長0.8μmから0.86μmまで0.01μmきざ
みの複数のレーザ光より成る入力光工09を第1導波層
101へ入力結合させた。この2つの導波層において成
立するモードには前述したように偶モード31および奇
モード32があるが、第1導波層101に入力された入
力光は、第1導波層101を中心とする奇モード32と
結合し、伝搬してゆく。この場合、回折格子107の存
在しない領域では奇モード32と偶モード31は伝搬定
数が異なるため、ほとんど結合せず、独立に近い形で、
伝搬する.しかし、回折格子の存在する領域では、奇モ
ード32の伝搬定数β。と偶モード3lの伝搬定数β1
の間に以下の関数が成立すれば、光パワーの移行が生じ
る. ここでλは光波長でありrは回折格子のピッチである。
An input optical device 09 consisting of a plurality of laser beams with wavelengths from 0.8 μm to 0.86 μm in steps of 0.01 μm was input coupled to the first waveguide layer 101 . As mentioned above, the modes established in these two waveguide layers include the even mode 31 and the odd mode 32, but the input light input to the first waveguide layer 101 is centered around the first waveguide layer 101. It combines with the odd mode 32 and propagates. In this case, in the region where the diffraction grating 107 does not exist, the odd mode 32 and the even mode 31 have different propagation constants, so they are hardly coupled and are almost independent.
Propagate. However, in the region where the diffraction grating is present, the propagation constant β of the odd mode 32. and the propagation constant β1 of even mode 3l
If the following function holds during this period, a shift in optical power will occur. Here, λ is the optical wavelength and r is the pitch of the diffraction grating.

以上のような光パワー移行が生じれば、入力光109が
結合した奇モード32の導波光は、偶モード3lの導波
光に変換される.したがって、入力光は最終的に第2導
波層を伝搬ずる光波となり選択出力光110となって出
力される。他の波長の光は、そのまま非選択出力光11
1として出力される。完全結合が生じるための回折格子
の領域長βは、 で求められる。
When the optical power shift as described above occurs, the guided light of the odd mode 32 coupled with the input light 109 is converted to the guided light of the even mode 3l. Therefore, the input light finally becomes a light wave propagating through the second waveguide layer and is output as the selected output light 110. Lights of other wavelengths remain unselected output light 11
Output as 1. The region length β of the diffraction grating for complete coupling to occur is determined by:

ただし2εI,ε。は各々、偶モード31、奇モード3
2の光電界分布を表わしておりA+(x)は回折格子の
フーリエ級数展開の1次回折光に相当する成分である. 0.83μmの光を中心波長として波長フィルタリング
を行なうため■式より、r=9μmとし、また完全結合
長βは■式より250μmとした。
However, 2εI, ε. are even mode 31 and odd mode 3, respectively.
2, and A+(x) is a component corresponding to the first-order diffracted light of the Fourier series expansion of the diffraction grating. In order to perform wavelength filtering with light having a center wavelength of 0.83 μm, r was set to 9 μm according to formula (2), and the complete bond length β was set to 250 μm according to formula (2).

その結果、第1導波層101に入力した光のうち、第2
導波N102から出力される選択出力光110の波長特
性は第3図に示すものとなった.半値全幅約170人の
波長フィルタリングが行なわれている様子が把める。合
波に関しても、当然これと同様に行なわれる。なお、入
出射端面には、端面反射を軽減する目的で無反射コーテ
ィングを施した。
As a result, of the light input to the first waveguide layer 101, the second
The wavelength characteristics of the selected output light 110 output from the waveguide N102 are as shown in FIG. It can be seen that wavelength filtering is being performed for approximately 170 people with a full width at half maximum. Naturally, the same method is used for combining waves. Incidentally, an anti-reflection coating was applied to the input and output end faces in order to reduce end face reflection.

第4図は本発明の第2の実施例の構成を示す図である. 本実施例は、第1の実施例が横方向の光閉じ込めを行な
わないスラブ型のものであったのに対し、横方向の光閉
じ込めを行なうことにより、光損失の低減を図ったもの
である。
FIG. 4 is a diagram showing the configuration of a second embodiment of the present invention. This embodiment aims to reduce optical loss by confining light in the lateral direction, whereas the first embodiment was of a slab type that did not confine light in the lateral direction. .

本実施例の構造について説明すると、横方向の光閉じ込
めを行なうため、クラツド層108の上面にZn (ま
たはSi)等の不純物を熱拡散させることにより第1導
波層101および第2導波層102の両側をディスオー
ダリングし、屈折率の低い低屈折領域41を形成させた
.この他の構成は第1の実施例と同様であり、同じ番号
を付してある. 両側に形成された低屈折領域41により、第1導波層1
01および第2導波層102中の導波光は横方向に閉じ
込められ、導波光の回折広がりに,よる損失が低減され
、高効率な光波長フィルターが得られた。
To explain the structure of this embodiment, in order to perform lateral optical confinement, an impurity such as Zn (or Si) is thermally diffused onto the upper surface of the cladding layer 108 to form the first waveguide layer 101 and the second waveguide layer. 102 was disordered to form a low refractive region 41 with a low refractive index. The other configurations are similar to those in the first embodiment and are given the same numbers. The first waveguide layer 1 is formed by the low refractive regions 41 formed on both sides.
The guided light in 01 and the second waveguide layer 102 was confined in the lateral direction, and loss due to diffraction spread of the guided light was reduced, resulting in a highly efficient optical wavelength filter.

横方向閉じ込めは、上記以外にもリツジを形成する方法
や、埋め込み法や、装荷法など、種々適用可能である。
In addition to the methods described above, various methods of lateral confinement can be applied, such as a method of forming a ridge, an embedding method, and a loading method.

第5図は本発明の第3の実施例の構成を示す図である。FIG. 5 is a diagram showing the configuration of a third embodiment of the present invention.

第1の実施例では2つの導波層の伝搬定数を補正する回
折格子を第2の導波@I02中に形成したが、本実施例
は2つの導波層間のクラツド層に形成したものである。
In the first example, a diffraction grating for correcting the propagation constants of the two waveguide layers was formed in the second waveguide @I02, but in this example, it was formed in the cladding layer between the two waveguide layers. be.

すなわち、第5図に示すようにAIGaAsであるクラ
ツド層51を成膜後、フォトリソグラフイ法によりコル
ゲーション状回折格子を形成し、AIGaAsである第
2導波層52およびAIGaAsであるクラッド層10
8を再成長させた。
That is, as shown in FIG. 5, after forming a cladding layer 51 made of AIGaAs, a corrugated diffraction grating is formed by photolithography, and a second waveguide layer 52 made of AIGaAs and a cladding layer 10 made of AIGaAs are formed.
8 was regrown.

その他の構成は第1の実施例と同様であり、同じ番号を
付している.素子の性能については第1の実施例で示し
たものと大差なかった。本発明による光波長フィルター
を他の素子と組合わせる、あるいは集積化する時に都合
の良い素子形状を選択可能である。また、以上のように
、回折格子を作製する位置は、導波光の光電界分布(偶
モード31、奇モード32)がともに存在する所ならい
ずれの位置でもかまわない。ただし、結合効率がそれに
応じて異なるので、結合長を調整する必要がある。
The other configurations are the same as those in the first embodiment, and are given the same numbers. The performance of the device was not much different from that shown in the first example. When combining or integrating the optical wavelength filter according to the present invention with other elements, a convenient element shape can be selected. Further, as described above, the position where the diffraction grating is manufactured may be any position where both the optical electric field distributions (even mode 31 and odd mode 32) of the guided light exist. However, since the coupling efficiency varies accordingly, the coupling length needs to be adjusted.

第6図は本発明の第4の実施例の構成を示す図である. 本実施例は、本発明の構造を用いることにより、波長選
択性を有する光検出器を集積化して実現したものである
FIG. 6 is a diagram showing the configuration of a fourth embodiment of the present invention. This example is realized by integrating a photodetector having wavelength selectivity by using the structure of the present invention.

まず、本実施例の構造について説明する。First, the structure of this embodiment will be explained.

n”−GaAsである基板601上に、厚さ0.5μm
のn−GaAsであるバッファ層602、厚さ1.5μ
mのn−Alo. sGa6, sAsであるクラッド
層603、厚さ0.2μmのn−Ale. sGao.
 tAsである第1導波層604、厚さ0.I3μmの
n−Alo. sGao. sAsであるクラッド層6
05、i−GaAsとAlo. 4Gao. aAsと
が交互に積屡されて多重量子井戸された厚さ0.4μm
の第2導波層606を分子線エビタキシャル(MBE)
法を用いて順に成長させた。その後、フォトリソグラフ
ィー法を用いて、深さ0.05μm、ピッチ7.7μm
のコルゲーションより成る回折格子607を第2導波層
606の上面に長さ1.277mmにわたって形成させ
た.次に、この上に液相エビタキシャル(LPE)法を
用いてf−Alo. iGao. aAsであるクラッ
ド層608、厚さ0.5μmのt−GaAsであるキャ
ップ層615を再成長させた.その後、回折格子607
と隣接する領域のクラッド層608および第2導波層6
06をエッチングによって除去した.次に、この除去部
分に、厚さ0.1μmのi−GaAaである吸収層60
9、厚さ1.2μmのP−Ale. sGao. sA
8であるクラッド層610、厚さ0.5μmのP”− 
GaAsであるキャップ層611をLPE法によって再
成長させ、続いて、キャップ層611上にCr/Auか
ら成る電極612を形成し、基板601の裏面にAuG
e/^Uから成る電極613を形成した。
On the substrate 601 which is n''-GaAs, the thickness is 0.5 μm.
buffer layer 602 of n-GaAs with a thickness of 1.5μ
m's n-Alo. A cladding layer 603 made of sGa6, sAs, and a 0.2 μm thick n-Ale. sGao.
The first waveguide layer 604 is tAs, and the thickness is 0. I3 μm n-Alo. sGao. Cladding layer 6 made of sAs
05, i-GaAs and Alo. 4Gao. A multi-quantum well formed by stacking aAs alternately and having a thickness of 0.4 μm
The second waveguide layer 606 is subjected to molecular beam epitaxial (MBE)
They were grown sequentially using the method. After that, using a photolithography method, a depth of 0.05 μm and a pitch of 7.7 μm were formed.
A diffraction grating 607 consisting of corrugations was formed on the upper surface of the second waveguide layer 606 over a length of 1.277 mm. Next, f-Alo. iGao. A cladding layer 608 made of aAs and a cap layer 615 made of t-GaAs with a thickness of 0.5 μm were regrown. After that, the diffraction grating 607
cladding layer 608 and second waveguide layer 6 in an area adjacent to
06 was removed by etching. Next, an absorption layer 60 of i-GaAa with a thickness of 0.1 μm is placed on this removed portion.
9, 1.2 μm thick P-Ale. sGao. sA
8, a cladding layer 610 with a thickness of 0.5 μm, P”-
The cap layer 611 made of GaAs is regrown by the LPE method, and then an electrode 612 made of Cr/Au is formed on the cap layer 611, and AuG is grown on the back surface of the substrate 601.
An electrode 613 made of e/^U was formed.

本実施例のものにおいては、第l導波層604に入力し
てきた光614のうち、光波長フィルターで選択された
波長を有する光のみ、第2導波層606へ結合し、光検
出部である吸収層609で吸収される。光検出部は、p
−i−n構造となっており、電極612,613間には
逆バイアスが印加されている。そのため、吸収により生
じたキャリアは電流信号として検出される。
In this embodiment, out of the light 614 input to the first waveguide layer 604, only the light having the wavelength selected by the optical wavelength filter is coupled to the second waveguide layer 606 and is detected by the photodetector. It is absorbed by a certain absorption layer 609. The photodetector is p
-i-n structure, and a reverse bias is applied between the electrodes 612 and 613. Therefore, carriers generated by absorption are detected as a current signal.

第7図は本実施例のものにおいて電気として取り出され
る信号光の波長特性を示す図である.本実施例ではコル
ゲーションの深さを浅く、かつ、導波層の間隔を広く設
定しているため、結合長が長くなっているが、波長選択
幅は約30人と狭くなっている。
FIG. 7 is a diagram showing the wavelength characteristics of the signal light extracted as electricity in this example. In this example, since the depth of the corrugation is shallow and the interval between the waveguide layers is set wide, the coupling length is long, but the wavelength selection width is narrow by about 30 people.

以上のように本発明による光波長フィルターは用途によ
り波長選択幅を狭くしたり、広くしたり?ることが可能
である.なお、以上の各実施例はすべてGaAs/A 
IGaAs系材科から構成されていたが、無論、rr+
GaAs/ InGaPなど他の化合物半導体あるいは
SiO■/Tiltなどのガラス系材料、LiNbOs
,LiTaOs. BSOなどの光学結晶などから構成
することも可能であることは明白である. [発明の効果] 本発明は、以上説明したように構成されているので、以
下に記載するような効果を奏する。
As mentioned above, the optical wavelength filter according to the present invention can have a narrower or wider wavelength selection range depending on the application. It is possible to Note that all of the above embodiments are made of GaAs/A
It was composed of IGaAs-based materials, but of course, rr+
Other compound semiconductors such as GaAs/InGaP or glass materials such as SiO/Tilt, LiNbOs
, LiTaOs. It is obvious that it is also possible to construct it from optical crystals such as BSO. [Effects of the Invention] Since the present invention is configured as described above, it produces effects as described below.

請求項1に記載のものにおいては、鋭い波長選択性を有
する小型の光波長フィルタを再現性良く製造することが
できる効果がある。この製造プロセスは成膜によるもの
であり、集積化に適しているため、光IC.OEIC 
(光電子IC)に好適であり、光情報伝送、光通信、光
LAN、光コンピューティングに広く応用することが可
能である. 請求項2に記載のものにおいては、上記効果を有する光
検出器を実現することができる効果がある。
According to the first aspect of the present invention, there is an effect that a small optical wavelength filter having sharp wavelength selectivity can be manufactured with good reproducibility. This manufacturing process is based on film formation and is suitable for integration, so optical ICs. OEIC
It is suitable for (optoelectronic IC) and can be widely applied to optical information transmission, optical communication, optical LAN, and optical computing. According to the second aspect of the present invention, there is an effect that a photodetector having the above-mentioned effects can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の構成を示す図、第2図
は第1の実施例の導波モードの光電界分布を示す図、第
3図は第1の実施例中の導波層102から出射される光
の波長特性を示す図、第4図乃至第6図はそれぞれ本発
明の第2乃至第4の実施例の構成を示す図、第7図は第
4の実施例のものにおいて、電流として取り出される信
号光の波長特性を示す図、第8図は従来例の構成を示す
図である。 01,604・・・第1導波層、 02, 606・・・第2導波層、 Q3, 601・・・基板、 04, 602・・・バッファ層、 05, 108, 51, 603, 605, 60
8, 610・・・クラッド層、07, 607・・・
回折格子、 09,614・・・入力光、 lO・・・選択出力光、 II・・・非選択出力光、 3l・・・偶モード、 32・・・奇モード、 4l・・・低屈折領域、 609・・・吸収層、 611,615・・・キャツ 612.613・・・電極. ブ層、
Fig. 1 is a diagram showing the configuration of the first embodiment of the present invention, Fig. 2 is a diagram showing the optical electric field distribution of the waveguide mode of the first embodiment, and Fig. 3 is a diagram showing the optical electric field distribution of the waveguide mode of the first embodiment. A diagram showing the wavelength characteristics of light emitted from the waveguide layer 102, FIGS. 4 to 6 are diagrams showing the configurations of second to fourth embodiments of the present invention, respectively, and FIG. 7 is a diagram showing the configuration of the fourth embodiment. In the example, FIG. 8 is a diagram showing the wavelength characteristics of the signal light extracted as a current, and is a diagram showing the configuration of the conventional example. 01,604...First waveguide layer, 02,606...Second waveguide layer, Q3, 601...Substrate, 04, 602...Buffer layer, 05, 108, 51, 603, 605 , 60
8, 610... cladding layer, 07, 607...
Diffraction grating, 09,614...Input light, 1O...Selected output light, II...Unselected output light, 3l...Even mode, 32...Odd mode, 4l...Low refractive region , 609...Absorption layer, 611,615...Cat 612.613...Electrode. Blue layer,

Claims (1)

【特許請求の範囲】 1、波長多重化された光信号の中より特定の光波を分波
し、また、この逆の動作である合波を行なうための半導
体層が積層された形態の光波長フィルタであって、 前記光信号が入射される第1の導波層と、 分波を行なう場合には、分波された前記特定の光波を出
射し、また、合波を行なう場合には、合波する前記特定
の光波が入射される第2の導波層と、 前記光信号と前記特定の光波とを選択的に分離または結
合させるための回折格子とを具備し、前記第1の導波層
および前記第2の導波層は、各々を中心とする導波モー
ドが異なるように、その屈折率や膜厚等が異なるものと
され、 前記回折格子は、前記第1および第2の導波層を中心と
する各導波モードが重なり合う領域に形成されている光
波長フィルタ。 2、波長多重化された光信号の中より特定の光波を分波
して検出する光検出器であって、 前記光信号が入射される第1の導波層と、 分波された前記特定の光波を導波させる第2の導波層と
、 前記光信号と前記特定の光波とを選択的に分離させるた
めの回折格子と、 前記第2の導波層の伝搬光の光電変換を行なう光検出部
とを具備し、 前記第1の導波層および前記第2の導波層は、各々を中
心とする導波モードが異なるように、その屈折率や膜厚
等が異なるものとされ、 前記回折格子は、前記第1および第2の導波層を中心と
する各導波モードが重なり合う領域に形成されている光
検出器。
[Claims] 1. Optical wavelength in a form in which semiconductor layers are stacked for demultiplexing a specific light wave from a wavelength-multiplexed optical signal and for performing multiplexing, which is the reverse operation. A filter, which includes a first waveguide layer into which the optical signal is incident, and when performing demultiplexing, outputs the demultiplexed specific light wave, and when performing multiplexing, a second waveguide layer into which the specific light wave to be combined is incident; and a diffraction grating for selectively separating or combining the optical signal and the specific light wave; The wave layer and the second waveguide layer have different refractive indexes, film thicknesses, etc. so that the waveguide modes centered on each layer are different, and the diffraction grating is different from the first and second waveguide layers. An optical wavelength filter is formed in an area where each waveguide mode overlaps around the waveguide layer. 2. A photodetector that demultiplexes and detects a specific light wave from a wavelength-multiplexed optical signal, comprising: a first waveguide layer into which the optical signal is incident; and the demultiplexed specific light wave. a second waveguide layer for guiding the light wave; a diffraction grating for selectively separating the optical signal and the specific light wave; and photoelectric conversion of the light propagating in the second waveguide layer. The first waveguide layer and the second waveguide layer have different refractive indexes, film thicknesses, etc. so that the waveguide modes centered on each layer are different. . A photodetector, wherein the diffraction grating is formed in a region where each waveguide mode centered on the first and second waveguide layers overlaps.
JP5982589A 1989-03-10 1989-03-14 Optical wavelength filter and photodetector Pending JPH02239209A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5982589A JPH02239209A (en) 1989-03-14 1989-03-14 Optical wavelength filter and photodetector
DE69030831T DE69030831T2 (en) 1989-03-10 1990-03-12 Photodetector with wavelength-selective optical coupler
EP90104675A EP0386797B1 (en) 1989-03-10 1990-03-12 Photodetector using wavelength selective optical coupler
US07/795,966 US5220573A (en) 1989-03-10 1991-11-21 Optical apparatus using wavelength selective photocoupler
US07/796,929 US5140149A (en) 1989-03-10 1991-11-22 Optical apparatus using wavelength selective photocoupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5982589A JPH02239209A (en) 1989-03-14 1989-03-14 Optical wavelength filter and photodetector

Publications (1)

Publication Number Publication Date
JPH02239209A true JPH02239209A (en) 1990-09-21

Family

ID=13124390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5982589A Pending JPH02239209A (en) 1989-03-10 1989-03-14 Optical wavelength filter and photodetector

Country Status (1)

Country Link
JP (1) JPH02239209A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632300A1 (en) 1993-06-23 1995-01-04 Canon Kabushiki Kaisha Optical wavelength multiplexing and demultiplexing device for multiplexing or demultiplexing light having a plurality of modes and photodetector using the same
JP2006330104A (en) * 2005-05-23 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> Waveguide type filter and semiconductor laser element using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161201A (en) * 1979-06-01 1980-12-15 Nippon Telegr & Teleph Corp <Ntt> Light delay equalizer
JPS63103202A (en) * 1986-10-08 1988-05-07 エイ・ティ・アンド・ティ・コーポレーション Optical device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161201A (en) * 1979-06-01 1980-12-15 Nippon Telegr & Teleph Corp <Ntt> Light delay equalizer
JPS63103202A (en) * 1986-10-08 1988-05-07 エイ・ティ・アンド・ティ・コーポレーション Optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632300A1 (en) 1993-06-23 1995-01-04 Canon Kabushiki Kaisha Optical wavelength multiplexing and demultiplexing device for multiplexing or demultiplexing light having a plurality of modes and photodetector using the same
US5517589A (en) * 1993-06-23 1996-05-14 Canon Kabushiki Kaisha Optical wavelength multiplexing and demultiplexing device for multiplexing or demultiplexing light having a plurality of modes and photodetector using the same
JP2006330104A (en) * 2005-05-23 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> Waveguide type filter and semiconductor laser element using the same

Similar Documents

Publication Publication Date Title
JP2765545B2 (en) Optical wavelength discriminating circuit and method of manufacturing the same
US8750654B2 (en) Photonic integrated circuit having a waveguide-grating coupler
KR101325334B1 (en) Narrow surface corrugated grating
US6282219B1 (en) Substrate stack construction for enhanced coupling efficiency of optical couplers
US5517589A (en) Optical wavelength multiplexing and demultiplexing device for multiplexing or demultiplexing light having a plurality of modes and photodetector using the same
KR100289042B1 (en) Vertically coupled wavelength variable optical fiber having double lattice structure
JPH07253515A (en) Converter of optical waveguide and preparation thereof
EP0641053A1 (en) Method and apparatus for control of lasing wavelength in distributed feedback lasers
JP3149979B2 (en) Photodetector and light emitting device
US5032710A (en) Photodetector to detect a light in different wavelength regions through clad layer having different thickness portions
JPH02239209A (en) Optical wavelength filter and photodetector
EP0496348B1 (en) Multi-wavelength light detecting apparatuses having serially arranged grating directional couplers
JP2836050B2 (en) Optical wavelength filter and device using the same
JP3445226B2 (en) Directional coupler, optical modulator, and wavelength selector
JP2836051B2 (en) Light wavelength filter
JP2641289B2 (en) Optical amplifier with built-in optical wavelength filter
JP2620329B2 (en) Wavelength demultiplexing detector
JPH09297231A (en) Waveguide type optical demultiplxer and its manufacture
JP2895099B2 (en) Photo detector
JP2672141B2 (en) Photo detector
JP3162427B2 (en) Integrated wavelength filter
JP2000199825A (en) Optical circuit element and optical integrated circuit
JP3212840B2 (en) Method for manufacturing semiconductor optical wavelength discrimination circuit
CN117891028A (en) Ultra-compact broadband wavelength demultiplexer and design method thereof
JP2548768B2 (en) Waveguide type optical demultiplexer